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Abstract
Chronic lung diseases represent a largely global burden whose pathogenesis remains

largely unknown. Research increasingly suggests that epigenetic modifications, espe-

cially DNA methylation, play a mechanistic role in chronic lung diseases. DNA

methylation can affect gene expression and induce various diseases. Of the caveo-

lae in plasma membrane of cell, caveolin-1 (Cav-1) is a crucial structural constituent

involved in many important life activities. With the increasingly advanced progress

of genome-wide methylation sequencing technologies, the important impact of Cav-1

DNA methylation has been discovered. The present review overviews the biological

characters, functions, and structure of Cav-1; epigenetic modifications of Cav-1 in

health and disease; expression and regulation of Cav-1 DNA methylation in the res-

piratory system and its significance; as well as clinical potential as disease-specific

biomarker and targets for early diagnosis and therapy.

K E Y W O R D S

caveolae, caveolin-1, chronic lung diseases, epigenetic modification, methylation

1 BACKGROUND

Caveolae are crucial in various cellular, physiological, and

pathological processes, for example, cell proliferation, apop-

tosis, migration, differentiation, angiogenesis, tumorigenesis,

and metastasis by special signal transduction, endocytosis,

and transcytosis. Caveolae are a kind of flask-like invagi-

nations in the plasma membrane. The constitute of caveo-

lae includes caveolin, cavin (also named polymerase I and

transcript release factor), lipids, transcription polymerase, as
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well as various ion channel proteins (Figure 1).1 The caveolin

family contains three subtypes: caveolin-1 (Cav-1), caveolin-

2 (Cav-2), and caveolin-3 (Cav-3), of which Cav-1 is co-

expressed primarily in many cells with Cav-2. Cav-2 is not

essential in the formation of caveolae and can be located or

expresses dependently on Cav-1.2 Cav-3 is only specific to

muscle cells.3 Cav-1 is the major integral membrane protein

for the assembly of caveolae in nonmuscle cells. Emerging

evidence demonstrates that Cav-1 plays a positive or negative

regulatory role in cell signaling transduction, which depends
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F I G U R E 1 The structure of caveolae. Caveolae are a kind of

flask-shaped invaginations in the plasma membrane, including

caveolin, cavin (also named polymerase I and transcript release factor

(PTRF)), lipids, and so on. Cav-1 is the major integral membrane

protein for the assembly of caveolae. Cav-1 contains a highly conserved

domain named caveolin scaffolding domain (CSD, acids 82-101). The

CSD domain takes part in the interactions with signaling proteins and

regulates signal transduction in various cellular processes

on the type of cells and signaling pathways. The changes in

expression of Cav-1 may be vital on chronic lung diseases as

a new target for the treatment. Our review aims at overviewing

the biological characters, structure and function of Cav-1, epi-

genetic modifications of Cav-1 in health and disease, expres-

sion and regulation of Cav-1 in the respiratory system, Cav-1

methylation and significance in chronic lung diseases, as well

as clinical potential as disease-specific biomarker and targets

for early diagnosis and therapy.

1.1 Structure and functions of Cav-1

Cav-1 consists of 178 amino acid residues with a highly

conserved amphipathic region of caveolin scaffolding domain

(CSD), which interacts with signaling proteins and regu-

lates signal transduction through the entrapment of signaling

partners.4 Cav-1 monomers may form a disk-shaped oligomer

with its carboxyl terminal part toward the center and insert

into the plasma membrane by CSD and intramembrane

domain, a second amphipathic helix.5 CSD is dynamically

allocated between fully helical or partly unstructured forms,

which determine its accessibility.6 The structure of Cav-1

is decided by its oligomerization state and the organization

of other components in the caveolae like cavin or lipids.

