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Objectives: To develop and validate a radiomics model based on multimodal MRI
combining clinical information for preoperative distinguishing concurrent endometrial
carcinoma (CEC) from atypical endometrial hyperplasia (AEH).

Materials and Methods: A total of 122 patients (78 AEH and 44 CEC) who underwent
preoperative MRI were enrolled in this retrospective study. Radiomics features were
extracted based on T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and
apparent diffusion coefficient (ADC) maps. After feature reduction by minimum
redundancy maximum relevance and least absolute shrinkage and selection operator
algorithm, single-modal and multimodal radiomics signatures, clinical model, and
radiomics-clinical model were constructed using logistic regression. Receiver operating
characteristic (ROC) analysis, calibration curves, and decision curve analysis were used to
assess the models.

Results: The combined radiomics signature of T2WI, DWI, and ADCmaps showed better
discrimination ability than either alone. The radiomics-clinical model consisting of
multimodal radiomics features, endometrial thickness >11mm, and nulliparity status
achieved the highest area under the ROC curve (AUC) of 0.932 (95% confidential
interval [CI]: 0.880-0.984), bootstrap corrected AUC of 0.922 in the training set, and
AUC of 0.942 (95% CI: 0.852-1.000) in the validation set. Subgroup analysis further
revealed that this model performed well for patients with preoperative endometrial biopsy
consistent and inconsistent with postoperative pathologic data (consistent group, F1-
score = 0.865; inconsistent group, F1-score = 0.900).
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Conclusions: The radiomics model, which incorporates multimodal MRI and clinical
information, might be used to preoperatively differentiate CEC from AEH, especially for
patients with under- or over-estimated preoperative endometrial biopsy.
Keywords: radiomics, magnetic resonance imaging, endometrial hyperplasia, endometrial neoplasms,
texture analysis
1 INTRODUCTION

Atypical endometrial hyperplasia (AEH), also known as
endometrial intraepithelial neoplasia, is considered a direct
precursor of endometrial carcinoma (EC). Approximately 40%
of AEH will proceed to EC within 12 months of onset (1, 2). In
addition, previous studies have found that 37%-43% of AEH
patients who undergo hysterectomy are diagnosed with
concurrent endometrial carcinoma (CEC) on final pathology
(3, 4).

Given the high risk of progression and CEC, the recommended
treatment of AEH is total hysterectomy (with bilateral salpingo-
oophorectomy when possible) in women who do not desire
pregnancy. In contrast, non-surgical management may be
appropriate for patients who plan on becoming pregnant in the
future or those with comorbidities precluding surgical
management (5). Previous studies have suggested that up to
12% of CEC patients suffer from high-grade tumors with deep
myometrial invasion and have a 3-7% risk of lymph node
involvement (6–9). Therefore, besides hysterectomy with
bilateral salpingo-oophorectomy, a proportion of CEC patients
may benefit from lymph node assessment as a guide to adjuvant
therapy (10, 11). However, it is impossible to perform sentinel
lymph node (SLN) mapping after hysterectomy due to disruption
of the lymphatic channels originating from the uterine corpus and
cervix during operation. Hence, an accurate preoperative diagnosis
of AEH or CEC is crucial for selecting candidates for proper
surgery or conservative treatment.

A primary diagnosis of AEH is usually made using dilation
and curettage, hysteroscopy-guided biopsy, or hysteroscopic
endometrial resection. Yet, these methods may fail to provide
adequate tissue and lead to an improper diagnosis (12). Recent
evidence suggested that non-invasive imaging tools may promote
an accurate pre-treatment assessment of endometrial changes
and optimize treatment planning (13). Magnetic resonance
imaging (MRI) is a routine imaging modality used for the
high-resolution evaluation of endometrial pathologies.
Compared to conventional MRI, which has a relatively weak
predictive value of CEC in patients with AEH (14, 15), the
hyperplasia; ADC, Apparent diffusion
operating characteristic curve; CEC,
I, Diffusion-weighted imaging; EC,
rial thickness; GLDM, Gray level
l size zone matrix; ICC, Intraclass
lute shrinkage and selection operator;
R, Minimum redundancy maximum
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apparent diffusion coefficient (ADC) can be used to distinguish
benign from malignant endometrial lesions (16). Still, so far, no
studies have reported on the value of ADC in differentiating CEC
from AEH.

