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Abstract

The issue of large-scale testing has caught much attention with the advent of high-throughput technologies. In genomic
studies, researchers are often confronted with a large number of tests. To make simultaneous inference for the many tests,
the false discovery rate (FDR) control provides a practical balance between the number of true positives and the number of
false positives. However, when few hypotheses are truly non-null, controlling the FDR may not provide additional
advantages over controlling the family-wise error rate (e.g., the Bonferroni correction). To facilitate discoveries from a study,
weighting tests according to prior information is a promising strategy. A ‘weighted FDR control’ (WEI) and a ‘prioritized
subset analysis’ (PSA) have caught much attention. In this work, we compare the two weighting schemes with systematic
simulation studies and demonstrate their use with a genome-wide association study (GWAS) on type 1 diabetes provided by
the Wellcome Trust Case Control Consortium. The PSA and the WEI both can increase power when the prior is informative.
With accurate and precise prioritization, the PSA can especially create substantial power improvements over the commonly-
used whole-genome single-step FDR adjustment (i.e., the traditional un-weighted FDR control). When the prior is
uninformative (true disease susceptibility regions are not prioritized), the power loss of the PSA and the WEI is almost
negligible. However, a caution is that the overall FDR of the PSA can be slightly inflated if the prioritization is not accurate
and precise. Our study highlights the merits of using information from mounting genetic studies, and provides insights to
choose an appropriate weighting scheme to FDR control on GWAS.
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Introduction

The issue of large-scale testing has caught much attention with

the advent of high-throughput technologies such as whole genome

single-nucleotide polymorphism (SNP) arrays. In genome-wide

association studies (GWAS), researchers are often confronted with

a large number of SNPs. Two measures are commonly used to

quantify the overall error rates when making simultaneous

inference for the many SNPs. One is the family-wise error rate

(FWER), defined as the probability of committing at least one

type-I error from among a family of tests. Methods such as the

Bonferroni correction and the Holm’s step-down procedure [1]

can be used to control the FWER. The other commonly used

measure is the false discovery rate (FDR), defined as the expected

ratio of the number of false rejections to the number of total

rejections [2–6]. When the number of true null hypotheses (m0) is

smaller than the total number of hypotheses (m) (i.e., not all the

null hypotheses are true), the FDR is smaller than or equal to the

FWER [2]. Therefore, given a same nominal control level,

controlling the FDR is less stringent than controlling the FWER.

Controlling the FDR can provide a more practical balance

between the number of true positives and the number of false

positives. The FDR controlling has been widely applied to many

gene expression data sets, in which the proportions of signal genes

(1{m0=m) are usually not small.

For some GWAS where the proportions of signal SNPs are

extremely small (m0*m) [7], controlling the FDR provides no

more benefits than controlling the FWER [8]. Fortunately,

appropriately utilizing information from mounting genetic studies

can improve this. If researchers have informative prior knowledge,

weighting tests according to this prior information can substan-

tially improve the power of a study [8,9]. There are two

approaches to weight tests. One is the ‘weighted FDR control’

(WEI) [10]. The p values are weighted directly based on prior

knowledge, and then the Benjamini and Hochberg’s FDR

controlling [2] or the Storey and Tibshirani’s FDR controlling

[4] is applied to the weighted p values. A study has shown a

prominent benefit of using prior linkage results to weight the p

values of association tests [9]. The second approach is the

‘prioritized subset analysis’ (PSA) [11], which has been applied to

both GWAS [8] and gene expression data analyses [12]. A

researcher first allocates all tests under study into two subsets,
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based on his/her prior knowledge. A ‘prioritized subset’ comprises

tests likely to be the true positives, and a ‘non-prioritized subset’

comprises the remaining tests. The FDR controlling is then

applied to the two subsets, respectively.

Appropriately utilizing prior information is crucial to exploring

signals, especially when the numbers of tests are going into

millions, such as the scenario in GWAS. Both the WEI and the

PSA have caught much attention for their advantage to facilitate

discoveries from GWAS [8,9,11]. However, the comparison

between them is not clear. In this work, we make a head-to-head

comparison between these two approaches. We compare them

with extensive simulations, and demonstrate their use on a real

GWAS. Our work can provide insights to choose an appropriate

strategy when making simultaneous inference for the many SNPs

in GWAS.

