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Abstract

To regulate shape changes, motility and chemotaxis in eukaryotic cells, signal transduction pathways channel extracellular
stimuli to the reorganization of the actin cytoskeleton. The complexity of such networks makes it difficult to understand the
roles of individual components, let alone their interactions and multiple feedbacks within a given layer and between layers
of signalling. Even more challenging is the question of if and how the shape of the cell affects and is affected by this internal
spatiotemporal reorganization. Here we build on our previous 2D cell motility model where signalling from the Rho family
GTPases (Cdc42, Rac, and Rho) was shown to organize the cell polarization, actin reorganization, shape change, and motility
in simple gradients. We extend this work in two ways: First, we investigate the effects of the feedback between the
phosphoinositides (PIs) PIP2, PIP3 and Rho family GTPases. We show how that feedback increases heights and breadths of
zones of Cdc42 activity, facilitating global communication between competing cell ‘‘fronts’’. This hastens the commitment
to a single lamellipodium initiated in response to multiple, complex, or rapidly changing stimuli. Second, we show how cell
shape feeds back on internal distribution of GTPases. Constraints on chemical isocline curvature imposed by boundary
conditions results in the fact that dynamic cell shape leads to faster biochemical redistribution when the cell is repolarized.
Cells with frozen cytoskeleton, and static shapes, consequently respond more slowly to reorienting stimuli than cells with
dynamic shape changes, the degree of the shape-induced effects being proportional to the extent of cell deformation. We
explain these concepts in the context of several in silico experiments using our 2D computational cell model.

Citation: Marée AFM, Grieneisen VA, Edelstein-Keshet L (2012) How Cells Integrate Complex Stimuli: The Effect of Feedback from Phosphoinositides and Cell
Shape on Cell Polarization and Motility. PLoS Comput Biol 8(3): e1002402. doi:10.1371/journal.pcbi.1002402

Editor: Andrew D. McCulloch, University of California San Diego, United States of America

Received July 6, 2011; Accepted January 7, 2012; Published March 1, 2012

Copyright: � 2012 Marée et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: VAG is supported by the Royal Society Dorothy Hodgkin award (http://royalsociety.org/grants/schemes/dorothy-hodgkin/). LEK has been a
Distinguished Scholar in the Peter Wall Institute for Advanced Studies (UBC) (http://www.pwias.ubc.ca/). She is supported by a subcontract from the National
Institutes of Health (http://www.nih.gov/) (Grant Number GM086882) to Anders Carlsson, Washington University, St Louis, and an NSERC discovery and an NSERC
discovery accelerator supplement grant (http://www.nserc-crsng.gc.ca/Professors-Professeurs/Grants-Subs/DGAS-SGSA_eng.asp). The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: stan.maree@jic.ac.uk

. These authors contributed equally to this work.

Introduction

Reorganization of the actin cytoskeleton is essential in

eukaryotic cell motility. Signalling modules that regulate this

reorganization include the Rho GTPases (Cdc42, Rac, Rho) and

membrane lipids (PIP2 and PIP3). When a cell is stimulated by a

graded or localized external signal, these internal signalling

components redistribute on the timescale of seconds. Their

redistribution defines the cell’s polarization, determining the

locations of the ‘‘front’’ and ‘‘rear’’ of the cell. In zones of high

Cdc42 or Rac, actin filament barbed ends proliferate by Arp2/3-

mediated branching [1–4], extend until they reach the membrane,

and then exert internal forces against the membrane. In zones of

high Rho activity, actomyosin contraction is enhanced [5–7].

These combined effects lead to protrusion at the cell front and

retraction at the rear. Collectively, such effects change the cell’s

shape, and orchestrate directed motion and chemotaxis. How

these pathways are coordinated in space and time, and how they

affect/are affected by feedbacks with the dynamic cell shape are

fundamental questions in the field. Recent work on visualizing cell

motility in vivo, e.g. Yoo et al. [8], also points to the importance of

understanding the role of feedback (e.g. between PIP3 and Rac).

This paper addresses such questions in the context of a

computational model for cell motility.

The Rho GTPases are switch-like proteins that cycle between

active membrane-bound (GTP) forms and inactive cytosolic (GDP)

forms. Activation is mediated by guanine exchange factors (GEFs),

inactivation by GTPase activating proteins (GAPs), and extraction

from membrane to cytosol is regulated by GDP dissociation

inhibitors (GDIs). Rho family GTPases are universally found in

eukaryotes, and highly conserved in evolution. Cdc42 and Rac

signal to the actin nucleating complex Arp2/3, which in turn

promotes actin branching, creation of new actin plus ends and

local protrusion of the cell membrane [1–4]. Hence, regions in a

cell where Cdc42/Rac activity are high tend to take on the role of

a protrusive front. The small GTPase Rho activates actomyosin

contractility, leading to local contraction [5–7] in regions of a cell

that become the ‘‘rear’’. The membrane lipids PI, PIP, PIP2 and
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PIP3, known as phosphoinositides (PIs), participate in signalling to

the cytoskeleton. PIP2 locally inhibits capping of actin filament

ends and synergizes with Cdc42 in activating Arp2/3 [3]. The

kinase PI3K (PIP2?PIP3) becomes upregulated at the location of

a stimulated cell closest to an attractant pulse, whereas the

phosphatase PTEN (PIP3?PIP2) shifts to the opposite end. This,

in turn, elevates PIP3 at what becomes the cell front [9–11]. There

are multiple feedbacks in the signalling system. In neutrophils,

there is evidence for mutual exclusion of Cdc42 and Rho [12–14].

Feedback between Rac and PI5K [15,16] and PI3K [8,17–19],

feedback between PIP3 and Cdc42 and/or Rac [20–23], as well as

feedback from Rho to PTEN [24] has been observed. Such

feedbacks and interactions are depicted in Fig. 1, as previously

discussed in Dawes and Edelstein-Keshet [25].

The roles of phosphoinositides and their kinase PI3K have

come under renewed scrutiny in recent years. Based on

experiments with the amoeba Dictyostelium discoideum, it was

originally held that phosphoinositides (PIs) act as the ‘‘compass’’

that dictates the direction-sensing and chemotactic ability of cells

[9,26–29]. Indeed, if PI3K is inhibited by various treatments, cell

polarity and cell motility are affected [29], mainly in shallow

external gradients [30]. Recent evidence shows that inhibiting

PI3K in neutrophils in vivo inhibits cell motility [8]. However,

inactivating all genes that code for PI3Ks [31] or inhibiting PI3K

with chemical treatment [30] in Dictyostelium does not destroy

chemotaxis. Consequently, it is no longer clear what are the roles

of the phosphoinositides in chemotaxis [32,33]. This question

motivates our investigation into the role of this signalling layer and

its feedbacks. We explore how such feedback modulates and

facilitates communication between regions of high GTPases

activity, where such long-range communication is otherwise too

slow. We point to aberrant behaviour that results when feedback is

either absent or too strong.

A second theme in our paper is the effect of cell shape on the

dynamics of signalling. Up to now, it has been well established that

signalling cascades and their downstream effects can modulate and

change the shape of a cell, causing protrusion, retraction, turning,

reversal, and so on. However, whether cell shape and geometry

also feeds back on signalling is less well-explored. Here we will

show that the dynamic shape of a motile cell has downstream

effects on intracellular protein patterning via a geometric effect

that accelerates the repolarization of the cell in response to a new

stimuli. We also discuss how PIs can influence shape-induced

polarity behaviour.

Modelling background
In order to address these issues, we have developed a

computational model that integrates the signalling biochemistry

with actin-based motility in a spatial setting. Our main philosophy

in constructing the model has been to assemble modules of the

signalling repertoire for which there is biological consensus or

strong experimental evidence, to identify model parameters based

on quantitative biological information, and to study the dynamics

of these modules individually [34,35], with dynamic actin

cytoskeleton [25,36] and in concert with other signalling modules

[25] in 2D spatiotemporal computations. Details of the assump-

tions, steps, parameter choices and strategy have been extensively

reviewed elsewhere [25,34,36] and are abbreviated in the

Materials and Methods.

In view of our main aim to understand the role of feedback from

PIs to GTPases, we here revised the model in Dawes and

Figure 1. Signalling pathways assumed in the model. The top row represents small GTPases, the middle row depicts phosphoinositides, and at
the lowest level are the cytoskeletal components. Here we explore the effects of feedback from the PIs to the small GTPases, indicated by the red
dashed lines. The parameter f in the model represents the magnitude of the feedback (f ~0 means the feedback is absent, f ~1 means it is essential
for activating Cdc42 and Rac).
doi:10.1371/journal.pcbi.1002402.g001

Author Summary

Single cells, such as amoeba and white blood cells, change
shape and move in response to environmental stimuli.
Their behaviour is a consequence of the intracellular
properties balanced by external forces. The internal
regulation is modulated by several proteins that interact
with one another and with membrane lipids. We examine,
through in silico experiments using a computational model
of a moving cell, the interactions of an important class of
such proteins (Rho GTPases) and lipids (phosphoinositides,
PIs), their spatial redistribution, and how they affect and
are affected by cell shape. Certain GTPases promote the
assembly of the actin cytoskeleton. This then leads to the
formation of a cell protrusion, the leading edge. The
feedback between PIs and GTPases facilitates global
communication across the cell, ensuring that multiple,
complex, or rapidly changing stimuli can be resolved into a
single decision for positioning the leading edge. Interest-
ingly, the cell shape itself affects the intracellular
biochemistry, resulting from interactions between the
curvature of the chemical fronts and the cell edge. Cells
with static shapes consequently respond more slowly to
reorienting stimuli than cells with dynamic shape changes.
This potential to respond more rapidly to external stimuli
depends on the degree of cellular shape deformation.

PIs and Cell Shape in Motility and Chemotaxis
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Edelstein-Keshet [25] so as to ‘‘tune’’ the magnitude of feedback

from the PIs to the Rho GTPases over a full range (from absent to

essential) and compare the resulting behaviours. (See dashed lines

in Fig. 1). This in silico tuning represents our depiction of in vitro or

in vivo knockout, silencing, and overexpression experiments. To

meet our second aim of elucidating how cell shape influences

biochemical repolarization, we implement a fully 2D computation

with evolving cell geometry.

The biochemistry is summarized schematically in Fig. 1. The

model consists of a set of coupled partial differential equations

(PDEs) that describe the kinetics, crosstalk, diffusion, and exchange

of the following intermediates: Cdc42, Rac, and Rho (active and

inactive forms – 6 PDEs), PIP, PIP2, PIP3 (lipids diffusing in the

membrane – 3 PDEs) and Arp2/3 (active cytosolic form, 1 PDE).