Radiomics is a quantitative approach that extracts features
from medical images using data-characterization algorithms and
has been widely applied for differential diagnosis of cancers,
evaluating therapeutic effects, and predicting the recurrence,
metastasis, and survival time (17–19). A previous study used
18F-FDG PET/CT (positron emission tomography (PET) with 2-
deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG)) quantitative
parameters and texture analysis to distinguish CEC from AEH
effectively (20). However, to the best of our knowledge, no
research has determined whether an MRI-based radiomics
study can detect CEC in AEH patients.

Thus, this study aimed to develop and validate a multimodal
MRI-based radiomics-clinical model for detecting CEC fromAEH
before operation noninvasively. Also, we investigated the model
performance in patients with preoperative endometrial biopsy
consistent or inconsistent with postoperative pathological data.
2 MATERIAL AND METHODS

2.1 Patients
Our institutional ethics committee approved this study and
waived the informed consent from patients. We retrospectively
reviewed data of patients from our hospital database.

In total, 321 patients who underwent gynecological surgery
between January 2011 and December 2019 were pathologically
confirmed with AEH or stage IA CEC. Inclusion criteria were: 1)
AEH or stage IA CEC confirmed surgically and pathologically; 2)
pelvic MRI performed within 20 days prior to gynecological
surgery; 3) no tumor-related therapy received before MR
examination. Exclusion criteria were the following: 1) lacking
one of the following MRI sequences: sagittal T2-weighted
imaging (T2WI), axial diffusion-weighted imaging (DWI), or
the corresponding ADC map (n=3); 2) endometrium too thin
(maximum thickness less than 4mm) to be assessed on MRI
(n=10); 3) Poor image quality or obvious image artifacts affecting
the visualization of tumor (n=6); 4) incomplete clinical data
(n=5). Ultimately, MRI results of 122 patients (78 AEH and 44
CEC) were included in the study. The patients were divided into
a training set (87 patients) and an independent validation set (35
patients) according to the time of treatment. A pathologist (Y.S.)
with 20 years’ experience in gynecologic pathology reviewed
the pathological data. Figure 1 shows the flowchart of
patient enrollment.
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2.2 MRI Acquisition
All patients underwent conventional MR examination using 3.0T
MR scanners (Signa HDxt and Discovery HD750, GE Medical
System, Milwaukee, WI) with an eight-element phased-array
wrap-around surface coil. Patients received an intramuscular
inject ion of 10 mg raceanisodamine hydrochloride
approximately 10 minutes before MRI to reduce bowel
movement, excluding those with contraindications. The
following sequences were included: sagittal T2WI and axial
DWI. Diffusion gradients were applied in three orthogonal
directions with b values of 0 and 800 s/mm2, and DWI with b
value of 800 s/mm2 was involved in the analysis. ADCmaps were
manually generated from DWI on the post-processing
workstation (Advantage Workstation 4.6; GE Medical System).
Detailed sequence scanning parameters are shown in Table 1.

2.3 Clinical and Conventional
MR Assessment
The following clinical data were collected from medical records:
age, body mass index, menopausal status, childbearing history,
Frontiers in Oncology | www.frontiersin.org 3
history of metabolic syndrome or polycystic ovary syndrome,
history of endocrine therapy for breast cancer, blood serum
cancer antigen 125 and cancer antigen 19-9 level, and
preoperative pathological data.

Two radiologists (J.Z. and X.Y., with 6- and 18-years’
experience in gynecologic imaging, as Reader 1 and 2), who
were blinded to the medical records and pathological data,
independently measured endometrial stripe thickness on
sagittal T2-weighted images. The average values were taken.
Myometrial invasion [identified as interruption of the junction
zone (21)] using all MR images was also assessed. The
consistency between the two radiologists was evaluated by
calculating Cohen’s kappa coefficients. Discrepancies were
resolved by discussion until consensus was achieved.