Methods

Whole-genome Single-step FDR Adjustment (WGA)
The WGA is simply the traditional un-weighted FDR control

for GWAS. Suppose that there are a total of m SNPs. Let

P1,P2, � � � ,Pmf g be the set of observed p values of the m SNPs. To

control the FDR at a desired level, say q�, the Benjamini and

Hochberg’s procedure [2] can be applied to this set of p values.

Prioritized Subset Analysis (PSA)
To perform the PSA and the following WEI, prior information

is required to assign each SNP to be ‘more likely a true positive’ or

‘more likely a true negative’. Suppose that we have prior

information coming from our biological knowledge, or from

findings of data other than that in the current study. Let Ui = 1 if

the ith SNP is located in a chromosomal region supported by prior

information and this SNP is thought to be more likely a true

positive; Ui = 0 if this SNP is in a chromosomal region not

supported by prior information and it is thought to be more likely

a true negative. To perform a PSA, we first allocate all SNPs into

two subsets: a ‘prioritized subset’ comprises SNPs likely to be the

true positives (U = 1), and a ‘on-prioritized subset’ comprises the

remaining SNPs (U = 0). The observed p values of the m SNPs are

accordingly allocated into two subsets. One comprises the p values

of the prioritized SNPs, and the other comprises the p values of the

remaining non-prioritized SNPs. The Benjamini and Hochberg’s

FDR controlling [2] is then applied to these two subsets of p values,

respectively.

Weighted False Discovery Rate Control Procedure (WEI)
There are two weighting schemes for the WEI: ‘binary

weighting’ and ‘general weighting’ [10]. The ‘general weighting’

requires a researcher to assign a weight for each and every SNP

specifically. To have a parallel comparison between the WEI and

the PSA, we here only consider the ‘binary weighting’ for the WEI.

In ‘binary weighting’, SNPs thought to be more likely true

positives (U = 1) are all assigned a same weight (w1), and SNPs

thought to be more likely true negatives (U = 0) are all assigned

another weight (w0).

Let Wi be the weight assigned to the ith SNP, i = 1, …, m. In the

binary weighting scheme, Wi is either w1 or w0. The p values are

weighted according to P�i ~Pi=Wi, where P�i is the weighted p

value of the ith SNP. The Benjamini and Hochberg’s FDR

controlling [2] is then applied to the set of weighted p values

P�1,P�2, � � � ,P�m
� �

. To maintain the FDR at a desired level, the set

of weights W1,W2, � � � ,Wmf g must meet a requirement:
�WW~

Pm
i~1 W i

�
m~1 [10]. For the weights in the binary

weighting scheme, a researcher can first decide a w1 (or w0),

and work out the other one, w0 (or w1), using the constraint
�WW~1. An alternative is to choose a ratio of the two weights,

r~w1=w0§1, and then obtain w0 with the constraint:

1~ �WW~w0|(1{ �UU)zw1| �UU~w0|(1{ �UU)zrw0| �UU ,

where �UU~
Pm

i~1 Ui

�
m. Therefore, w0~1= 1z(r{1) �UU½ � and

w1~r= 1z(r{1) �UU½ �.
The choice of r reflects the degree of confidence a researcher has

toward the prior, which is subjective and is specified by the

researcher. (Note that the PSA does not require this parameter,

because the PSA simply allocates all SNPs into two subsets without

specifying any explicit weight.) If the researcher is confident of the

prior information, r can be specified larger. If not, r should be

specified smaller. When r = 1, w1~w0, the WEI reduces to the

WGA.

Simulations
We performed simulations to compare the power and the ability

to control the FDR of the WGA, the PSA, and the WEI. To

provide a practical evaluation on these methods when analyzing

GWAS, we followed Li et al. [11] to first simulate GWAS data

with similar linkage disequilibrium (LD) patterns as the HapMap

data [13], and then analyzed the simulated GWAS data sets with

the WGA, the PSA, and the WEI. For the WEI, we followed

Genovese et al. [10] to specify r at 2, 5, or 10.

Simulation program. We used a rapid whole-genome

simulation program, the GWAsimulator [14] (http://biostat.mc.

vanderbilt.edu/wiki/Main/GWAsimulator), to generate GWAS

data sets. The GWAsimulator [14] implements a rapid moving-

window algorithm [15] to simulate whole genome case-control or

population samples. It faithfully generates SNP genotypes that

follow the local LD patterns of the input data. Following Li et al.