In caveolae, Cav-1 oligomers converge specific lipids such

as cholesterol, phosphatidylinositol-4,5-bisphosphate, and

phosphatidyl serine to aggregate cavin trimers. Caveolae

are enriched in multiple lipids, some of which are highly

important signaling molecules in cell membrane.7 Cav-1

closely connects with cholesterol and sphingolipids. This

connection cannot be separated at low temperatures by high

concentrations of salts or nonionic surfactant detergents likes

triton X-100.8 Cav-1 can interact with cholesterol at a 1:1

stoichiometry through a sequence that matches to cholesterol

recognition/interaction amino acid consensus domain.9

Depletion of cholesterol causes a decrease in caveolae. Con-

versely, cholesterol supplementation will increase membrane

cholesterol, and lead to a decrease in membrane fluidity

and an increase in caveolae and Cav-1 number on the cell

membrane.10

Cav-1 is encoded on 7q31.1 of human chromosome and

critical in the formation of caveolae. Caveolae cannot be

formed without Cav-1. Genetic deletion of Cav-1 caused

the lack of caveolae.11,12 The amino- and carboxy-terminal

domains of Cav-1 are limited in the cytoplasmic surface

of cell membrane and long putative hairpin intramembrane

domain.13 Cav-1 exists into two isoforms: Cav-1𝛼 and

Cav-1𝛽, having similar structures to CSD and an acetylated

C-terminus.14 The only difference between Cav-1𝛼 and Cav-

1𝛽 structures is that the Cav-1𝛼 has an N-terminal 31 amino

acids rather than Cav-1𝛽.15 Cav-1𝛼 and Cav-1𝛽 are produced

from two distinct mRNAs. Full-length mRNA may produce

the Cav-1𝛼 predominantly, but little Cav-1𝛽. The Cav-1𝛽

was most partly generated from 5’-end variant mRNA.16

The function of Cav-1 isoforms differs, for example, Cav-1𝛼

primarily expressed as an early marker for vasculogenesis

during the development of lung blood vessels and in alveolar

Type I cells in mature lungs.17 Hyperexpression of Cav-1𝛽

may inhibit activation of the bone morphogenetic proteins

pathway signaling, rather than Cav-1𝛼.14,18 In freeze-fracture

immunoelectron microscopy, the 𝛼/𝛽 ratio in human fibrob-

lasts is higher in the deep of caveolae than the shallow ones.

The different ratio of Cav-1 isoforms in the deep and shallow

of caveolae shows a unique molecular mechanism about the

caveolae-shaped differentiation.19

Phosphatidylserine was accumulated on the cytoplasmic

surface of the plasma membrane related to caveolae and the

function of Cav-1.20 Cav-1 is phosphorylated on tyrosine-14

in response to stimulation, responsible for various biological

processes covering signal transduction and regulation in

caveolae.21 The phosphorylation of Cav-1 at Tyr14 can be

regulated in posttranslational level to contribute to the patho-

genesis of lung diseases.22 Changes of the phosphorylation

of Cav-1 may be the direction of targeted therapy. Phos-

phorylation of Cav-1 is a necessary process to enhance the

interaction with endothelial nitric oxide synthase (eNOS)23

and regulate nanoclustering of isotype-specific B-cell antigen

receptors.24 Curcumin prevented kidney injury in diabetic

nephropathy by inhibiting phosphorylation of Cav-1.25

Lipopolysaccharide (LPS)-induced phosphorylation of
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Cav-1-enhanced microvascular permeability.26 Various