(See equations in the Materials and Methods and parameter values

based on biological data in Table 1). Initially, all concentrations

are uniform in the interior of a circular domain, representing an

unstimulated resting cell. Stimulation is depicted by imposing a

transient, spatially dependent activation of Cdc42 on a cell that is

initially at rest, with no other spatial bias in any internal

component. To keep the size of the model modest, we do not

explicitly model the Rho GEFs and GAPs nor the kinases or

phosphatases (PI5K, PI3K, PTEN) as dynamic variables. Feed-

back from GTPases to kinases and phosphatases are included in

concentration-dependent rate-constants. In order to appraise the

effect of PI feedback onto the small GTPases, we introduced a

parameter, 0ƒf ƒ1 for the efficacy of such feedback (where f ~0
means no feedback from PIs and f ~1 means that PIs are essential

for activation of the small GTPases (see Eqn. (4)).

As described in [36], the discretized densities and orientations of

actin filaments and barbed ends are represented as evolving spatial

distributions, where Arp2/3-dependent branching enhanced by

Cdc42 nucleates new barbed ends. We keep track of a special

category of barbed ends engaged with and applying force to the

membrane, the ‘‘pushing barbed ends’’. These promote local

outwards protrusion as in the thermal polymerization ratchet

mechanism [37–39]. Areas of high Rho are interpreted as sites

where actomyosin contraction would be enhanced. This is

depicted by a force directed inwards and perpendicular to the

cell membrane. (Such zones tend to spontaneously become the

‘‘back’’ of the evolving cell.)

To combine reaction-diffusion (RD) kinetics with fully dynamic

cell shape so as to show the important feedbacks between the

geometry and the biochemistry, we use the Cellular Potts Model

(CPM) framework [36,40,41]. In this multi-scale approach, the

CPM specifies the domain and boundary conditions for the RD

equations (PDEs) at each time point. The PDEs are solved

efficiently ‘‘on the fly’’ in the irregular domain, generating the

intracellular patterns that lead to differential forces on the cell

membrane. The shape is then updated by an energy-minimization

(Hamiltonian based) stochastic edge update algorithm [40,41].

(See Materials and Methods.)

Results

Basic motility phenotype
To assess whether the model can capture basic experimental

observations we ran the full model (Eqs. (1)–(16)) with biologically-

based parameter values (Table 1). In the absence of stimuli, the

resting cell is stable, and does not deform significantly nor move.

We imposed a transient (10 s) gradient in the Cdc42 activation

rate on the resting cell, and followed the dynamics of the GTPases

(Eqs. 1, 2), the PIs (Eqs. 5), Arp2/3 (Eqn. 11), and actin (Eqs. 7–8)

for 90 simulated minutes. Other than the graded stimulus, we do

not a priori define a ‘‘front’’ or a ‘‘back’’ in the cell; all other

dynamics develop spontaneously. The final cell shape and spatial

distributions of all variables are shown in Fig. 2.

Profiles of the GTPases and PIs (rows 1–3) are shown both as

2D heat maps (left) and as line plots (right). As observed

experimentally, active Cdc42 and Rac, as well as PIP2 and

PIP3, are enriched at one end, whereas active Rho and PIP are

most prevalent at the opposite end. PIP3 forms the steepest

gradient, followed by PIP2. Due to their very rapid rates of

diffusion in the cytosol, the inactive GTPases distribute more or

less uniformly over the cell (Fig. 2, Row 2), even when their active

forms are spatially segregated.

The transition between resting and motile cell is indicated in

several panels in Fig. 2. In the rest state, the cell is disk shaped, with

radially symmetric filaments and barbed end densities. Stochastic

noise leads to a fluctuating edge and small displacements of the

centre of mass, but the cell as a whole does not move (red curve,

bottom left panel, Fig. 2). Once stimulated, the cell rapidly takes on

a roughly oval shape and attains a velocity of &0:15mm s{1. This

speed remains constant and is maintained after the transient

stimulus is removed, unless other stimuli are introduced (See Video

S1, and black curve, bottom left panel, Fig. 2).

Elevated Rac and Cdc42 enhance Arp2/3 activation and

branching of actin filaments. (Eqs. 7–8 and Fig. 2, Row 4.) In the

case of Rac, this takes place through the activation of PI5K

(PIP?PIP2), which elevates PIP2 and in turn induces Arp2/3

activation. Cdc42 further accelerates the PIP2-induced Arp2/3

activation, which promotes a local increase in barbed ends (Eqn.

8). The orientations and degree of anisotropy of the filaments and

their barbed ends are indicated for the motile cell (Row 4) and

resting cell (Row 5). Some barbed ends (Eqn. 13) contribute to a

protrusive force that pushes out that part of the cell. This results in

the spontaneous formation of a leading edge that defines the front

of the cell. As seen in Fig. 2, Rho is highest at the rear of the

polarized cell. This leads to a distributed isotropic inwards

contractility that causes retraction, and formation of a trailing

edge that becomes the ‘‘rear’’ of the cell.

Following a stimulus, there is a transient reorganization in the

biochemistry and then a sharp transition is formed separating the

zone of high Cdc42 activity (‘‘front’’) from the zone of low Cdc42

activity (‘‘back’’). We refer to the border between these zones as

the ‘‘front-back interface’’. For visual convenience, we use green

to denote the mean concentration in all 2D chemical distribu-

tions, so the green isocline (see Cdc42, Row 1 Fig. 2) can be

identified with that ‘‘front-back interface’’. The appearance of

robust polarization with a sharp transition zone recapitulates

results of our previous models on GTPases [34-36], where we

showed that the proximity of bistable kinetics, mass conservation,

and disparity in the rates of diffusion of active and inactive

GTPases leads to formation of a zero speed interface separating

‘‘front’’ and ‘‘back’’ in the cell (wave-pinning). (Even though with PI

feedback the transition from front to back gets smeared out, in

both cases we can select one of the intermediate isoclines to

represent the demarcation between the front and the rear of the

cell, and we informally refer to that boundary as an ‘‘interface’’ in

both cases.)

As a cell edge extends outwards, chemical isoclines also relocate.

Once the cell starts to move, it increases the region of ‘‘frontness’’.

But then, the buildup of active GTPase at the front is at the

expense of the inactive GTPase pool. This means that the front-

back interface moves forward, compensating for that depletion. A

balance occurs when the speed of the front-back interface matches

the forward motion of the leading edge of the cell, i.e. moves in

perfect pace with the cell edge (see Video S1). In this sense, the

PIs and Cell Shape in Motility and Chemotaxis
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system exhibits a self-correcting internal structure. We later discuss

how perturbing this internal chemical distribution causes it to

return to the basic robust polarization here described.

In view of the above, the basic model reproduces essential

aspects of cell motility and reasonable distributions of the

signalling chemicals and the cytoskeleton. We can now use this

Table 1. Parameter estimates relevant to (i) actin dynamics; (ii) Rho-proteins; (iii) phosphoinositide dynamics; and (iv) cell surface
mechanics, with sources from which they were obtained.

Parameter Definition Value Source

mP PIP2-dependent Arp2/3 activation rate 1:0 s{1 [25]

nP Hill coeff. of PIP2-mediated Arp2/3 activation 3 [25]

P2half Threshold conc. of PIP2 for Arp2/3 activation 35 mM [25]

dA Arp2/3 decay rate 0:1 s{1 [36]

DA Arp2/3 diffusion coefficient 1 mm2 s{1 [93]

g0 Arp2/3 nucleation rate 60 mM nm s{1 [36]

Km saturation constant for Arp2/3 nucleation 2 mM [36]

l scale factor (converts units of F to conc.) 0:255 mM mm [36]

k scale factor (converts conc. to units of B) 106 mm{2 mM{1 [36]

v0 actin filament growth rate (free polymerization) 0:5 mm s{1 [94,95]

dF actin filament turnover rate 0:03 s{1 [88,96]

kmax barbed end capping rate 2:8 s{1 [95,97]

kP2 max reduction of capping by PIP2 2:8 s{1 [25]

r reduction in capping rate near leading edge 0:14 [36]

Ctot,Rtot,Ptot total levels of Cdc42, Rac, Rho 2:4,7:5,3:1 mM [36,91,98]

IC ,IR,Ir Cdc42, Rac, Rho activation input rates 2:95,0:5,3:3 mM s{1 [36,91]

a1 Rho level for half-max inhibition of Cdc42 1:25 mM [36]

a2 Cdc42 level for half-max inhibition of Rho 1 mM [36]

n Hill coeff. of Cdc42-Rho mutual inhibition 3 [36]

a Cdc42-dependent Rac activation rate 4:5 s{1 [36]

b Rac-dependent Rho activation rate 0:3 s{1 [36]

dC ,dR,dp decay rates of activated Rho-proteins 1 s{1 [99,100]

Dm,Dmc diffusion coeff. of active, inactive Rho-proteins 0:1,50 mm2 s{1 [62,101]

Cb,Rb,rb typical basal levels of active Cdc42, Rac, Rho 1,3,1:25 mM [36]

IP1 PIP1 input rate 10:5 mM s{1 [92]

dP1 PIP1 decay rate 0:21 s{1 [92]

kPI5K PIP1 to PIP2 baseline conversion rate (by PI5K) 0:084 mM{1 s{1 [92]

k21 PIP2 to PIP1 conversion rate 0:014 s{1 [92]

kPI3K PIP2 to PIP3 baseline conversion rate (by PI3K) 0:00072 mM{1 s{1 [92]

kPTEN PIP3 to PIP2 baseline conversion rate (by PTEN) 0:432 mM{1 s{1 [92]

DP PI diffusion rate 5 mm2 s{1 [101,102]

P1b,P2b,P3b typical basal levels of PIP1 , PIP2 , PIP3 50,30,0:05 mM [70,103]

JCM coupling energy per boundary site 0:75 mm{1 [36]

la cell inelasticity 4 mm{3 [36]

A target area of the cell 300 mm2 [36]

lp membrane inelasticity 0:016 mm{3 ––

P target perimeter of the cell 150 mm2 ––

Hb membrane yield 0:046 nm{1 [36]

T simulation ‘‘temperature’’ 0:008 nm{1 [36]

j effect of Rho on contraction 1:25 mM [36]

rth Rho contraction threshold 0:0025 mM{1 nm{1 [36]

Note citations of our earlier works (i.e. [25,36,91–93]), where many detailed derivations, explanations, and references can be found.
doi:10.1371/journal.pcbi.1002402.t001
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basic simulation run as a control against which to appraise in silico

experiments.

Effect of PIs on GTPase profiles and communication
In Fig. 3 we contrast the GTPase profiles that occur with and

without PI feedback in simulations (a), and schematically (b,c).