[11], we used the phased data of HapMap 60 CEU (CEPH

samples with ancestry from northern and western Europe) founder

subjects as the input data. The total number of SNPs in the input

data is 314,174, after merging the Illumina Sentrix Human-

Hap300 BeadChips (317,503 SNPs) and the HapMap phased data

[11,14].

Setting of the disease model. Following Li et al. [11], we let

six SNPs be the disease variants. Among the six variants, three

have small effects (genotypic relative risk or GRR = 1.34) and the

others have relatively large effects (GRR = 1.57). We randomly

chose SNPs with minor allele frequencies (MAFs) of 0.25, 0.36,

and 0.33 from chromosomes 6, 10, and 5 respectively, as the three

small-effect SNPs (Locus 1–3). The three large-effect SNPs (Locus

4–6) with MAFs of 0.43, 0.31, and 0.30 were randomly picked

from chromosomes 3, 11, and 4 respectively. This MAF setting

mimics the reported risk loci of type 2 diabetes [16], in which the

minor alleles were treated as risk alleles. Given the genotypes of

the six disease loci, the probability of being affected is

Pr(affected Dgenotype)~ 1zexp({b0{
X6

j~1
bjgj)

h i{1

, where

gj[ 0,1,2f g is the number of risk alleles at disease locus j, b0 was

chosen to lead to 5% of the population disease prevalence, and bj ’s

were chosen to meet the specification for the six GRRs.

We simulated 15,000 replicate data sets. In each replication,

genotypes of 314,174 whole-genome SNPs were generated for

each of 500 unrelated cases and 500 unrelated controls. SNPs with

Hardy-Weinberg exact P value,10{3 in the control group were

excluded. P values were obtained using the one-degree-of-freedom

chi-square test to compare the allele frequencies in cases and

controls. The FDR level was to be controlled at 5%.

Weighting Schemes to False Discovery Rate Control
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We followed Li et al. [11] to define the prioritized subsets

according to the combinations of three factors: (Factor A) the

number of prioritized regions (6, 14, 22); (Factor B) the size of each

prioritized region (2 Mb, 20 Mb); (Factor C) the disease loci to be

prioritized: (i) no disease loci; (ii) Locus 6; (iii) Loci 1 and 6; (iv)

Loci 1, 2, 5, and 6; (v) Loci 4, 5, and 6; (vi) Loci 1, 4, 5, and 6; (vii)

all except Locus 3; (viii) all loci. Factors A and B are directly

related to the precision of a prioritization process, while Factor C

is related to its accuracy.

Results

Simulation Results
FDR evaluations. Figures 1 and 2 present the FDR (the

mean ratio of the number of false rejections to the number of total

rejections, based on the 15,000 replications) of the WGA, the PSA,

and the WEI (r = 2, 5, 10) when the prioritized region sizes were

2 Mb and 20 Mb, respectively. Note that the FDR of the PSA was

the overall FDR, obtained by the mean ratio of the number of total

false rejections from the two subsets to the number of total rejections

from the two subsets. The WGA and the WEI had very similar FDRs,

which were under control for all scenarios. For the PSA, accurate

(true disease loci were prioritized) and precise (prioritized regions

were narrower) prioritization led to lower overall FDR. Comparing

the eight scenarios when six 2-Mb regions were prioritized

(Figure 1), the more accurate the prioritization (more true disease

loci were prioritized), the lower the overall FDR. However, within a

same scenario (especially for Scenarios (iv)–(viii)), the overall FDRs

were not as low when more regions unrelated to the disease were

prioritized (14 or 22 regions compared to 6 regions). Comparing

Figure 2 (where six 20-Mb regions were prioritized) with Figure 1

(where six 2-Mb regions were prioritized), the overall FDRs did not

remain as low due to the decreasing precision of the prioritization

(20 Mb compared to 2 Mb). The ability of the PSA to control the

overall FDR depends on the accuracy and precision of the

prioritization. When none of the true disease loci was prioritized

(Scenario (i) of Figures 1 and 2), the overall FDR of the PSA was

inflated to 5.6%. When only one or two disease loci were

prioritized with higher precision (Scenarios (ii) & (iii) of Figure 1),

the overall FDR of the PSA was ‘almost’ under control (still a slight

inflation on the FDR). However, when the one or two disease loci

were prioritized with lower precision (Scenarios (ii) & (iii) of

Figure 2), the overall FDR of the PSA was inflated to 5.3%.