important processes are affected by Cav-1. Cav-1 gathering

with other signal-sensing molecules can be activated by

appropriate stimulation. Many growth factors, signaling

receptors, kinases, enzymes, and other signaling regulators

are clustered in caveolae.27 Cav-1 can interact with regulatory

factors of signaling pathways, such as Akt,28 Src kinases,29

Rab5 small GTPases,30 and is also involved in maintenance

of the immune system. Cav-1 is closely associated with

eNOS, which is mainly reflected in the co-localization and

the dynamic functional regulation.31 In endothelial cells,

eNOS directly binds with the CSD of Cav-1 and co-expressed

with it at a special ratio.23 On the one hand, Cav-1 regu-

lates eNOS expression level and inhibits its activity when

activated, and, on the other hand, sustained eNOS-derived

NO production leads to the degradation of Cav-1.31 The

association between Cav-1 and eNOS was crucial in vascular

homeostasis when confronted with oxidative stress, which

was found in several disease states including atheroscle-

rosis, diabetes, and myocardial infarction.32,33 Epidermal

growth factor (EGF) and platelet-derived growth factor

(PDGF) receptors were transiently associated with Cav-1

in the presence of ligand. Overexpressed Cav-1 suppressed

p42/44 mitogen-activated protein (MAP) kinase activation

and cell proliferation induced by EGF and PDGF.34,35 The

p42/44 MAP kinase could be activated in the absence of

Cav-1, leading to cardiac hypertrophy.36 Cav-1 regulates

the distribution of nanoclusters of isotype-specific B-cell

antigen receptors in B cell plasma membrane, a multiprotein

complex, which plays an important role in the development,

proliferation, and activation of B cells, to prevent B-cell-

induced autoimmunity.24 Cav-1 contributes to mitochondrial

fatty acid catabolism and respiration through modulating

mitochondrial cholesterol levels, stimulating peroxisome

proliferator-activated receptor 𝛼–dependent fatty acid oxida-

tion and enhancing ketogenesis production.37,38 Cav-1 affects

the regulation of glycolytic activities. Isoflurane inhibits cell

apoptosis through increasing glycolysis in a Cav-1-dependent

mechanism.39 Cav-1 also plays part roles in the regulation

of apoptosis. Microtubule-associated protein 1 light chain

3B (LC3B), as a vital regulator of autophagic and apoptotic

signaling cascades, requires Cav-1 to form a complex with

the death receptor Fas to regulate apoptosis.40 The absence

of Cav-1 caused various disorders related to normal life

activities, leading to diseases.41 Cav-1 knockout mice have

multiple functional disorders including hyperglycaemia,

lipidosis, and dysfunction in vascular permeability.12,42-44

Cav-1 mutation leads to severely lipodystrophic diabetes.45

Caveolae as the multifunctional organelle is important for

the regulation of various cellular functions. Understanding of

caveolae is useful to design therapies for caveolae-associated

diseases

1.2 Cav-1 in the respiratory system

Caveolae and their vital constituent Cav-1 play complex

and significant roles in respiratory system. Within the lung,

caveolae are widely present in airway or alveolar epithelium,

airway or pulmonary artery smooth muscle, pulmonary

endothelium, fibroblasts, and immune cells.46 Thus, the

widespread presence of caveolae raises the controllability

of themselves and Cav-1 in lung disease states and can in

turn influence the pathophysiology. The changes in Cav-1

expression lead to a series of function and morphological

dysfunction in the respiratory system (Figure 2).

Cav-1 has a range of functions and effects, many of which

are harmful, but some may also promote health. In addition,

Cav-1 is found in a variety of cells and has different roles in

these cell types. Therefore, it needs to be studied separately

in cell culture and expression analysis and animal disease

models.47 The regulation of Cav-1 is multifunctional in

chronic lung diseases. In most of the lung diseases, the

expression of Cav-1 is lower compared to normal conditions.

Complete loss of caveolae and Cav-1 in airways and vascu-

lature is thought to occur in inflammatory lung diseases such

as chronic obstructive pulmonary disease (COPD), asthma,

and inflammation-induced lung injury.48 Downregulation

of Cav-1 may be related to pulmonary fibrosis due to

increased extracellular matrix production, hypercellularity,

inflammation, and dysfunction of epithelial barrier.49 Cav-1-

knockout mice enhanced the severity of transforming growth

factor-𝛽1 (TGF-𝛽1)-induced oxidative stress, inflammation,

and fibrosis.50 Deletion of Cav-1 in mice also developed

pulmonary hypertension, myocardial hypertrophy, and alve-

olar cell hyperproliferation through the activation of p42/44

MAP kinases.51 Cav-1 may regulate pulmonary vascular

homeostasis through influencing endothelial angiotensin-1

converting enzyme expression and activity, of which reduced

expression of Cav-1 leads to abnormal pulmonary vascular

development.52 COPD is a type of emphysema and/or

chronic bronchitis characterized by airflow obstruction.