When there is no PI feedback (f ~0) in this model, and in previous

models where PIs were not explicitly included [34,36], profiles of

active GTPases are plateaus (high and low) separated by a narrow

transition zone (a generic property, discussed mathematically in

[35]). Without PI feedback, since active zones are flat plateaus,

their interactions drop off steeply so that two such plateaus (Fig. 3c,

left) hardly influence each other at a distance. Moreover, in this

case, inactive GTPases (dot-dash line, Fig. 3b,c left) are essentially

uniform in space [34,36]. Increase or decrease in the total amount

of the GTPase or its basic activation rate then determines the

width of the region of activity.

Including PI feedback results in an auto-amplification positive

feedback of Rac and Cdc42 (via PIP3) on themselves. At an

intermediate level of PI feedback, this leads to lower, rounded peaks

with higher shoulders. For example, f&0:4 corresponds to

smoother, more realistic profiles for the active forms of small

GTPases (Fig. 3c, right). It also leads to growth in the heights of the

active Cdc42/Rac peaks at the expense of the inactive forms. This

creates a local depletion of the inactive GTPases, and substantial

gradients in their availability i.e. growing activity peaks can ‘rob’ one

another by depleting this pool (Fig. 3b, right). In presence of

excessively high PI feedback, this can lead to highly localized peaks of

GTPases with flattened tails. The stronger the PI feedback, the

stronger the kurtosis of GTPase peaks. This results in concurrent

depletion of the inactive GTPases as more and more activity is turned

on locally at the expense of the global pool of available inactive forms.

Peaks of the active small GTPases Cdc42 and Rac correspond

to zones of activity that spawn nascent lamellipodia. Hence, the

communication of such peaks has an important influence on

competition of protrusions. Complex stimuli can lead to multiple

zones of protrusion. Without PI feedback, since active zones are

flat plateaus that hardly interact, multiple peaks merge on an

exponentially slow timescale [35], too slow for biologically relevant

resolution of competing lamellipodia. This will be discussed further

in the section on V-shaped gradient stimuli below.

As shown in the right panel of Fig. 3c), with appropriate feedback

from PIs, zones of Rac activity communicate spatially through their

augmented depletion of inactive Rac (similarly for Cdc42). Large-

scale gradients of inactive cytosolic GTPases are formed as a result

of the intense local exhaustion. This means that the spatial scale of

communication is governed by the relatively fast effective cytosolic

diffusion of inactive GTPases, rather than by the significantly slower

diffusion of the membrane-associated active forms. This implies that

communication between competing peaks of active GTPases is

accelerated by 100–500 fold due to feedback from PIs.

We find that the modulating influence of PIs depends on the right

balance between enough feedback for auto-amplification to enhance

peaks of GTPase activity, versus excessive feedback that causes

overly dramatic kurtosis of those peaks. If the magnitude of the

feedback is tuned to values closer to f&1, the resulting Rac and

Cdc42 peaks become sharper and more highly localized, with

resultant aberrations in cell behaviour (described below). Similar

tuning of other parameters has the same consequences. Increasing

the kinetic parameters of PIs (kPI5K, k21, kPI3K, kPTEN) or decreasing

the rate of diffusion DP has similar outcomes (results not shown). The

availability of inactive small GTPases and factors that influence this

similarly play a role. Such factors include availability of GDIs, and

their efficacy at extracting inactive small GTPases from the plasma

membrane, which affects an effective rate of diffusion of these

proteins [34,36]. The longer the inactive GTPase spends on the

membrane, the smaller this rate of diffusion, and the more significant

are the effects of depletion described above. Note that, in contrast,

without PI feedback the effective rate of diffusion of the inactive

forms only plays a very marginal role, as long as that rate is at least a

few times higher than the diffusion rate of the active form. This is due

to the fact that without PI feedback the GTPase levels at the flat

plateaus are not limited by the diffusion of the inactive form.

There is a fine balance, however, between sufficient and

excessive autoamplification due to PI feedback. When f is too low,

as already discussed, the competition of zones of high GTPase

activity takes too long to resolve. Having f values closer to 1 leads

to rapid resolution of competing peaks of GTPase activity, but at

the same time, this also tends to ‘‘freeze’’ single peaks, reducing the

ability of cells to respond by moving or turning. Consequently, we

have found that the most effective strategy for cell motility is to

adopt some intermediate level of feedback f&0:4.

Effect of cell shape and geometry on dynamics
There are two distinct geometric factors that affect dynamics:

the shape of the cell and the geometry of isoclines. Since actin

remodelling is a direct consequence of the signalling system, it is

clear that the shape of the cell is downstream of the signalling

modules, so this direction of influence is obvious. The possibility

that there is feedback in the opposite direction, from cell shape to

signalling biochemistry is more subtle. Here we show that cell

shape also influences the biochemical kinetics through a geometric

(rather than hard-wired) effect. This implies a feedback loop

between cell shape and intracellular dynamics with important

Figure 2. Basic motility phenotype produced by the ‘‘wildtype’’ model cell. The cell is initiated at rest, stimulated for 10 sec with a 15%
gradient in the Cdc42 basal activation rates, and simulated for a total of 8 minutes, after which the stimulus is removed. (See Materials and Methods
for details.) The figure presents a snapshot of the distributions and profiles when the cell has reached an effective steady state, i.e. when the cell
shape and profiles do not further change, except for small fluctuations due to the stochastic nature of the formalism. The following is shown in the
panels from left to right. Top row: intracellular steady-state distributions of active Rho GTPases Cdc42, Rac, and Rho, for the polarized cell state,
followed by a graph of the steady-state profiles along the front-back axis of the cell; Second row: inactive Rho GTPases, and corresponding profiles;
Third row: phosphoinositides PI, PIP2, PIP3 and corresponding profiles. Fourth row: barbed end density, Arp2/3, F-actin density, filament orientation
and barbed end orientation distributions. Fifth row: left graph shows the velocity over time of a polarized (black) and a resting cell (red). The rest
state, which is the second possible steady state in this system, is stable against low-amplitude noise. The corresponding distributions of filament
density, barbed end and actin filament orientation for the resting cell are shown at the right. Colour map: (box) Cytoskeleton orientation is encoded
using a colour-wheel where each orientation is represented by a colour at the given angle along the circle (hue). The filament density ranges from
black (no filaments) to maximal density at the greatest colour intensity; distribution of filament orientations varies in saturation from white (complete
anisotropy) to the maximal colour intensity (total coherence). (lower colour bar) Scale used for relative concentration/density ‘‘heat maps’’ in this
figure. Note that the steepness of the internal gradient of signalling chemicals is reflected in the tightness of the transition between hues. The ‘‘front-
back’’ interface is here taken as the isocline shown in green (labelled ‘‘mean’’). Green is used to represent the mean rest state concentration value for
any of the PIs, small GTPases, and Arp2/3. Deviations from this mean are captured by the heat map, in which the percentage variations above or
below the mean, are as indicated by the arrows along this bar. (See also Video S1.)
doi:10.1371/journal.pcbi.1002402.g002
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consequences for cell behaviour, such as rate of turning towards an

external signal.

Mathematical investigations of reaction-diffusion systems have

shown that geometry and dynamics are linked. In many systems, it

is well known that curvature of a moving interface can locally

accelerate or retard its motion [42–44]. The shape of the

boundary of a domain, and the conditions imposed at those

boundaries (e.g. impermeability), put constraints on the possible

behaviour. For example, no-flux (also called Neumann) boundary

conditions (BCs) imply the orthogonality of chemical isoclines at

points of intersection with the boundary. Given that the cell

boundary is nonpermeable for lipids and proteins forming the

signalling system, and given that the keratocytes that have been

used as a paradigm system for this study have a very flat, almost

two-dimensional shape, no flux BCs hold in our model for the

GTPases, PIs and signalling components and their isoclines are

therefore always perpendicular to the cell edge. As this constraint

holds at any time t, it implies that isoclines bend or rotate

whenever the boundary deforms locally, preserving that orthog-

onality. In the case of a dynamic cell shape, e.g. when the cell turns

or reorients, the regions of locally high curvature on points of the

boundary result in deformed and highly curved segments of the

isoclines, including the front-back interface discussed above (that

interface is itself an isocline.) As a result, the effects of heightened

curvature drive accelerated dynamics and result in a faster

biochemical response.

Cell shape and interface minimization
First we analyze the feedback between cell shape and

intracellular polarity by uncoupling the dynamics of the cell shape

changes from the dynamics of the internal biochemistry. We did

this by studying the effect of the shape of the cell perimeter in

immobilized cells with PI feedback (f ~0:4) and without (f ~0), as

shown in Fig. 4a and Video S2. (Immobilized disk-shaped cells can

be obtained in vitro using latrunculin, e.g., see [45] and others.)

Specifically, we asked how confining the cell to a specific,

immobilized elongated shape would impact the chemical polarity

in each case. We use an immobile ellipsoidal cell, initially

polarized along its shortest axis by means of an external signal.

Note that if the cell is polarized along its shortest axis, the front-

back interface is parallel to the longest axis. Once the applied

stimulus gradient is turned off, the chemical distribution (but not

the cell perimeter) is allowed to evolve. Interestingly, the direction

of polarity spontaneously reorientates to align itself along the

longest axis of the cell, thereby minimizing the length of the front-

back interface, which becomes positioned along the shortest axis.

With PI feedback (Fig. 4(a), left), the broad region of ‘‘frontness’’ in

the cell rapidly relocates to the pole of the ellipsoid. Without PI

feedback (Fig. 4(a), right), the interface also decreases, but spatial

coupling is much weaker. Hence, a globally optimal configuration

of the active zone is only attained after an excessively long

(biologically unreasonable) time scale. Note the difference in

timescale for repolarization with PI feedback (within 10 min) and

without it (more than 90 min) (see also Video S2). Again there is

an optimal feedback strength, because when f&1, the amplifica-

tion caused by the PIs becomes too high, causing a freezing of the

initial polarization and a complete failure to reorient (results not

shown).