2.4 Data Analysis
2.4.1 Tumor Segmentation and Feature Extraction
Segmentation of images of the volume of interest (VOI) covering
the whole tumor was performed using ITK-SNAP software
(version 3.8.0, www.itksnap.org). AEH lesions would typically be
FIGURE 1 | Flowchart of patient enrollment in this study.
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presented with intermediate signal intensity on T2WI, DWI, and
the ADC map compared with normal endometrium. Some
endometrial lesions would be detected as CEC if the lesion was
presented with isointense or slightly lower signal intensity on
T2WI, higher signal intensity on DWI, and a lower value on ADC
map compared with adjacent endometrium. In contrast, the
remaining CEC lesions could not be delineated. Representative
cases are presented in Figure S1. Each VOI was manually drawn
along the contour of the entire endometrium or tumor (with
visible tumor) slice-by-slice by Reader 1 on T2WI, DWI, and ADC
map. Hemorrhagic, necrotic, cystic areas, and adjacent normal
tissues were avoided using T1-weighted images and dynamic
contrast-enhanced images as references. With a 1-month
interval, the above procedure was repeated by Reader 1 and 2
independently. Each extracted feature’s inter- and intra-observer
agreements were determined by calculating the intraclass
correlation coefficients (ICC). Every case was then reviewed by
another radiologist (H.O., with 30-years’ experience in gynecologic
imaging) to ensure high-quality final segmentation results.

The feature extraction was realized using an open-source
Python package called Pyradiomics (22). Before feature
extraction, we applied image normalization in T2WI and DWI
sequences using the Pyradiomics normalization method by
centering it at the mean with standard deviation based on all
gray values in the image (not just those inside the segmentation),
thereby reducing the potential effects introduced by scanners,
scanning parameters, and protocols. Then we applied Z score
normalization to ensure that the radiomics features were
measured on the same scale. The radiomics features were
classified into three categories according to the feature
calculation method: (1) 14 shape-based features; (2) 18 first-
order statistical features; (3) 68 texture features, including gray
level co-occurrence matrix, gray level size zone matrix (GLSZM),
Frontiers in Oncology | www.frontiersin.org 4
gray level run length matrix, and gray level dependence matrix
(GLDM). Detailed radiomics features are listed in Table S1.

2.4.2 Radiomic Feature Selection and Analysis
Stability analysis of radiomic features between inter-/intra-
observer segmentations was first performed by removing
the radiomic features with low reproducibility (ICC < 0.75). The
remaining significant features were ranked using the minimum
redundancy maximum relevance (mRMR) algorithm.
Consequently, the top 10 features with low redundancy and
high relevance were obtained for the following analyses.

The least absolute shrinkage and selection operator (LASSO)
algorithm was applied to avoid overfitting. The 1-standard error
of the minimum criteria (the 1-SE criteria) was used to tune the
regularization parameter (l) and for feature selection using 10-
fold cross-validation. T2WI, DWI, and ADC radiomics scores
(T2WI-score, DWI-score, and ADC-score) were calculated for
each patient using a weighted linear combination of selected
features. Finally, a combined radiomics signature (Radscore)
was generated using logistic regression based on T2WI,
DWI, and ADC features. Figure 2 shows the workflow of
radiomic analysis.

2.4.3 Clinical and Radiomics-Clinical Model Building,
Discrimination, and Calibration
To select the optimal clinical parameters, the likelihood ratio test
with Akaike’s information criterion was applied as the stopping
rule for stepwise logistic regression analysis. The model with the
lowest Akaike’s information criterion score was selected as a
clinical model. Then, we developed a radiomics-clinical model
based on Radscore and the optimal clinical parameters using
multivariate logistic regression.
TABLE 1 | Detailed Sequences Scanning Parameters in Two MR Scanners.

Parameters Axial T1WI Axial T2WI SagittalT2WI Axial oblique T2WI AxialDWI Axial T1WI postcontrast

GE signa excite HD 3.0T
Technique FSE FS FSE FSE FSE SS-EPI 3D LAVA-XV
TR (ms)/TE (ms) 620/8.2 5900/121 4920/139.1 4900/131.5 4400/64.3 4.1/1.8
FOV (cm) 38 34 30 22 34 35
Matrix (phase × frequency) 320×224 320×256 320×256 320×256 256×256 350×350
Slice thickness (mm) 5 5 4 3 5 1
Slice gap 1 1 0.4 0 1 0
Average (NEX) 2 2 2 4 2 1
b-value (s/mm2) * – – – – 0, 800 –