Chronic bronchitis is inflammation that occurs on the inner

wall of airway. Emphysema is related to the destruction of

the alveoli cells. In addition, oxidative stress, apoptosis, and

aging are all involved in COPD. Cav-1 regulates these pro-

cesses. For example, loss of Cav-1 is related to the deficiency

of elastic fibers in the lung from the damaged parenchyma of

COPD patients.53 The expression of Cav-1 is required in lung

fibroblasts and emphysema aging induced by smoking.54 The

imbalance of Th17/Treg cells was crucial in the pathogenesis

of COPD. Cav-1 is related to the homeostasis of Th17/Treg

cells in respiratory inflammation.55 Downregulation of Cav-1

was accompanied by an increase in Treg and decrease in Th17

expression. These results indicate that Cav-1 plays a pivotal

role in the occurrence and development of COPD. Cav-1 was
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F I G U R E 2 Cav-1 in the respiratory system. Caveolae widely exists in many cells of the respiratory system and are involved in various cellular

activities. Cav-1 as the important structural proteins of caveolae is involved in a variety of signaling pathways, and the abnormal expression level of it

will lead to the structural and functional dysfunction and induce the occurrence of diseases

found to be involved in the formation of pulmonary capillary

leakage, pulmonary edema, and lung injury during acute

inflammatory response.56,57 Cav-1 deletion enhanced expres-

sion of the pro-inflammatory cytokines stimulated by LPS.

The expression of Cav-1 was downregulated in peripheral

monocytes or plasma harvested from patients with asthma

or COPD along with pulmonary hypertension.58,59 Fibrotic

disorders are related to the abnormal accumulation of fibrob-

lasts in tissues. TGF-𝛽1 is the key modulator of fibrogenesis

in various tissues and the essential regulator in myofibroblast

differentiation, leading to the apoptosis-resistant phenotype

by multiple signaling pathways. The suppression of Cav-1

contributes to fibroblast proliferation and apoptosis resistance

through TGF-𝛽1-associated pathway in the development of

idiopathic pulmonary fibrosis (IPF).60-62

However, other studies suggested that the downreg-

ulated Cav-1 expression might reduce the severity of

lung inflammation and vascular injury through activating

polymorphonuclear neutrophils.63 The role of Cav-1 in

pulmonary arterial hypertension was verified in pulmonary

arterial hypertension rat models, where Cav-1 activated

signal transducers and activators of transcription 3 (STAT3)

transcription factor64 and regulated the bioavailability of

NO.65 Increased Cav-1 expression in pulmonary arterial

hypertension enhanced agonist-induced contraction via

modulation of receptor-operated calcium channels and

store-operated calcium channels in pulmonary arteries, play-

ing a vital role in disease pathology.66 In lung cancer, Cav-1

plays both suppressive and promoting roles.67 Downregulated

Cav-1 expression of cancer-associated fibroblasts is observed

in many aggressive cancers, indicating that Cav-1 may inhibit

tumor cell growth and increase the production of 𝛼-smooth

muscle actin, responsible for poor cancer outcomes.68 How-

ever, degradation of Cav-1 can increase autophagy markers,

such as cathepsin B (active form), lysosomal-associated

membrane protein-1, LC3B, beclin 1, autophagy-related 16

like 1, (ATG16L1), and BCL2 interacting protein 3 (BNIP3),

to increase autophagy of cancer cells.69 Cav-1 also regulates

cellular senescence, for example, senescent lung fibroblasts,

contributing to the progression of lung cancer.70,71 Cav-1 was

identified to modulate the secretion of interleukin-6 (IL-6),

which is an important factor in the microenvironment of

tumor and the growth of cancer cells. Overexpression of Cav-

1 may induce premature senescence. Senescent fibroblasts

stimulate the growth of cancer cells by secretion of IL-6.72

1.3 Epigenetic modifications of Cav-1 in
healthy and diseased lungs

Epigenetics influence gene expression with changes in DNA

sequences through two major mechanisms (Figure 3). Of
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F I G U R E 3 Two major epigenetics influence in gene expression. There are two major mechanisms involved in epigenetic regulation. One is the