To dissect this process of interface minimization further, we

purposely initiated a circular cell with an irregular ‘‘wavy’’ front-

back interface. Fig. 4b illustrates how the curved interface

straightens, with highest curvature regions changing most rapidly,

so that the overall length and curvature of the interface decreases

(see also Video S3). Again, this process is significantly faster when

PI feedback is included (f ~0:4, top row), than when it is absent

(f ~0, bottom row). Similarly, in silico experiments of ‘‘micro-

injecting’’ active Cdc42 in the middle of a polarized cell have a

similar effect (Fig. 4c; Video S3) (see Materials and Methods for

details). This results in a perturbed interface, which then rapidly

reestablishes its flattened geometry. These results together

Figure 3. Schematics of how feedback from PIs change small
GTPase profiles. Shown are the Rac distributions in the 2D cell [(a)
and Video S1] and in a representative 1D cross-section along the cell
diameter (b,c). Left panels: absent PI feedback (f ~0). Right panels: with
PI feedback (f ~0:4). The sharp transition between high and low Rac
activity is seen on the left (contours closely spaced), whereas PIs create
a broader transition zone (right). Panels (b–c): schematics of differences
in intracellular patterns due to maximal PI feedback to Rho proteins. (b):
Inactive Rac (dot-dashed line) is nearly uniform for f ~0, but shows
significant depletion close to the ‘‘front’’ for high f . Decreasing the rate
of diffusion Dmc of inactive Rac (red curves) has little effect on the
profile when f ~0. In contrast, decreasing Dmc when f^0:4 leads to a
lower peak of active Rac at the front. Panels (c): Communication of
multiple peaks of active Rac is very slow in the f ~0 case, and much
more significant in the case f^0:4. Hence, feedback from PIs helps to
resolve conflicting cell ‘‘fronts’’.
doi:10.1371/journal.pcbi.1002402.g003
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illustrate the PI-enhanced tendency to shorten and flatten the

border between the front and the back of the cell.

The observation that biochemical kinetics coupled to diffusion

can drive the length minimization of the interface between two

stable states within a system is known to mathematicians. This fact

can be explained by the following argument, as pointed out by a

reviewer of this paper. Reaction-diffusion systems with multiple

steady states can be represented as gradient flow problems with an

assigned effective energy. This ‘‘energy’’ depends on the reaction

terms as well as on a gradient squared term that captures the

diffusion terms. In such a representation, the stable states of the

dynamical system are given by the minima of the reaction

‘‘energy’’. Given that the gradient flow acts to minimize the

energy, the configuration of a spatial system with a fraction in one

stable state and the rest in another stable state will therefore evolve

so as to continuously reduce the length of the transition region (i.e.

to minimize the integral of the gradient squared of the

concentration). (See, e.g. [46].) Note that in this study an extra

complexity arises because the two ‘‘steady states’’ are a

consequence of the fast diffusion of the inactive forms, i.e. the

reaction part does not itself entail multiple steady states.

Nevertheless, the argumentation underlying the interface length

minimization still holds.

Cell shape feeds back on interface dynamics
As noted above, cell shape influences the dynamics of signalling

even when the shape of the cell is static. But signalling cascades

also cause the shape of a cell to evolve (unless specifically blocked

as in the previous test). Thus, cell shape and signalling

concurrently influence one another. Here we aim to illustrate

the effect of this feedback. Fig. 5 demonstrates the effect of cell

shape changes on the internal dynamics. We here contrast the

speed with which repolarization occurs in an immobilized cell with

static shape (left sequences in Fig. 5a,b) versus a cell in which shape

is dynamic (right sequences in Fig. 5a,b). Cells were first polarized

using standard protocol with a gradient of 10 s duration. At

t~5 min, a new gradient of smaller magnitude was introduced at

900 (Fig. 5a) and at 1800 (Fig. 5b) to the original gradient. For both

angles, motile and static cells detected and chemically repolarized

to the new gradient, i.e. were capable of changing their

directionality to track the new cue. (Even for the extreme angle

of 1800, motile cells performed a ‘‘U turn’’ to align to the new

gradient, as described in the literature, e.g. by [47].) However, the

speed of repolarization is significantly faster in a cell with dynamic

shape. The most noticeable acceleration of repolarization is

obtained in cases where cell shape changes induce the most

dramatic curvatures in the front-back interface (see also Video S4).

For example, during the U-turn, with shape-dependent feedback

the cell is able to turn 90 degrees within 10 minutes (Video S4,

from 13:00 till 23:00), while without feedback during the same

period the rotation is only 30 degrees.

The feedback from membrane curvature to local biochemistry,

and hence to overall polarity, is quantitatively dependent on the

magnitude of the curvature changes in the cell shape during the

turning of the cell. The strength of the feedback will therefore be

more prevalent under conditions that favor more dramatic cell

shape changes, basically when the cell interfacial tension is low.

Thus, when the membrane coupling energy (JCM ) and/or

membrane stiffness (lp) are lowered, the cell deformations become

more extreme, and hence the feedback becomes more pronounced

(see Video S5).

The changing cell shape results from actin dynamics described

previously. Importantly, no additional feedback from actin to PIs

Figure 4. Effect of cell shape and intracellular ‘front-back’ interface curvatures. Shown are Cdc42 distribution profiles at indicated times
using the colour scheme as in Fig. 2. (a) (and Video S2) Effect of cell shape on repolarization in the presence (f ~0:4, left) and absence (f ~0, right) of
feedback from PIs to Rho GTPases. Cells with elliptical, static shape are initially polarized along their short axis using the standard, transient gradient
protocol. Due to their shape alone (with no further stimulus or bias), there is a clear tendency for the cells to repolarize. The dynamics of shape-
induced repolarization occurs much more rapidly when PI feedback is included. (b) Static circular cell in which the intracellular profiles have been
modified into a highly curved profile. Over time, the curvature of the front-back interface flattens (with regions of higher curvature changing faster).
(c) Local injection of Cdc42 appears to locally distort the intracellular interface, which then straightens again. Shape-sensitivity and robustness to local
perturbations can be understood through the tendency of the reaction-diffusion system to minimize the front-back interface. The no-flux boundary
conditions further assure that the all level curves (interfaces) maintain right-angles to the cell membrane. For the dynamics of (b,c), see also Video S3.
doi:10.1371/journal.pcbi.1002402.g004
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or small GTPases has here been assumed explicitly in the model.

Rather, the dynamic shape itself leads to a faster chemical

repolarization. With the above observations, we are now in

position to understand the results of further in silico experiments.

Resolving complex stimuli
As shown above, when there is a single front and back, the

interface separating these is linked to the cell shape and to the

dynamics of the leading edge. Here we asked what happens when

there are multiple interfaces, due, for example, to many ‘‘fronts’’

that form spontaneously. To address this question, we challenged

the model cell with a variety of stimuli to investigate its ability to

resolve multiple conflicting cues, comparable to in vitro experi-

ments. Details of the stimulus protocol are given in the Materials

and Methods.

V-shaped gradient stimulus. Previously [36] we showed

that cells can respond chemotactically to even very shallow

external gradients. For example, a gradient over the cell diameter

of 0.5% in terms of the Cdc42 basal activation rate is immediately

sensed by the cell, causing rapid and complete turning towards the

gradient. Even gradients of one tenth this magnitude can elicit

turning responses. Here we ask how the cell copes with multiple

stimuli. We stimulated the cell with a symmetric, transient V-

shaped gradient to promote conflicting directional cues (see

Materials and Methods). In Fig. 6a and Video S6, we compare

the response of immobilized cells with (f ~0:4) and without (f ~0)

feedback from the PIs. In Fig. 6b and Video S7, we do the same

for cells with dynamic shapes. In all cases, the initial stimulus

creates two regions of ‘‘frontness’’ in the cell. When the stimulus is

removed, these zones vie for dominance.

Curvature of the isoclines is an important influence in that

competition for dominance. As demonstrated in the previous

results, regions of activity with more curved isoclines shrink more

rapidly than those with flatter isoclines. But larger ‘‘frontness

zones’’ maintain interfaces with lower curvatures (see, e.g. the cell

in row 2 at t~25 min). Thus, these zones tend to grow at the

expense of the more highly curved, smaller ‘‘fronts’’. As shown in

the top rows of Figs. 6a,b, with PI feedback, one zone rapidly takes

over at the expense of the other, minimizing the global interface

length and curvature. The autoamplification caused by PI

feedback and depletion of inactive GTPases combines with the

effect of curvature of the interfaces. This means that larger peaks

of active GTPases are able to more rapidly deplete the global pool

of inactive GTPases, at the expense of the smaller peaks of activity.

The result is a ‘‘winner takes all’’ phenomenon, wherein

redistribution, and selection of a unique front, is accelerated up

to 10 fold due to the PI feedback. It means that within a short,

biologically reasonable time, the conflict is resolved. As before, we

note that immobilized cells (Fig. 6a) take longer (up to 180 s) to

select a single direction, whereas cells with dynamic shapes do so

faster (by about 100 s).

Where feedback from PIs is missing (rows 2 and 4), the

curvature of the interface is the dominant influence. In such cases,

the competition continues for much longer. Cells with dynamic

shape (row 4) are undecided by 200 s, tending to stretch into

dumbbell shapes and break apart. Immobilized cells take up to

1650 s to resolve conflicting fronts (row 2).

We can understand the results of these experiments as follows:

In a perfectly symmetric V-shaped gradient, slight stochasticity

makes one putative lamellipod slightly larger than the other by

chance at some instant. This spawns slightly more actin branching,

local buildup of F actin in that lamellipod, and thus positive

feedback on further broadening on that side. Slight growth thus

Figure 5. Feedback of cell shape dynamics on intracellular
dynamics. (a–b) A comparison of Cdc42 repolarization in a cell whose
shape is frozen (left columns in each sequence) with a control cell that
has a dynamic shape (right columns in each sequence). (See also Video
S4.) In both cases, the cell is initially polarized by a transient gradient,
then repolarized by either an orthogonal (a) or opposing (b) second
gradient. Images on the left and right were taken at the same times
after the second stimulus. Note that in (a), after 3 min there is a
noticeable difference in the cell’s polarity as seen from the angle of the
front-back interface with the stimulus gradient; the difference is
accentuated even further by 6 min. In (b), the static cell only partially
repolarizes during the time span when the control cell has completely
repolarized. The evolving cell shape spontaneously twists the intracel-
lular interface which has to maintain its orthogonality to the cell edge.
The increased curvature of this interface has a faster rate of flattening,
driving the chemical dynamics to adjust more rapidly. As the chemistry
also feeds back to protrusion/contraction and shape change, the two-
way feedback resulting from cell-shape dynamics leads to a faster
overall turning and aligning with the repolarization cue.
doi:10.1371/journal.pcbi.1002402.g005
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reinforces growth of one of the two lamellipods by autoamplifica-

tion.

A larger lamellipod tends to protrude and extend outwards

more easily. This leads to a translocation of its ‘‘leading edge’’

outwards. A similar effect takes place at both nascent lamellipodia,

stretching the cell into a ‘‘dumbbell shape’’. For each lamellipod,

the front-back interface would tend to track its protruding edge,

but when two lamellipods compete, the interfaces cannot maintain

the same speed as their respective leading edges, since they share a

common pool of inactive GTPase. The retraction of the interfaces

then becomes equal and opposite, each moving with some

intermediate speed. The expansion of one lamellipod is at the

expense of the other: the smaller lamellipod continually loses a

fraction of its active GTPase to the larger. We tested the cell with

several other protocols, including microinjection of active Cdc42

at two poles of the cell. Results were essentially analogous in such

cases and are omitted due to space constraints. With feedback

from the PIs, the stronger global coupling of curvature and area is

evident. The lamellipod with larger area tends to dominate to an

even greater extent. In that case, the effect of interface curvature,

though present, is more subtle to observe.