GE Discovery HD750 3.0T
Technique LAVA-Flex FS FSE FSE FSE SS-EPI 3D LAVA-XV
TR (ms)/TE (ms) 4.2/1.3 4650/85.0 4220/125.4 5500/102.0 4000/56.1 7.9/4.1
FOV (cm) 38 34 30 22 34 35
Matrix (phase × frequency) 320×224 320×256 320×256 320×256 128×128 350×350
Slice thickness (mm) 3 5 4 3 5 1
Slice gap 0 1 0.4 0 1 0
Average (NEX) 1 2 2 4 2 1
b-value (s/mm2) * – – – – 0, 800 –
May 2022 | V
*ADC maps were calculated voxel by voxel with the monoexponential model using the formula: ADC = In (S0/S800)/(b800−b0)
where S800 and S0 are the signal intensities with and without a diffusion gradient, respectively.
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; FS, fat suppression; FSE, fast-recovery fast spin-echo; DWI, diffusion-weighted imaging; SS-EPI, single-shot echo-planar
imaging; LAVA-Flex, liver acquisition with volume acceleration; LAVA-XV, liver acquisition with volume acceleration-extended volume; TR, repetition time; TE, echo time; FOV, field of view;
NEX, number of excitations.
olume 12 | Article 887546
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2.5 Statistical Analysis
Statistical analyses were performed using R software (version 4.0.3;
http://www.Rproject.org). Differences between groups were
assessed using t-tests or Mann-Whitney U tests for continuous
variables; Chi-square test or Fisher’s exact test were applied for
categorical variables. Receiver operating characteristic (ROC)
curves were used to display and evaluate model performance.
The area under the ROC curves (AUC), sensitivity, specificity,
accuracy, and F1-score were used for evaluating the model
performance. F1-score assumes that recall [equivalently,
sensitivity, TP/(TP+FN)] and precision [equivalently, positive
predictive value (PPV), TP/(TP+FP)] are of equal importance,
where TP, FN, and FP represent true positive, false negative, and
false positive, respectively. The higher F1-score synthetically
reflects higher sensitivity and higher PPV. The formula for F1-
score is as follows:

F1 − score  =  
2Precison� Recall
Precison + Recall

DeLong’s test was used to compare the AUC of each model.
Calibration curves and the Hosmer-Lemeshow test were used
to assess the goodness of fit of the models. Decision curve
analysis (DCA) was conducted to estimate the clinical
usefulness of the models by calculating the net benefits at
different values of threshold probability. Model internal
validation in the training set was performed using the
enhanced bootstrap resampling method (n=1000), which
obtained the estimates of optimism in the regression models
to provide a bias-corrected AUC value through a Somers’ D rank
correlation metric whereby AUC = (1 + Somers’ D)/2. A p < 0.05
was considered statistically significant.
Frontiers in Oncology | www.frontiersin.org 5
3 RESULTS

3.1 Patient Characteristics
One hundred and twenty-two patients were enrolled in our
study, including 78 AEH and 44 CEC patients. Baseline
patients’ characteristics and preoperative biopsy results in the
training and validation sets are summarized in Table 2.

Based on the median, endometrial thickness (ET) was divided
into ≤11mm and <11mm groups. Detailed information on ET in
the subgroups (according to menopausal status and parity) of
AEH and CEC patients is shown in Table S2. The consistency
between the two radiologists was good to excellent in the
evaluation of myometrial invasion (Kappa value=0.781) and
measurement of ET (ICC = 0.908). In total, 29 (23.7%)
patients (18 AEH and 11 CEC) had conflicting results between
preoperative biopsy and postoperative pathology. Three (6.8%)
patients in the CEC group had intermediate-risk EC (2 with non-
endometrioid EC and 1 with high-grade tumor), and the
remaining had low-risk EC, according to the 2021 ESGO/
ESTRO/ESP guidelines for EC management (23).

3.2 Radiomics Signature Analysis
We extracted 300 features from the T2WI, DWI, and ADC maps
of each VOI and reduced them to 283 by stability analysis. For
T2WI, DWI, and ADC radiomics signature, the 7, 3, and 1 most
relevant features were selected using the variable selection
algorithm, respectively. Then, we determined the 5 top features
consisting of 3 from T2WI, 1 from DWI, and 1 from ADC maps
to build the combined radiomics signature (Table 3).