We see that the overall FDR of the PSA can be inflated to 5.6%.

To have a fair evaluation on the power, we deliberately set the

FDR control level at 4.4% (because the ratio of 5% to 5.6% is

approximately equal to the ratio of 4.4% to 5%) for the PSA,

under Scenarios (i)–(iii) for 2 Mb prioritized region size and under

Scenarios (i)–(v) for 20 Mb size. After this adjustment, the overall

FDRs of the PSA method were not larger than 5% (see our

Supporting Information S1).

Power evaluations. Power of detecting a disease locus was

defined as the proportion of ‘successful detections’ of that disease

locus among all the 15,000 replications, in which a ‘successful

detection’ was defined as ‘declaration of significance for at least

one SNP within one Mb from the disease locus’ (following the

definition by Li et al. [11]). Figures 3 and 4 present the power

comparisons between the WGA, the PSA, and the WEI (r = 2, 5,

10) when six 2-Mb regions and when six 20-Mb regions were

prioritized, respectively. Our Supporting Information S1 shows

the results when 14 or 22 regions were prioritized, each region

with a size of 2 Mb or 20 Mb. Note that the power was compared

(Figures 3, 4, and Supporting Information S1) with the adjustment

of FDR for the PSA (that is, the FDR control level was deliberately

set at 4.4% for the PSA, under Scenarios (i)–(iii) for 2 Mb

prioritized region size and under Scenarios (i)–(v) for 20 Mb size.).

The accuracy of a prioritization process directly affects the

relative power performance of the three methods. When the

regions encompassing the true disease loci were prioritized, the

most powerful method was the PSA, then was the WEI (r = 10).

The WEI with a larger r was more powerful than the WEI with a

smaller r (see Scenarios (ii)–(viii) of Figures 3 & 4, where at least

one disease locus was prioritized). When the regions encompassing

the true disease loci were not prioritized, the power loss of the PSA

and the WEI was almost negligible. The WEI with a larger r

suffered from more power loss than the WEI with a smaller r (see

Scenario (i) of the last figure in the Supporting Information S1,

where no disease loci were prioritized).

Furthermore, the precision of a prioritization process also

influences the power of the PSA and the WEI. Regarding the size

of each prioritized region (2 Mb or 20 Mb) and the number of

prioritized regions (6, 14, or 22), the power improvement of the

PSA and the WEI was not as prominent when the prioritization

was not as precise, i.e., a wider region around a true disease locus

was prioritized (20 Mb compared to 2 Mb), or more regions

unrelated to the disease were prioritized (22 or 14 regions

compared to 6 regions).

Application to the Wellcome Trust Case Control
Consortium (WTCCC) Data

We further demonstrate the WGA, the PSA, and the WEI with

a GWAS on type 1 diabetes (T1D). The data set was provided by

the Wellcome Trust Case Control Consortium (WTCCC) [17]

that included 2,000 T1D cases and 3,000 controls. Subjects were

living within England, Scotland, and Wales (‘Great Britain’). The

vast majority had self-identified themselves as white Europeans

[17]. The control subjects were from 1958 British Birth Cohort

(1,500 subjects) and UK Blood Services sample (1,500 subjects).

After excluding subjects identified as having recent non-European

ancestry, there were 1,963 T1D cases and 2,938 controls [17].

Subjects were genotyped using the Affymetrix GeneChip 500 K

arrays comprising 500,568 SNPs. According to the WTCCC

criteria [17], 459,653 SNPs passed the quality control filters. We

further removed 578 SNPs with poor clustering and retained

459,075 SNPs.

WGA. For each SNP, we used the p value obtained from the

genotypic test. Controlling the FDR at 5%, 12 independent

association signals were declared to be significant with the WGA

(an association signal was identified given more than a single

significant SNP within 2 Mb). Figure 5 and Table 1 show the 12

signals that can be mapped to 12 genes. Among them, five were

declared to be significant when the Bonferroni correction was used

to control the FWER at 5%.