In simulations above, we challenged the cell with graded stimuli

of opposite directions (i.e. at 1800 relative angle). In general, the

outcome depends on the angle bewteen the gradients (results not

shown). When that angle is smaller than 900, the cell moves

towards the integrated mean of the two applied gradients. The

precision of the motion is closely linked to the timescale on which

the motion is observed: on a short timescale, the cell takes on a

‘wiggly’ motion, due to underlying stochasticity of the CPM. At a

longer timescale, the direction of motion becomes very precisely

determined by the mean gradient, and independent of the

underlying computational grid. However, when the angle between

the gradient directions is larger than 900, the cell can no longer

integrate the information into a combined, averaged outcome.

Rather, the single direction that is chosen depends on the strength

of the competing gradients. When the gradients are very

Figure 6. Resolving conflicts. Effect of phosphoinositide feedback (f ~0:4) versus absent feedback (f ~0) and cell shape dynamics on the
response of cells to competing, conflicting, or noisy stimuli. (a) ‘‘V’’ shaped gradient with static cell shape. (See Video S6). (b) ‘‘V’’ shaped gradient with
dynamic shape changes. (See Video S7). (c) Noise-induced fronts within motile cells. (See Video S8). PIs allow the cell to rapidly resolve the
competition between contradictory signals.
doi:10.1371/journal.pcbi.1002402.g006
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comparable in magnitudes, the initial stochasticity eventually plays

a large role in the direction selected. Thus, PIs play an important

role in preserving the integrity of cell polarity despite opposing

stimuli that would otherwise spawn multiple leading edges and

break up the cell.

Noise and spontaneous polarization. When activation is

induced in a noisy fashion, it may happen that multiple regions of

‘front-activity’ (i.e. high Rac, Cdc42) arise within a cell. We

explored the effect of inducing polarization in this manner for

motile cells with feedback (f ~0:4) and without feedback (f ~0)

from PIs (Fig. 6c and Video S8). We found that the time-scales on

which the emerging noise-induced fronts resolve to form a single

leading edge is critical to maintain the integrity of the cell. In the

presence of PI feedback, the multiple patches of high Cdc42

concentration quickly ‘merge’ (within a minute), so that the cell

motion is quickly coordinated in a single direction. In the absence

of PIs, it can happen that fronts form in extreme regions of the cell,

and given that the dynamics of their fusion is slow, downstream

effects emanating from the front-regions to the cytoskeleton result

in multiple extensions, which lead to drastic cell deformations.

This deformation of the cell shape only increases the distance

between the front-regions, exacerbating the difficulty of resolving

the conflict between the emerging fronts. Thus, these in silico

observations highlight the importance of quick global polarity

coordination in relation to the dynamics of the downstream effects

on cell shape.

Interaction of cells with obstacles. It is also known that for

single motile cells, as well as for cells within multicellular

developmental contexts, mechanical signal transduction

pathways downstream of integrin receptors allow for a variety of

responses to mechanical stimuli. Here such pathways are not

included, so all behaviour reported below is independent of direct

mechanical signalling. However, we wanted to explore the role of

geometry and feedback between shape and biochemistry and what

effects result solely from these interactions when cells encounter

mechanical barriers. We thus proceeded to challenge cells with

obstacles and asked whether the regulatory network would enable

the cell to navigate around a barrier, or to reorient to crawl along

a wall that it encounters.

In Fig. 7a we show a polarized motile cell with no PI feedback

approaching a wall. The leading edge of the cell flattens and

extends parallel to the wall. Concomitantly, the zone of high

Cdc42 (and Rac) activity shifts from the front edge to the ends of

the cell, by the same interface-shortening and curvature reducing

mechanism previously noted (see also Video S9). Growth and

protrusion at these two unimpeded ends of the cell cause a

retraction of the chemical interface, creating two independent

peaks, one at each pole. The situation is then comparable to

previous examples of the tug-of-war between two active Cdc42

(Rac) maxima. In many cases, this leads to the breakup of a cell.

When PI feedback is absent, the double-lamellipodia cell that

forms at the wall occasionally resolves (for angles of incidence

other than 900), into a polar unidirectional cell. Even with a

barrier at 900 to the cell’s direction of motion, in some cases a

successful decision is made to navigate up or down the wall, but

only after a significant delay (simulations not shown). These

observations point to great difficulty in overcoming the challenge

of a barrier when PI feedback is absent. With PI feedback (f ~0:4),

Fig. 7b, the resolution is easier, and almost no conflict is apparent.

The cell rapidly and easily translocates its leading edge to one or

the other direction and glides smoothly along the wall.

When the PI feedback is too strong (f ~1), causing overly high

amplification of the Cdc42 (Rac) peaks, those peaks become highly

focused, and fail to relocate (Fig. 7c). Inactive GTPase then

becomes so depleted that other places are unable to build up

activity. We then see stagnant cells that have become confined and

immobilized at the wall, overwhelmed by their own Rho-induced

myosin contractility. This same effect also interferes with a cell’s

ability to reorient to a new gradient, illustrating again the balance

needed in the level of PI feedback.

Figure 7. Response of cells with varying degree of PI feedback
to a wall. Cells initially polarized and moving rightwards encounter a
wall (blue vertical band). (a) without feedback from PIs (f ~0) the cell
has difficulty resolving the competition between two nascent ‘‘fronts’’;
(b) with the standard intermediate feedback from PIs (f ~0:4) the cell is
able to make a decision and move smoothly along the wall; (c) with
extreme feedback from PIs (f ~1) the leading edge becomes confined
and encircled by the contracting back, so that the cell becomes stuck.
(See also Video S9.)
doi:10.1371/journal.pcbi.1002402.g007
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When cells are challenged by smaller objects directly in their

path, we also observed similar behaviour (Fig. 8, Video S10).

When PI feedback is absent (and with an identical initial

configuration), the response to the obstacle becomes conflicted.

Two competing lamellipods are formed, and the cell is stretched

and pulled in opposing directions, unable to reach an appropriate

decision (Fig. 8a). In contrast, with PI feedback, the cell smoothly

selects a path and navigates around the obstacle. A unique and

stable lamellipod guides this motion, with hardly any evidence of

conflict. In some cases, several circuits are made around the

obstacle, until eventually, due to a small stochastic adjustment of

direction, the cell moves off along a tangent, and breaks free.

Discussion

The famous in vitro clip of a neutrophil navigating between red

blood cells while chasing a bacterium reinforces our intuition that

real cells encounter complex environments where multiple

decisions and rapid changes in orientation are essential. This is

even more dramatic in vivo, as shown, e.g. in [8]. To understand

how cells can respond to such cues, we here simulated actin-based

cell motility and its regulation by small GTPases, modulated by

feedback from the phosphoinositides. The main motivations were

(1) to explore the role of PIs in fine-tuning direction sensing in

response to complex stimuli and (2) to demonstrate the bi-

directional feedback between the signalling modules and the

dynamically evolving shape of the cell.

We explored a biophysical feedback, wherein geometric

effects, and cell shape affected the biochemical dynamics. When

local protrusion occurs, the cell perimeter becomes extended and

curved, causing chemical isoclines to be curved. The curvature-

reducing effect of the reaction-diffusion dynamics then speeds up

the response significantly relative to the basal rate of polarization

for a cell with static shape. The internal chemical pattern, in turn,

specifies the sites where actin nucleation and growth will lead to

protrusion of the cell edge, and affect the isoclines yet again,

closing the feedback loop between biochemistry and cell shape.

While the importance of morphology and cell shape has been

discussed in other papers [48–50], here we have incorporated full

dynamics changes in both shape and chemical distribution,

allowing for feedback in both directions.

The implication of this finding is that cell shape is not just a

downstream consequence of regulatory pathways that impinge on the

cytoskeleton but rather, an integral part of the feedback mechanism. Papers

in the literature have suggested that actin filaments feed back onto

PI localization. Here we have shown that part of that feedback

could stem directly from the changing cell shape, and not only

from a direct interaction between actin and PIs. Mechanical effects

(e.g. via integrin signalling not here considered) would substantially

magnify such purely geometric effects. As shown in Figs. 4–6, a

frozen cell shape with absence of feedback from PIs to GTPases

takes up to 10 times longer to respond to a repolarizing signal, or

to decide between conflicting cues. Cells with dynamic shapes

respond more quickly, and those with PI feedback in the

appropriate range f&0:4 (not too high, and not too low) are

even faster.

A second theme in our paper concerns chemical feedbacks.

In our simulations, decreasing the parameter f (0ƒf ƒ1)

corresponds to a gradual PI3K silencing (e.g. as in [8] with the

PI3K inhibitor, LY294002) and we have here examined the effects

of tuning this parameter between overexpressed PI3K to full

knockout. We have shown that both extremes are pathological, so

that wild-type behaviour resides at some optimal level of feedback

(f ~0:4). In particular, peaks of Cdc42/Rac activity tend to be

platykurtic when PIs have no feedback (f&0), leptokurtic at high

levels of feedback (f&1). In the former case, communication

between plateaus of activity is restricted. In the latter case,

shoulders are broader, and so the zones of activity interact directly.

Autoamplification due to PI feedback also raises the magnitudes of

the activity zones, and depletes the inactive GTPases, leading to

longer-range global communication and depression of competing

peaks.

We found that PI feedback works optimally at some

intermediate level. At that level, it can help to speed up the

response to new stimuli and to resolve confusing or contradictory

external cues. As PI influence is tuned to higher intensity (f?1),

the ability to displace a peak of active Cdc42 (Rac) decreases, but

the ability to resolve conflicts by a ‘‘winner take all’’ mechanism

increases. A too-high PI feedback is inappropriate for motile cells

exposed to challenges such as conflicting stimuli or obstacles. We

showed that if PI feedback is too strong, cells get pinned to an

obstacle or face difficulty in reorienting to new cues. (This would

Figure 8. Response of a cell with and without PIs to obstacles in its path. As in Fig. 7, the cell is initially polarized and moving to the right
until it encounters an obstacle (static green circular object). (a) Without feedback from PIs (f ~0) the cell has difficulty resolving the competition
between two nascent ‘‘fronts’’ which embrace the object. (b) The cell with feedback from PIs (f ~0:4). The cell is able to move around the object
smoothly. (See also Video S10.)
doi:10.1371/journal.pcbi.1002402.g008
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present serious challenges in the complex environment of a living

tissue.)