DNA methylation, changes on that could influence the gene expression level of gene. The other one is histone modification, which contains

phosphorylation, methylation, and acetylation

F I G U R E 4 DNA methylation changes in Cav-1 gene expression. Methylation refers to the process of catalyzing the transfer of methyl groups

from active methyl compounds to other compounds. DNA methylation generally occurs at the CpG site of gene promoter region. DNA methylation is

an important modification of genes, which could regulate the expression level of genes and is closely related to many diseases. It is one of the crucial

researches on epigenetic regulation

those, DNA methylation involves methylation of gene pro-

moter regions (Figure 4), whereas the histone modification

is related to the structural changes of chromatin. Changes in

epigenetic regulation can be restored by using some chemical

agents.73 DNA promoter hypermethylation is induced by the

modification of cytosine residues in the CpG dinucleotides to

constitute 5-methylcytosine via covalent addition of methyl

group with DNA methyltransferase. CpG dinucleotides are

disproportionally distributed in mammals. The CpG islands

(CpGi) DNA within the gene promoters is a short sequence

with high densities of CpG dinucleotides. The promoter

region of genes with methylated CpGi is transcriptionally

inactive due to the inhibitory role of methyl groups in tran-

scriptional elements via accessing the promoter region.73,74

The downregulation of Cav-1 in various diseases is caused by

the methylation at the Cav-1 coding genes CAV1 promoter

region.

Cav-1 can be downregulated by the aberrant promoter

methylation of CAV1 in the stage and may be crucial in the

development of many cancers.75,76 The DNA methyltrans-

ferases play key roles in CAV1 expression in different stages

of many cancers.77,78 The positive or negative effects of

Cav-1 vary among a variety of aspects of tumor progression,

due to the direct or indirect interaction of Cav-1 with effector
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F I G U R E 5 Epigenetic regulation changes in Cav-1 gene expression. DNA methylation and histone modification are the two major mechanisms

of Cav-1 gene. Epigenetic regulation changes in Cav-1 gene could act as diagnosis and prognosis biomarkers of various lung diseases. Application of

demethylase can reverse the methylation degree changes in promoter region of Cav-1 gene and induce the re-expression of Cav-1. The re-expression

of Cav-1 makes therapeutic effect on some chronic lung diseases

molecules to affect caveolae’s function.79 The promoter CpG

hypermethylation of CAV1 occurred at the onset of tumor

development though a hypermethylated state remains in

full-blown tumors.80 However, the degree of methylation

in metastatic foci and lymph nodes decreased to re-express

those related genes. Those genes are most partly inactivated

through changes in DNA methylation and reactivated in

demethylation activity.81 It was reported that the 5′ pro-

moter of CAV1 was methylated in human breast cancer cells,

whereas not in the normal human mammary epithelial cells.82

Furthermore, hypermethylation in CAV1 promoter region is

involved in the histopathological grading of the tumor83 and

with nodal metastasis, which is the most common form of

metastasis pattern.84 Although there were different epigenetic

changes in Cav-1 among breast cancer subtypes, for example,

CAV1 was overexpressed after being hypomethylated in

inflammatory breast cancer.85 In addition to cancers, there

are many other diseases involving the regulation of Cav-1

methylation. Epigenetic regulation in Cav-1 could protect car-

diac function from ischaemic injury as a potential mechanism

of cardioprotection.86 CAV1 deletion decreased expression

of sirtuin1 in the ischemic preconditioning heart, which

may affect DNA methylation across the genome and play a

protective role in cardiac ischemia reperfusion injury.86

1.4 Caveolin-1 methylation in chronic lung
diseases

The epigenetic changes in Cav-1 may be a new target for the

treatment of chronic lung diseases (Figure 5). Suppression

of Cav-1 expression was related to the gene promoter hyper-

methylated in COPD as well as in IPF.87 Compared with

lung tissue in the COPD group and the nonsmoker group,

the CpG sites of CAV1 in the COPD group were signifi-

cantly hypermethylated.88 DNA methylation is seriously dis-

rupted because of cigarette smoking, responsible for a wide

range of malignant and nonmalignant diseases progression.