Prioritization process. To perform the PSA and the WEI,

prior information is required to assign each SNP to be ‘more likely

a true positive’ or ‘more likely a true negative’. We collected the

information by searching for publications with ‘gene’, ‘association’,

and ‘type 1 diabetes’ in their titles. PubMed shows 89 publications

meeting this searching criterion. Among them, we used the studies

independent of the WTCCC project and published prior to the

WTCCC publication [17]. Table 2 lists the genes that are

previously reported to be associated with T1D. We obtained the

physical position of each gene (listed in Table 2) from the Gene

Location website (http://genecards.weizmann.ac.il/geneloc/

index.shtml). SNPs within 1 Mb from each gene were prioritized

(so the size of each prioritized region was 2 Mb). When prioritizing

SNPs according to prior information, there is no stringent criterion

for the sizes of prioritized regions (we will discuss this in the

Weighting Schemes to False Discovery Rate Control

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e33716



Figure 1. FDR of the WGA, the PSA, and the WEI (r = 2, 5, 10) when the prioritized region sizes were 2 Mb (without adjustment to the
PSA).
doi:10.1371/journal.pone.0033716.g001

Weighting Schemes to False Discovery Rate Control
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Figure 2. FDR of the WGA, the PSA, and the WEI (r = 2, 5, 10) when the prioritized region sizes were 20 Mb (without adjustment to
the PSA).
doi:10.1371/journal.pone.0033716.g002

Weighting Schemes to False Discovery Rate Control
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Figure 3. Power comparison between the WGA, the PSA, and the WEI (r = 2, 5, 10) when six 2-Mb regions were prioritized (with
adjustment to the PSA). A locus with parentheses indicates that the disease locus was included in the prioritized subset.
doi:10.1371/journal.pone.0033716.g003

Weighting Schemes to False Discovery Rate Control
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Figure 4. Power comparison between the WGA, the PSA, and the WEI (r = 2, 5, 10) when six 20-Mb regions were prioritized (with
adjustment to the PSA). A locus with parentheses indicates that the disease locus was included in the prioritized subset.
doi:10.1371/journal.pone.0033716.g004

Weighting Schemes to False Discovery Rate Control
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Discussion). However, in general, a wider region should be

prioritized for a linkage peak than that for an association signal,

because linkage is a coarse mapping while association is a fine

mapping. In this data analysis, our prior information came from

previous association studies on T1D, and therefore we chose a

moderate prioritization size for each region 22 Mb. Totally, we

prioritized 6,914 SNPs and left the remaining 452,161 SNPs in the

non-prioritized subset. A list of the prioritized SNPs is available

upon request.

PSA. To perform a PSA, the genotypic p values of the 459,075

SNPs were accordingly allocated into two subsets. The FDR was

to be controlled at 5%. The Benjamini and Hochberg’s FDR

controlling [2] was applied to the two subsets of p values,

respectively. Finally, 15 genes were declared to be significant (see

Figure 5 and Table 1). Among them, nine genes came from the

Figure 5. Manhattan plot for the T1D data set. The x-axis lists the chromosome numbers, and the y-axis presents {log10 p valueð Þ. The red
points label the significant genes identified by each method (from top to bottom: the Bonferroni correction to control the FWER at 5%, the WGA to
control the FDR at 5%, and the PSA to control the FDR at 5%). This figure was plotted with the R package ‘gap’ [31].
doi:10.1371/journal.pone.0033716.g005

Weighting Schemes to False Discovery Rate Control
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prioritized subset, including HLA, PTPN22, NeuroD, CTLA4, IL-10,

IL2RA, INS, CALD1, and PD-1. The last three were not identified

as significant genes with the WGA method. Being allocated into

the prioritized subset, they (INS, CALD1, and PD-1) had a chance

to be identified as significant genes. We further evaluated whether

the FDR was well controlled in the prioritized subset. We

permuted the phenotypes 104 times and obtained 104 null p values

for each of the 6,914 SNPs. Then we estimated the number of false

positives by counting the number of null p values more extreme

(i.e., smaller) than 2:59|10{3, the largest P value of the

association signals in the prioritized subset. In this way, we

obtained an estimated permutation-based FDR [18] at 3.64%, still

less than the FDR control level of 5%. In fact, several studies

published later than the WTCCC paper [17] also supported the

association of these three genes with T1D (INS [19–22], CALD1

[23,24], and PD-1 [25,26]).