The optimal level of feedback from PIs depends on the type of

cell and its function, and whether multiple peaks of Cdc42 or a

single peak is needed for some cell function. Plant cells have ROPs,

which are analogues to the small GTPases of the Rho family [51–

56]. For example, ROP 2 and 4 play a role similar to Cdc42,

defining a ‘‘leading edge’’ zone whereas ROP 6 in plants is

analogous to Rho in animal cells. In pavement cells of plants, for

instance, multiple lobes are a functionally important feature to

allow cells to interlock like jigsaw puzzle pieces. Hence, multiple

static peaks of small GTPase activity are observed, suggesting that

a different PI feedback would be optimal there: either higher or

much lower. For f ~1, we observe firm immovable peaks of

GTPase activity, and for f ~0 we found that distant peaks hardly

interact. Such extremes would possibly fit the plant repertoire

more closely. Also, the specific details of the small G-protein

crosstalk can significantly differ between different experimental

systems, and this can influence both biophysical and chemical

feedbacks. For example, using biosensors for the three Rho

GTPases and mouse embyonic fibroblasts (MEFs), Machacek. et

al. [57] showed that Cdc42 activates Rac1, as is assumed in this

study. They, however, find mutual inhibition between Rac1 and

RhoA, and, contrary to older work by Bourne’s lab, they find that

RhoA gets activated right at the advancing cell edge, and that

Cdc42 and Rac1 are activated 2mm farther back with a delay

(40 s). It remains to be seen to what extent such findings are cell-

specific or wide-spread.

By exploring this model, we gain several insights that help to

understand the biochemistry. For example, the importance of

GDIs emerges from our analysis of factors that influence

communication of activity peaks. We argued that one such factor

in peak communication is the ‘‘effective cytosolic diffusion’’ of

inactive small GTPases. Upregulating GDIs extracts inactive small

GTPases from the cell membrane, effectively increasing their

diffusivity. Downregulating GDIs means that inactive small

GTPases spend more time on the membrane, and have smaller

diffusivity [58]. Similarly, increasing the kinetics of the PIs

(equivalent to up/down regulating PTEN, PI3K, etc) produces

an analogous tuning of the interpeak communication. Such

parameters are tuneable outcomes of evolution, with species-

specific and cell-type-specific variability. A range of dynamical

effects would thus be expected in control and mutant cells, or cells

treated with inhibitors or drugs.

Recent reviews of the models for eukaryotic chemotaxis and

their relation to experiments include [33,59–61]. Existing models

based on Rho GTPase and/or PI signalling [48,62–67] are mainly

concerned with explaining polarization. Other theoretical models

[68–71] describe circuits with capability for adaptation, direction

sensing, or polarization. Previous models for 2D cell motility

include steady state cell shapes [72–74] and evolving shapes using

force-based methods [75,76]. Recent computational models for

cell motility have also been based on level-set approaches [77–79]

phase-field methods [80], and other approaches [81]. Our model,

based on energy minimization [40,41] allows for rapid and

convenient reaction diffusion of chemicals on an irregular domain,

and for effective forces of protrusion and contraction that can be

put into correspondence with real forces due to actin filament

barbed ends and actomyosin contraction [36]. This method has

the advantage of providing a good description of thermal-noise

induced stochastic shape change of the cell edges, while affording

speed and efficiency of computation. Such energy-minimization

techniques have become more widely adopted for describing cells

and tissues [82–84] because they can dramatically speed

computation. The efficiency of the implementation allowed us to

focus on exploring the response of the model cell to specific

stimuli, with a variety of geometries. Future work should address a

comparison of similar ideas in other 2D simulation platforms. We

anticipate that results discussed here would carry over universally

to a variety of approaches for capturing the evolving shape of the

cell.

Using a mathematical model, Meyers. et al. [85] considered the

effect of cell spreading (and flattening) on rates of (de)phosphor-

ylation due to proximity of the plasma membrane to cytosolic

intermediates. They noted that this effective change in activation/

deactivation rates links cell size and shape to regulation of

signaling pathways. While they were concerned with the

‘‘thickness’’ dimension of motile cells (that we take to be constant),

we are here describing the effects of curvature and 2D cell

boundary shape on the dynamics of interfaces of the internal RD

system.

Model limitations include absence of direct mechanical forces

and integrin signalling. Thus, this model would not be appropriate

for describing keratocytes ‘‘bouncing’’ off walls they encounter, or

cells following mechanical cues. The pathways and rate constants

used for the signalling module could be variations on specific

versions at play in specific cell types and conditions, but behaviour

was robust to modest changes in most parameter values. In [35],

we showed that far simpler GTPase circuits (consisting of a single

GTPase in its active and inactive forms) can already account for

polarization reinforcing our belief that such overall dynamic motifs

could operate in a more universal setting. Other cases where

mutual inhibition between Rac and Rho are dominant would

retain many of the overall features described here, while differing

in subtle details, as do cells of distinct species. Also, the model does

not capture possible effects of fluid convection in the cytosol (see

Material and Methods for details on our implementation of

moving boundary conditions). It would be interesting for future

studies to address possible effects of intracellular convection by

implementing reactant transport and developing a more complete

description of the actin network, membrane and cytoplasmic flow

of the moving cell.

While it has been shown experimentally that PI3K is not

essential for chemotaxis in Dictyostelium discoideum, Yoo. et al.

[8] found that PI3K is required for the interstitial migration of

neutrophils in live zebrafish embryos. The mechanism of this effect

was difficult to untangle. Our work in this paper highlights the fact

the PI3K product PIP3 (and other PIs) facilitate the resolution of

contradictory or multiple stimuli to the Rho GTPases. Such

complex stimuli arise repeatedly as cells navigate through the

complex environment of tissues (where blood vessels, other cells, or

structures create obstacles that have to be circumnavigated).

The results suggest a number of important experimental

investigations. First, although more data is becoming available,

simultaneous measurement of the distributions of multiple

GTPases and PIs in single cells is rare. Obtaining such correlated

data would be valuable in characterizing the typical resting and

stimulated states. Second, to check the effect of PI feedback,

pharmacological inhibitors of PI3K such as LY294002 applied at

successive level (very weak, to full inhibition), or mutants lacking

PI3K could be compared with wild-type behaviour. To detect the

differences, it would be important to challenge both treated/

mutant cells and wild-type cells with multiple stimuli (as we have

done in silico) or environments with obstacles to be resolved. Third,

to check the predictions about cell shape, one can compare

responses of cells treated with latrunculin (where the actin

cytoskeleton is disrupted so that cell shape does not change) with

untreated cells. When both are subjected to the appropriate time-
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varying stimuli, it would be possible to test our prediction that

shape provides an additional feedback to speed of repolarization.

As this effect can be subtle, one would need stimuli that lead to

dramatic shape changes in the untreated cells to detect a

substantial difference.

Materials and Methods

In this section we summerize the model equations and

parameter values, and we comment about our simplifying

assumptions and implementation decisions. Details of the overall

strategy for modelling and justification of the assumed crosstalk is

provided in our previous papers [25,34,36]. In the latter two

citations, models were in 1D, whereas here all variables are

defined in 2D.

Model equations
Small GTPase equations. The active forms of the small

GTPases satisfy:

LG

Lt
~QG(C,R,r,P3)

Gi

Gtot

� �
{dGGzDmDG, ð1Þ

where G~C,R,r for the active forms of Cdc42, Rac, and Rho,

respectively; Gtot~Ctot,Rtot,rtot are the total concentrations of

Cdc42, Rac and Rho, and Gi~Ci,Ri,ri are the concentrations of

the respective inactive forms. The inactive forms (Gi) diffuse faster

(Dm%Dmc) and satisfy:

LGi

Lt
~{QG(C,R,r,P3)

Gi

Gtot

� �
zdGGzDmcDGi: ð2Þ

The effective cytosolic diffusion, Dmc of inactive small GTPases is

approximated by Dmc~fmemDmzfcytDc where fmem,fcyt are the

average fraction of time that an inactive molecule spends on the

membrane and cytosol, respectively (influenced by the efficacy of

GDIs).

The dynamics of the small GTPases on their own (when only

their mutual feedbacks are being considered, i.e. only the top level

of Fig. 1), are given by the following GEF-mediated activation

rates for Cdc42, Rac and Rho:

Q0
C~

Ic

(1z(r=a1)n)
, Q0

R~(IrzaC) , Qr~
(IpzbR)

1z(C=a2)n : ð3Þ

Here, Ic,Ir,Ip are the baseline activation rates, a1 and a2 are the

Rho and Cdc42 concentrations that elicit a half-maximal drop of

Cdc42 and Rho activation, respectively. Here a sets the rate of

Cdc42 amplification of Rac and b the rate of Rac-enhanced Rho

activation.

To include the feedback from PIP3 (intermediate level in Fig. 1)

to activation of the small GTPases, we revise Q0
C and Q0

R of Eqn. 3

to

QC~
Ic

(1z(r=a1)n)
½1{f �zf

P3

P3b

� �
,

QR~(IrzaC) ½1{f �zf
P3

P3b

� �
:

ð4Þ

where the parameter 0ƒf ƒ1 tunes the feedback from PIP3 to

activation of Cdc42 and Rac. Note that when f ~0, there is no

feedback and terms in Eqn. 4 revert to those of Eqn. 3. (The

activation rate of Rho is considered to remain PIP-independent.)

P3b is the baseline concentration of PIP3 in a resting cell. The

details of the functions are less important than their nonlinear

sigmoidal shape, with n§2. All parameters are as defined in

Table 1.

Model of PI dynamics. The equations for PIs are as in [25]

(but excluding direct feedback from actin to PIs):

LP1

Lt
~IP1{dP1P1zk21P2{

kPI5K

2
1z

R

Rb

� �
P1zDPDP1, ð5aÞ

LP2

Lt
~{k21P2z

kPI5K

2
1z

R

Rb

� �
P1{

kPI3K

2
1z

R

Rb

� �
P2

z
kPTEN

2
1z

r

rb

� �
P3zDPDP2,

ð5bÞ

LP3

Lt
~

kPI3K

2
1z

R

Rb

� �
P2{

kPTEN

2
1z

r

rb

� �
P3zDPDP3: ð5cÞ

Where Rb, (rb) are typical levels of Rac (Rho) that result in a

doubled kinase (phosphatase) activity level. Note that we

implemented the simplest assumptions about feedback from

GTPases to kinases and phosphatases and from PIs to small

GTPases: i.e. these are assumed to be roughly linear processes,

and the presence of saturation (which would introduce more

parameters) was not needed. Ratios of the parameters kPI5K, k21,

kPI3K, kPTEN computed in [25] were based on steady state levels of

PIs cited in the literature. Previous absolute values used in [25] are

more appropriate for small (10mm diameter) cells. These were

amended to preserve appropriate spatio-temporal dynamics in a

motile cell of size 20{40 mm and k21 was changed to 0:021 s{1.