T2WI-score, DWI-score, ADC-score, and Radscore,
calculated as the linear combination of these features with
A B D EC

FIGURE 2 | Workflow of radiomic analysis. (A) MR imaging segmentation. Three-dimensional (3D) segmentation of tumors in MR images. (B) Radiomic feature
extraction. Radiomic features, including shape, intensity, and texture, were extracted from the tumor volume. (C) Feature selection process. The stability analysis, the
minimum redundancy maximum relevance (mRMR), and the least absolute shrinkage and selection operator (LASSO) algorithm were used for the radiomic feature
selection. (D) Model construction. Radiomics signatures were constructed using a binary logistic regression model. Finally, a nomogram for the optimal model was
developed. (E) Model assessment. The performances of our models were evaluated by discrimination, calibration, and clinical utility, as well as subgroup analysis.
VOI, volume of interest; GLCM, gray level co-occurrence matrix; GLSZM, gray level size zone matrix; GLRLM, gray level run length matrix; GLDM, gray level
dependence matrix.
May 2022 | Volume 12 | Article 887546
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coefficients of the logistic regression model, were all significantly
higher in the CEC group than the AEH group in the training set
Frontiers in Oncology | www.frontiersin.org 6
(all p < 0.001; Figure S2). The combined radiomics signature
achieved the highest AUC of 0.920 and bootstrap corrected AUC
of 0.892 in the training set and was then confirmed in the
validation set with an AUC of 0.942 (Table 4). As shown in
Figures 3A, B, Delong’s test demonstrated statistical differences
in AUC values between the combined and DWI radiomics
signature (p = 0.030) in the validation set. The mathematical
formula used to calculate radiomics scores is shown in
Method S1.

3.3 Clinical and Radiomics-Clinical Model
Construction and Performance
Assessment
In the clinical model, two parameters were independently associated
with CEC in AEH patients, including the status of nulliparity (odds
ratio [OR]: 7.082; 95% confidence interval [CI]: 1.159-43.288; p =
0.034) and ET>11mm (OR: 4.148, 95%CI: 1.553-11.073; p = 0.005).
These two parameters, along with Radscore, were used to build the
radiomics-clinical model. Nomogram (Figure 3E) was established
for this model. The auto- and cross-correlations of selected features
in the radiomics-clinical model derived from the training set are
shown in Figure S3.

The clinical model showed moderate performance with AUC
of 0.695 and 0.641, which was significantly improved by the
radiomics-clinical model to 0.932 and 0.942 in the training and
validation sets, respectively (Delong’s test, p < 0.001;
Figures 3C, D). There was no significant difference between
TABLE 3 | Features of T2WI, DWI, ADC, and Combined Radiomics Signatures.

Feature Name Coefficients

T2WI Radiomics Signature
Intercept -1.252
glszm_SizeZoneNonUniformityNormalized -0.850
glszm_SmallAreaLowGrayLevelEmphasis 0.397
firstorder_10Percentile 0.054
shape_Maximum2DDiameterSlice -0.871
shape_Flatness 0.769
firstorder_Skewness 1.100
gldm_LargeDependenceLowGrayLevelEmphasis 0.604
DWI Radiomics Signature
Intercept -0.777
shape_Maximum2DDiameterRow -0.444
firstorder_Kurtosis -0.740
shape_Flatness 0.678
ADC Radiomics Signature
Intercept -0.920
firstorder_10Percentile -1.595
Combined Radiomics Signature
Intercept -1.235
T2WI_shape_Maximum2DDiameterSlice -0.773
T2WI_gldm_LargeDependenceLowGrayLevelEmphasis 0.750
DWI_shape_Flatness 0.585
T2WI_firstorder_Skewness -1.472
ADC_firstorder_10Percentile 0.529
TABLE 2 | Baseline Characteristics of Patients in the Training and Validation sets.