WEI. To perform a WEI, in addition to the prior information

used for the PSA, a ratio of the two weights (r) was specified at 2,

5, and 10, respectively. In this T1D study, the proportion of SNPs

thought to be more likely true positives among all the SNPs was
�UU~

Pm
i~1 Ui

�
m~6914=459075~0:015. With a specified r, the

weight given to SNPs thought to be more likely true positives was

w1~r= 1z(r{1) �UU½ �, and that given to SNPs thought to be more

likely true negatives was w0~1= 1z(r{1) �UU½ �. The p values were

then weighted according to P�i ~Pi=Wi, where Pi and P�i were

respectively the original and weighted p values of the ith SNP,

and Wi[ w0,w1f g. We used the Benjamini and Hochberg’s

method [2] to control the FDR at 5%. When r was specified at

2, the WEI identified the same 12 genes as the WGA. When r was

specified at 5 or 10, the WEI identified one more gene – INS (see

Table 1).

Discussion

The PSA and the WEI both require prior knowledge to boost

the power of detecting signals. Prior knowledge can be collected

from previous independent studies that were not based on the

same data of the current working study. It should be searched before

seeing the analysis results of the individual tests in the current

study. Both the PSA and the WEI have caught much attention in

the era of high-throughput genomics, for their improvement on

the FDR control. With the advancement of biological technolo-

gies, we now can obtain substantial genomic data with decreasing

costs. To facilitate discoveries from more and more hypothesis

tests, clarifying the merits and limitations of the PSA and the WEI

is important.

The PSA and the WEI both can increase power when the prior

is informative. As shown in our simulation, the PSA can especially

create substantial power improvements given accurate and precise

prioritization. When researchers fail to prioritize some true disease

loci, the power loss of the PSA and the WEI is almost negligible.

Like the WGA, the WEI has a solid theoretical background [10]

and a good ability to control the FDR at the desired level (Figures 1

and 2).

Although the PSA can increase much power when the prior is

informative, its overall FDR can be slightly inflated if the

prioritization is not accurate and precise. In our simulation, the

overall FDR of the PSA was obtained by the mean ratio of the

number of total false rejections from the two subsets to the number of

total rejections from the two subsets, based on 15,000 replications.

Because the Benjamini and Hochberg’s FDR controlling [2] is

applied to the prioritized and the non-prioritized subsets respectively,

the overall FDR of the PSA is not guaranteed to be controlled at the

desired level even when the numbers of SNPs in the two subsets

Table 1. Results of the T1D data set.

Gene1 Chromosome Bonferroni2
WGA,
WEI (r = 2)

WEI
(r = 5, 10) PSA WTCCC SNP3 Genotypic P value4

Supported by
later studies5

HLA* 6p21 V V V V rs9272346 5:47|10{134 [32–34]

PTPN22* 1p13 V V V V rs6679677 5:43|10{26 [22,35–49]

SH2B3 12q24 V V V V rs17696736 1:51|10{14 [50]

ERBB3 12q13 V V V V rs11171739 9:71|10{11 [51]

KIAA0350 16p13 V V V V rs12708716 4:92|10{7 [52,53]

CD69 12p13 V V V rs11052552 7:24|10{7 [54]

ADAD1 4q27 V V V rs17388568 3:27|10{6 [55–57]

NeuroD* 2q32 V V V rs10206282 7:89|10{6 [58,59]

CTLA4* 2q33 V V V rs231726 1:78|10{5 [19,60–63]

CCR3 3p21 V V V rs2157057 2:20|10{5 [64]

IL-10* 1q31–q32 V V V rs12061474 2:66|10{5 [65–70]

IL2RA* 10p15–p14 V V V rs2104286 4:32|10{5 [71–76]

INS* 11p15 V V rs6578252 2:82|10{4 [19–22]

CALD1* 7q33 V rs2250603 9:53|10{4 [23,24]

PD-1* 2q37 V rs10192057 2:59|10{3 [25,26]

Number of significant genes 5 12 13 15

1 *: being allocated in the prioritized subset.
2V: significant.
3The WTCCC SNP showing the strongest association evidence in that region.
4The p value of the genotypic test of the WTCCC SNP showing the strongest association evidence in that region.
5That association signal is supported by later studies that have NOT been selected as our prior information (in Table 2).
doi:10.1371/journal.pone.0033716.t001
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are both large enough. For example, when 22 20-Mb regions (not

precise) were prioritized, the overall FDRs of the PSA were inflated

under Scenarios (i)–(iv) (not accurate) despite ,49,000 SNPs in the

prioritized subset and ,265,000 SNPs in the non-prioritized

subset. This is because when the prioritization is not accurate and

precise, the number of true positives from the prioritized subset

can be small (or the number of false positives can be large). This

can inflate the overall FDR of the PSA.