It is an important mechanism contributing to COPD pathol-

ogy. Abnormal CAV1 methylation was a whole genome phe-

nomenon in small airways of patients with COPD, alter-

ing gene expressions and pathway activities important to

COPD.87 Cav-1 methylation can be a powerful predictor in

the stable stage of lung cancer, and a potential biomarker

for taxane-based chemotherapy in lung cancers.89 Cav-1 gene

methylation was related to overall survival of patients with

lung cancer treated with taxane, although Cav-1 expression

levels did not show significant difference.89 Those effects of

CAV1 promoter methylation in lung cancers seem to be cell

and tissue specific. CAV1 could be a key molecule for lung

cancer development. It plays quite different roles between

small-cell lung cancer and nonsmall-cell lung cancer because

the changes in CAV1 methylation may have opposite func-

tions leading to either growth inhibition or growth promo-

tion. For example, CAV1 has been considered as a tumor sup-

pressor gene in SCLC, whereas in NSCLC, CAV1 acts as an

oncogene and is responsible for survival and growth of tumor

cells.67 Other epigenetic mechanisms, such as histone modifi-

cations, were observed in chronic lung diseases, for example,

Cav-1 expression was suppressed by the histone deacetylase

inhibitor, trichostatin A.90 Expression of Cav-1 was downreg-

ulated in IPF, when CAV1 was silenced through diminished
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binding of the active histone mark histone H3 trimethyl Lys4

with its promoter region.91 Combining with the evidences

that Cav-1 expression is significantly reduced in a variety of

chronic lung diseases, we suspect that epigenetic changes of

Cav-1 may be a key pathological mechanism of chronic lung

diseases.

The methylation of Cav-1 promoter region by DNA

methyltransferases is reversible and can be a new direction

for targeted treatment of diseases. Treatment with a DNA

methyltransferase inhibitor in breast cancer cell lines leads

to the re-expression of Cav-1 through demethylation of

CpGi shores.92 Treatment with 5-AZA, which may reverse

DNA promoter hypermethylation, could cause Cav-1 re-

expression and restoration in ovarian cancer-associated

hypermethylation.90 Hypermethylation in Cav-1 promoter

region was reported in patients with colorectal cancer,

whereas 5-AZA could inhibit colon cancer cell growth

through the Cav-1 signal pathways.93,94 Further, 5-AZA

treatment in hepatoma cells also leads to upregulated Cav-1

expression.95 DNA is not easily degraded, DNA methylation

happens uniquely in the CpG-rich region and can be detected

easily with a single pair of primers, or Cav-1 can be secreted

into the plasma and detected. Therefore, the treatment of

abnormal methylated DNA by methyltransferase inhibitors

is feasible, which can trigger the re-expression of silenced

genes, thereby improving the treatment efficiency.

2 CONCLUSIONS

In conclusion, Cav-1 is important in healthy and diseased

lungs, of which the suppression of Cav-1 expression and func-

tion may be associated with the pathogenesis of chronic lung

disease. Cav-1, especially altered DNA methylation patterns

in the promoter region, was associated with chronic lung

diseases. Treatment with DNA methyltransferase inhibitor

can activate Cav-1 through demethylation of CpGi shores

as therapeutic potentials for lung diseases, although there

still are a large number of challenges to be overcome to

meet criteria of disease-specific biomarkers and targets to

dynamically monitor disease severity, duration, stage, and

response to therapy.96-111 Understanding of Cav-1 may con-

tribute to developing the new therapies. Further researches

will be needed to clarify the role of CAV1 in the develop-

ment of chronic lung disease and to determine whether CAV1

expression and/or promoter methylation could be used as an

alternative of diagnostic biomarkers and therapeutic targets

for chronic lung diseases in the early diagnosis and clinical

treatment.
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