Boundary conditions and their implementation. All

diffusible substances (GTPases, PIs, Arp2/3) satisfy no-flux

boundary conditions at the cell edge, i.e. for any concentration

C (representing one of these variables),

+C:n̂n~0, ð6Þ

where n̂n is a unit normal vector to the cell edge at the given

boundary location. In our implementation, each simulation

timestep consists of a reaction-diffusion step followed by one

Monte-Carlo CPM timestep. During the CPM timestep we do not

explicitly model the intracellular convection due to movement

(which would depend on the cytosol’s viscosity etc). This would

however be a very important extension to such types of models,

allowing possible effects of advection to be explored and analysed.

Although we are currently ommiting convection within the model,

we nevertheless ensure that (a) there is a conservation of molecules

and (b) local extensions and retractions of the membrane are

sufficiently small in comparison to the diffusion length of the

intracellular chemicals to avoid large local concentration

differences due to membrane movement. This prevents

instabilities and amplifying feedbacks due to such possible

simulation artifacts. Conditions a) and b) are met through the

following implementation: when an intracellular pixel extends out

into an extracellular site (i.e. the intracellular identity of a pixel is

given to a neighbouring position that was previously part of the

extracellular space), the new site receives the same values as the

extending cell pixel (i.e. all concentration values are copied into

PIs and Cell Shape in Motility and Chemotaxis
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the new position). This ensures a locally flat concentration profile.

To then guarantee mass conservation, we renormalize all

concentrations over the entire cell such that the total mass

remains constant (i.e. dividing all concentrations by a factor

corresponding to what has been gained or lost during one Monte

Carlo timestep). We assure that timescales and spacescales are

such that this correction is never larger than 0.1%, and hence is

negligible compared to the diffusion processes.

We tested this implementation by comparing it with two

alternatives. In one, we considered adding empty pixels when the

cell extends and accumulating (‘heaping up’) concentrations when

it locally retracts; this alternative approximates zero convection.

We also tested a scheme where chemicals in an intracellular pixel

are equally distributed between that pixel and its extended

neighboring pixel. With the appropriate time step, we found that

the dynamics of the cell behaviour do not strongly depend on the

particular implementation. Thus we simply opted for the choice

that confers the highest level of numerical robustness and therefore

does not require prohibitively small timesteps.

Actin filament density and orientation. Actin branching

occurs at angles of 700 (due to the molecular configuration of

Arp2/3-mediated sidebranching). We approximate this by 600

angles as it allows us to describe the distribution of actin

orientations in the model by 3600=600~6 classes. This can be

conveniently implemented on a hexagonal grid. Such a

discretization leads to 18 coupled PDEs, given that we

distinguish between filaments, barbed ends and pushing barbed

ends (see Fig. 9).

With this in mind, the spatial simulations were run on a

hexagonal grid, on which six filament orientations are modelled.

For each discretized angles, Hm~mp=3, m~1:::6, we model actin

filament density FHm
~Fm and barbed ends BHm

~Bm by

LFm

Lt
~v0Bm{dF Fm, ð7Þ

LBm

Lt
~{+: Bm

~VV m

� �
z

1

2
kg A,Ftð Þ Fm{1zFmz1ð Þ{k(P2)Bm, ð8Þ

where ~VVm~v0(cosHm,sinHm)T denotes the velocity of barbed end

movement. Here v0 is the polymerization rate and dF is the

filament disassembly rate. Eqn. (7) describes the formation of F-

actin by the polymerization at barbed ends (with rate v0) and

filament turnover at a constant rate dF . Eqn. (8) describes changes

in barbed end density due to their flux throughout the domain,

their nucleation at angle Hm from parent filaments at angles

Hm+600 (via Arp2/3 branching), and their decay through

capping.

Arp2/3 dependent branching of actin filaments (and nucleation

of barbed ends) is assumed to be a saturating function of both

Arp2/3 and F-actin. Capping of barbed ends are modelled as a

basal rate that is reduced by PIP2:

g A,Ftð Þ~g0

A

KmzAzlFt

, ð9Þ

Figure 9. Membrane extensions and retractions. (left) Filament and barbed end densities are described at each grid point within the simulated
cell (schematically shown by two representative hexagons), and for all possible orientations hm, shown at the bottom left. Additionally, close to the
membrane we specifically distinguish between barbed ends that have not (yet) reached the membrane (B) and barbed ends that are effectively
pushing against the membrane (P), thereby contributing to the forces required for cell extension. (right) The CPM allows for cell shape changes and
movement through updates corresponding to small site extensions and retractions. Here, these updates take into account the density of pushing
barbed ends. When the cell extends, the pushing barbed ends increase the likelihood of extension (top right – note that all red filaments end up with
a pushing barbed end and therefore contribute to the forward motion), while during retraction the barbed ends offer resistence, reducing the
likelihood of retraction (bottom right – also note that many black (non force-bearing) filaments are promoted to red (force-bearing) filaments when
the retraction is accepted).
doi:10.1371/journal.pcbi.1002402.g009
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k(P2)~kmax{kP2

P
nP
2

P
nP
2half zP

nP
2

 !
, ð10Þ

where Km is a saturation constant. Note that the capping rate of

barbed-ends is reduced by PIP2 in a sigmoidal dependence with

half-max parameter P2half and Hill coefficient nP~3. This means

that at low PIP2 level, capping rate is approximately kmax, that it

drops sharply past a threshold level, and that it is subsequently at

the lower rate &kmax{kP2
.

Arp2/3 is modelled by

LA

Lt
~IARP(C,P2){g(A,Ft)Ft{dAAzDADA, ð11Þ

where dA is inactivation, and DA the diffusion coefficient. The

activation rate of Arp2/3, IARP, takes into account the (synergistic)

effect(s) of PIP2 and Cdc42 as follows:

IARP(P2,C)~
mP

2

P
nP
2

P
nP
2half zP

nP
2

 !
1z

C

CB

� �
: ð12Þ

As barbed-ends move towards the membrane of the cell, they

will influence the dynamics of the membrane. These force-bearing

barbed ends, Pm, are those per unit edge length (in units of

½nm�{1
) pushing the membrane at angle Hm,

LPm

Lt
~Bm

~VVm
:n̂n{rk(P2)Pm, ð13Þ

where n̂n is the unit vector normal to the edge. Note that the

variable Pm is defined only at the cell edge, and satisfies an ODE

rather than a PDE. There is no divergence term in this equation,

given that we are describing the net flux of filaments that would be

locally crossing the cell edge if not prevented so by the membrane.

When the cell extends outwards by one pixel, of dimension

l~200 nm, the distribution of pushing barbed ends that were

previously at the edge are ‘‘demoted’’ to freely extending barbed

ends, (Pm?Bm). (See Fig. 9.) These now have to ‘‘grow’’ the

additional distance to reach the new cell edge location. After some

time, such new free barbed ends that are not capped will catch up

with the protruding cell edge, since actin filament extension is

much faster than cell movement. Then these barbed ends will be

promoted back to pushing barbed ends, and will again contribute

to forces exerted at that pixel. Similarly, retraction ‘‘promotes’’

barbed ends to pushing barbed ends (Bm?Pm). In both cases, we

use a correction factor to capture the difference in units between

barbed ends and pushing barbed ends.

Stimulation protocol
The parameter regime we use here allows the cell to have both a

stable rest state as well as a polarizable state. Standard
Polarization: Polarity is initiated by applying a transient (10 s)

spatial gradient in IC (the Cdc42 activation rate) with slope

0:05 mM=smm, which corresponds to a roughly 15% variation

across the cell. The gradient is then turned off. Repolarization:
(Fig. 5) The cell is polarized as before. After 5 min, we applied a

shallower second gradient, corresponding to roughly 3% variation

in the Cdc42 basal activation rate (IC values) across the cell. The

second stimulus was either orthogonal (Fig. 5a) or opposite (Fig. 5b)

to the direction of the first. Shown are results for f ~0. (Here

turning is slightly faster than for f ~0:4, though qualitatively

similar.) We used IC~3:4 here (rather than IC~2:95) to slightly

enlarge the front of the cell, and make the curved front-back

interface visually more pronounced. Initial Predetermined
Patterns: The intracellular distributions for the simulations of

Fig. 4b were initialized by horizontally shifting a stabilized

intracellular pattern in a sinusoidal fashion, such that all chemical

species (PIs and (in)active forms of the small GTPases) have

corresponding lower and higher levels, distributed in a sinusoidal

pattern with three peaks. Injection: In the simulation of Fig. 4c, a

spot of activation of Cdc42 was introduced by adding active

Cdc42 concentrations at the highest level as found within the cell

and diminishing this amount from the inactive pool. V-shaped
Gradient: In Fig. 6a,b a V-shaped gradient across the horizontal

axis (from right to left extremities of the cell) of 7.5% difference in

IC values was employed. (By a V-shaped gradient, we mean two

superimposed, simultaneous, diametrically opposed gradients.)

Noise: In Fig. 6c, the initial condition was a cell at steady state

with uniform concentrations of all substances. On this we

superimposed, only for the initial condition, normally distributed

noise in the Cdc42 and Rac concentrations, with a spatial

autocorrelation distance of 1:5mm and a standard deviation of

0:5mM, i.e. &21% for Cdc42, and &7% for Rac (see the first

frame of Fig. 6c for a visual display of the initial noise level). A

relatively high amount and/or spatially correlated noise is needed

to push the cell out of the stable resting state. (We tested that

continuously adding such a level of noise does not significantly

change the results, as noise has only a small effect on the cell once

polarity has been established.)

The Hamiltonian and energy minimization scheme
Reactions and cell shape are computed on a 2D hexagonal grid.

The cell, in a top-down view (approximated as having constant

thickness) is represented as a set of pixel points on that lattice. Both

cell interior (cytosol) and membrane are so represented, and

chemical concentrations (in number of molecules per hexagonal

cylinder of constant thickness) are tracked by implicitly solving the

reaction-diffusion PDEs on the evolving domain. As the

intracellular small G-protein and PI dynamics evolve, leading to

down-stream effects upon the cytoskeleton, forces generated by the

actin barbed-ends and myosin contraction change the cell’s shape.

To study the resulting cellular dynamics, and how these influence

the internal chemical dynamics, we utilized a modelling

framework in which membrane displacement is described

according to an energy function. This is an approach that has

recently become more widely recognized in modelling cell and

tissue movement [82–84]. The core of this energy function

includes biophysical properties such as cell adhesion, cell volume

conservation, membrane and cortical tension, which together lead

to an effective cell surface tension [83]. We utilize such an energy

description within the Cellular Potts Model [40,86] to describe the

dynamics of the change of the cell’s edge.

The Hamiltonian is defined by summing the energy contribu-

tion of each pixel over the entire field:

H~
X

JCMzla a{Að Þ2zlp(p{P)2, ð14Þ

(summed over neighbours up to 3rd order). In 2D, H depends on

cell area and boundary length (in 3D, on volume and surface area).