There is no stringent criterion for the sizes of prioritized regions,

when prioritizing SNPs according to prior information. Given a

linkage peak or an association signal based on prior studies,

prioritizing a narrow region may miss the true disease loci and lose

the accuracy, while prioritizing a wide region may lose the

precision. It is not easy to conclude how wide a region should be

prioritized. Although the determination for a region size is

somewhat ad hoc, a general principle is to estimate the

permutation-based FDR [18] after performing the PSA. This

can empirically evaluate whether the FDR within each subset is

well controlled.

The WEI can be equipped with ‘general weighting scheme’,

although we only evaluated the ‘binary weighting scheme’ for its

parallel comparison with the PSA. For the general weighting

scheme, each test is assigned a specific weight, not only either w1

or w0. In this way, the WEI is more flexible than the PSA in the

sense that the weights can be assigned in a continuous scale. To

mimic this flexibility, the PSA can extend its original concept to

allocate SNPs into more than two subsets. However, this will

inevitably increase the possibility of unsatisfactory FDR control.

In addition to conventional GWAS, weighting tests can provide

insights to rare variant detection. In the past several years, GWAS

have identified hundreds of common genetic variants (minor allele

frequency (MAF).5%) for complex human diseases [27]. However,

these common variants can only explain a small proportion of

heritability. The field of genetic epidemiology is shifting toward the

study of low-frequency (MAF 1%–5%) and rare variants

(MAF,1%), which are thought to have larger effect sizes than

common variants [28]. Unfortunately, rare variants are difficult to

detect due to their low frequencies. Recently, a weighted-Holm

procedure was shown to substantially improve the power of

detecting rare variants with large genetic effects [29]. Furthermore,

a study has shown that low-frequency variants can be identified by

up-weighting SNPs with lower MAFs and then performing the FDR

control [30]. Appropriately weighting genetic variants according to

their MAFs can facilitate the detection of rare variants. Applying the

PSA and the WEI to this topic deserves further investigation.

Supporting Information

Supporting Information S1 FDR of the WGA, the PSA,
and the WEI (r = 2, 5, 10) when the prioritized region
sizes were 2 Mb and 20 Mb (with adjustment to the
PSA), respectively; power comparison between the WGA,
the PSA, and the WEI (r = 2, 5, 10) when 14 2-Mb, 14 20-
Mb, 22 2-Mb, and 22 20-Mb regions were prioritized
(with adjustment to the PSA), respectively.

(DOC)

Table 2. Prior knowledge: genes that are previously reported to be associated with type 1 diabetes.

Gene Chromosome Start base pair1 End base pair1 Publications prior to the WTCCC paper

PTPN22 1 114356433 114414381 [77–79]

IL-10 1 206940947 206945839 [80]

IL1R1 2 102681004 102744178 [81]

NeuroD 2 182537815 182545603 [82]

CD28 2 204571198 204738683 [83]

CTLA4 2 204732509 204738683 [83–90]

SLC11A12 2 219246752 219261617 [91,92]

PD-1 2 242792033 242801060 [93]

DBP 4 72607410 72669758 [94]

MIC-A 6 31367561 31433586 [95]

HLA-DRB1 6 32546546 32557625 [96,97]

HLA-DQA1 6 32595956 32714992 [97]

HLA-DQB1 6 32627244 32731330 [97]

SUMO4 6 149721495 149722182 [98]

MTH1 7 2281857 2291004 [99]

CALD1 7 134429003 134655480 [100]

IL2RA 10 6052652 6104333 [101]

INS 11 2181009 2182571 [102,103]

IL-18 11 112013974 112034840 [85,104]

VDR 12 48235320 48336831 [105–107]

OAS 12 113344582 113369991 [108]

HSD11B2 16 67465036 67471456 [109]

ICAM-1 19 10381517 10397291 [110,111]

1The physical positions were obtained from the Gene Location website (http://genecards.weizmann.ac.il/geneloc/index.shtml).
2Other aliases: LSH, NRAMP, NRAMP1.
doi:10.1371/journal.pone.0033716.t002
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