JCM is the coupling energy per boundary site, a is the actual cell

area, A the target area, and la a parameter that describes

resistance to deviation from the target area, lp describes resistance

to changing the perimeter p away from a target perimeter P. The
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perimeter constraint represents a high effective interfacial tension

and energetic costs of stretching the cell membrane.

The dynamics of cellular movement result from the above

Hamiltonian through the Monte Carlo simulation utilizing the

Metropolis Algorithm, an energy-minimization method that allows

the cell edge to change stochastically. Briefly, during each Monte

Carlo step (MCS), each lattice site in the field will be evaluated in a

random sequence. Sites at the cell’s perimeter are queried for

possible change to the state of a randomly chosen neighbour

(‘‘copying’’). In the simulations here, in which we consider single

cell dynamics, this local change implies protrusion or retraction of

the edge of the cell.

The net change of energy due to a ‘‘copying’’ event,

DH~Hafter{Hbefore is computed, and the event accepted with

probability

P~
1 if DHv{Hb,

exp {
DHzHb

T

� �
if DH§{Hb,

(
ð15Þ

where Hb represents a yield, which is the ability of the membrane

to resist a force, and T determines the fluctuations. Changes in

state that decrease H by at least Hb have probability 1, and other

changes are made with a Boltzmann probability. Tuning the

‘temperature’ T allows us to tune the magnitude of stochastic

fluctuations (of various possible origins) in the model. For example,

Mombach et al. [87] interpreted the parameter T as the

membrane fluctuation amplitude of cells, and they compared this

with effects of the drug cytochalasin-B (a suppressor of membrane

ruffling). Here, given that we describe the state of the cytoskeleton

at the membrane, we are able to directly relate this parameter to

the density and biophysical properties of the actin barbed ends.

Note however, that the cell is not expected to relax to a surface-

driven equilibrium shape, as there are internal forces generated by

the force-bearing barbed ends at the membrane. Thus, we

describe these internal forces by altering probabilities of

expansion/retraction dependent on the internal densities of

barbed ends at the membrane as well as on the amount of myosin

contraction as a downstream effect of Rho. Presence of barbed

ends biases the probability towards protrusion, whereas presence

of Rho GTPase biases towards retraction (see Fig. 9 for a

schematic representation), and leads to the following forces at the

membrane:

DH ’~DH{
P
m

Phmzj r{rthð Þwhen the cell extends,

DH ’~DHz
P
m

Phm{j r{rthð Þwhen the cell retracts:
ð16Þ

P
Phm describes the forces exerted by all barbed ends pushing

against the membrane towards the empty site. The term j r{rthð Þ
describes the effective Rho-dependent contraction forces when

Rho exceeds the threshold level, (rth). The term 1=j scales a unit

of Rho elevation to the force of one pushing barbed end per nm

membrane length. Note that according to Eqn. 16, H (and thereby

T and Hb) carry the same units as P, i.e. the number of extending

filaments pushing against the membrane per unit edge length (here

½nm�{1
). We can further relate the above expression to known

physics of cell protrusion. An effective force-velocity relationship

for protrusion speed as a function of the number of barbed ends

pushing at the cell edge has previously been derived [37,88]. In a

thermal ratchet driven by actin polymerization, the relationship

between the number of barbed ends at the membrane and the

speed, v, of the lamellipodial protrusion is approximately

v~v0 exp({w=b), ð17Þ

where v0 is the free polymerisation speed, b the density of barbed

ends per unit length at the membrane, and w the renormalised

membrane resistance force per unit length (w~Fmd=kBT , where

Fm is the membrane resistance, d the size of one monomer, and

kBT&4:1 pN nm is the thermal energy). Neglecting capping and

side-branching, and assuming that all barbed ends are directed

normal to a straight cell edge, it can be shown [36,41] that within

the Cellular Potts Model Eqn. 16 implies a mean speed of

protrusion

v~
Dx

Dt
exp {Y=Tð Þ exp

(1{v=v0)b

T

� �
{exp

{(1{v=v0)b

T

� �� �
: ð18Þ

Here Dx and Dt are the grid size and time step corresponding to

one MCS, respectively. This is in line with Mogilner and

Edelstein-Keshet [88]. While not identical to Eqn. (17), this

equation also describes a relationship between protrusion velocity

and the number of barbed ends. Here the relationship is expressed

in terms of the CPM parameters T and Y . By fitting this

relationship to Eqn. (17) (for which the parameter values are well-

established), we obtained the optimal values T~0:008 nm{1;

Y~0:046 nm{1. For these values, the thermal ratchet force-

velocity relationship of Eqn. 17 and the effective force-velocity

relationship of Eqn. 18 are highly comparable over the whole

range of biologically relevant barbed end densities, which are

typically observed to be in the range of 0:05{0:25 nm{1 at the

lamellipod edge [88,89]. Accordingly, the CPM gracefully leads to

a reasonable depiction of actin-based protrusion forces and the

model quantitatively describes the response of the cell membrane

to any possible load of pushing barbed ends. Having matched this

relationship, we can now apply it in a simulation of a complex

shaped 2D motile cell, with large variations in pushing barbed

ends along the edge, implicitly locally solving for the large

variation in the applied forces. This also allows us to determine the

feedback between the cell shape and deformation on the

underlying cytoskeleton dynamics. Further details of how the

model has been parametrized to biophysical measurements are

given in [36,41].

Numerical simulations
We use a 4006400 hexagonal grid with periodic (toroidal)

boundary conditions and grid mesh size equivalent to 200 nm. A

time step corresponds to 0:0025 s, and the same timestep is used

to numerically integrate the PDEs. Diffusion processes were

integrated using the Alternating Direction Implicit (ADI) method

[90], but modified to be performed in units of one-third timestep

along each of the three principal directions given by the hexagonal

symmetry of the field.

At a retracting site, all filaments and barbed ends that were in

that site are pushed back with the edge, and pile up at adjacent

sites with their original orientations. Their barbed ends push

against the new edge, and some become load-bearing. When the

edge protrudes outwards, barbed ends formerly pushing lose

contact with the membrane. In this way, filaments and barbed

ends are not lost or generated de novo when the membrane retracts

or extends, and the build-up and release of internal forces are

directly coupled to the cytoskeleton. Fig. 9 illustrates this process.

Moreover, as the cell moves (due to the dynamics given by Eqn.

16) the edge of the cell deforms, and hence the local unit normal

vector changes, which results in changes of the boundary
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conditions for which the intracellular dynamics are run (see Eqn.

(6)). As explained above, we choose to update concentrations

locally in such a way that we preserve mass conservation (nothing

is added or lost in a pixel extension or retraction).

Supporting Information

Video S1 Rac distributions in migrating in silico cells
without (left) and with (right) PI feedback. Video showing

the dynamics of the cells depicted in Fig. 3. Colour map indicating

Rac levels is as defined in Fig. 2.

(MPG)

Video S2 Effect of cell shape and intracellular ‘front-
back’ interface curvatures. Video of the dynamics of the

Cdc42 distribution profiles in static, elliptically shaped in silico cells

without (left) and with (right) PI feedback, as shown in Fig. 4a.

Colour map indicates Cdc42 levels as defined in Fig. 2.

(MPG)

Video S3 Recovery from a disturbance in the ‘front-
back’ interface. Video of the dynamics of the Cdc42

distribution profiles in static in silico cells without (left) and with

(right) PI feedback. Two distinct types of disturbances are applied,

as in Fig. 4b,c. The ‘front-back’ interface rapidly straightens out.

Colour map indicates Cdc42 levels as defined in Fig. 2.

(MPG)

Video S4 Feedback of cell shape dynamics on intracel-
lular dynamics. A comparison between Cdc42 repolarization in

an in silico cell whose shape is frozen (left) with a control cell in

which small G-protein levels dynamically control cell shape via

actin dynamics (right), as shown in Fig. 5. Upper panels show a 900

repolarization, while lower panels show a 1800 repolarization. The

feedback from shape to intracellular dynamics significantly speeds

up the reorientation. Colour map indicates Cdc42 levels as defined

in Fig. 2.

(MPG)

Video S5 Level of cell shape deformation affects
feedback strength to intracellular dynamics. A compar-

ison between Cdc42 repolarization in an in silico cell whose level of

shape deformation is more restricted (left, and shown in Fig. 5 and

Video S4), and a cell with a more flexible cell shape, due to a

threefold reduced coupling energy (JCM~0:25 mm{1) and no

membrane stiffness (lp~0 mm{3). The video shows a 1800

repolarization. Increased cell flexibility significantly speeds up

the reorientation even further. Colour map indicates Cdc42 levels

as defined in Fig. 2.

(MPG)

Video S6 Effect of phosphoinositide feedback on the
response of static cells to conflicting stimuli. Video of the

dynamics of the Cdc42 distribution profiles in static in silico cells

without (left) and with (right) PI feedback, after simulation with a

‘‘V’’ shaped gradient during 10 s, as shown in Fig. 6a. Colour map

indicates Cdc42 levels as defined in Fig. 2.

(MPG)

Video S7 Effect of phosphoinositide feedback on the
response of dynamic cells to conflicting stimuli. Video of

the cell dynamics and Cdc42 distribution profiles in dynamic in

silico cells without (left) and with (right) PI feedback, after

simulation with a ‘‘V’’ shaped gradient during 10 s, as shown in

Fig. 6b. Colour map indicates Cdc42 levels as defined in Fig. 2.

(MPG)

Video S8 Effect of phosphoinositide feedback on the
response of dynamic cells to noisy stimuli. Video of the

cell dynamics and Cdc42 distribution profiles in dynamic in silico

cells without (left) and with (right) PI feedback, after simulation

with the same noisy stimulus that is sufficiently large to trigger

multiple fronts, as shown in Fig. 6c. Colour map indicates Cdc42

levels as defined in Fig. 2.

(MPG)

Video S9 Response of cells with varying degrees of PI
feedback to a wall. Cells initially polarized and moving

rightwards encounter a wall (green vertical band), as shown in

Fig. 7. Video shows the cell dynamics and Cdc42 distribution

profiles in in silico cells without (left), with normal (middle), and

with high (right) PI feedback (f ~0:0,0:4,1:0, respectively). Colour

map indicates Cdc42 levels as defined in Fig. 2.

(MPG)

Video S10 Response of a cell with and without PIs to
obstacles in its path. Video of the cell dynamics and Cdc42

distribution profiles in dynamic in silico cells without (left) and with

(right) PI feedback. The cell is initially polarized and moving to the

right until it encounters the obstacle (static green circular object),

as shown in Fig. 8. Colour map indicates Cdc42 levels as defined

in Fig. 2.

(MPG)
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