Characteristics Training Set (n=87) Validation Set (n=35) p# value

AEH (n=57) CEC (n=30) p value AEH (n=21) CEC (n=14) p value

Age, years, mean ± SD 46.7 ± 4.9 46.7 ± 7.1 0.982 47.1 ± 5.2 48.2 ± 5.5 0.564 0.427
BMI, kg/m2† 0.610 0.697 0.752
≤24.9 26 (45.6) 11 (36.7) 12 (57.1) 7 (50.0)
25~29.9 22 (38.6) 12 (40.0) 6 (28.6) 6 (42.9)
≥30 9 (15.8) 7 (23.3) 3 (14.3) 1 (7.1)
Menopausal Status† 0.377 0.721 0.148
Premenopausal 45 (78.9) 26 (86.7) 15 (71.4) 9 (64.3)
Postmenopausal 12 (21.1) 4 (13.3) 6 (21.1) 4 (35.7)
Nulliparity† 2 (3.5) 5 (16.7) 0.045* 1(4.8) 3 (21.4) 0.279 0.727
CA125 (+) 5 (8.8) 5 (16.7) 0.303 0 (0.0) 1 (7.1) 0.400 0.175
CA19-9 (+) 2 (3.5) 3 (10.0) 0.335 0 (0.0) 1 (7.1) 0.400 0.672
Diabetes 3 (5.3) 1 (3.3) 1.000 1 (4.8) 0 (0.0) 1.000 1.000
PCOS 0 (0.0) 1 (3.3) 0.345 0 (0.0) 1 (7.1) 0.400 0.493
History of endocrine therapy† 1 (1.8) 1 (3.3) 1.000 0 (0.0) 2 (14.3) 0.153 0.578
Endometrial Thickness† 0.005* 0.296 0.842
≤11mm 37 (64.9) 10 (33.3) 14 (66.7) 6 (42.9)
>11mm 20 (35.1) 20 (66.7) 7 (33.3) 8 (57.1)
Myometrial invasion† 0.126 0.685 0.295
No 51 (89.5) 23 (76.7) 17 (81.0%) 10 (71.4%)
Yes 6 (10.5) 7 (23.3) 4(19.0%) 4(28.6%)
Preoperative Endometrial biopsy† <0.001* 0.002* 0.360
Hyperplasia without atypia 8 (14.0) 0 (0.0) 1 (4.8) 0 (0.0)
Atypical hyperplasia 42 (73.7) 6 (20.0) 18 (85.7) 5 (35.7)
Cancer 7 (12.3) 24 (80.0) 2 (9.5) 9 (64.3)
May 2022 | Volume 12 | Articl
†Data in parentheses are percentages.
*p < 0.05.
p# value represents the comparison between training and validation sets.
AEH, atypical endometrial hyperplasia; CEC, concurrent endometrial carcinoma; BMI, body mass index; CA125, cancer antigen 125; CA19-9, cancer antigen 19-9; PCOS, polycystic
ovary syndrome.
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the AUC of the combined radiomics signature and radiomics-
clinical model in the training and validation sets (Delong’s test,
p<0.05). Calibration curves showed good fitness for the
radiomics-clinical model (Hosmer-Lemeshow test, p = 0.933 in
the training set, 0.400 in the validation sets) (Figures 4A, B). The
patients’ risk scores, indicating the models’ high classification
ability, are shown in Figures 4C, D. DCA of the models is shown
in Figure 5.

As shown in Figure 6A, in the subgroup of patients with
preoperative endometrial biopsy inconsistent (under- or over-
estimated) with postoperative pathology, the combined
radiomics signature and radiomics-clinical model achieved the
highest sensitivity and NPV of 1.000, with an AUC of 0.955 and
0.934, respectively. The F1-score of the two subgroups is shown
in Figure 6B. The radiomics-clinical model showed good
potency among the six classification models (consistent group,
F1-score = 0.865; inconsistent group, F1-score = 0.900), while the
combined radiomics signature performed even better in patients
with inconsistent biopsy results (F1-score = 0.923).
4 DISCUSSION

In this study, we developed a multimodal MRI-based radiomics-
clinical model for preoperative differentiation of CEC from AEH.
The model consisting of radiomics features and clinical data (ET
>11mm and nulliparity status) demonstrated the best
discrimination ability and goodness of fit. Moreover, in patients
with under- or over-estimated preoperative biopsy results, the
sensitivity and NPV were greatly improved after applying the
model with relatively high PPV. Furthermore, despite differences
in the MR scanners among various subjects, the radiomics-clinical
model revealed an excellent capacity for detecting CEC from AEH
in the internal validation, with a bootstrap corrected AUC of 0.922
in the training set and AUC of 0.942 in the validation set, thus
surpassing other models.

Previous studies (24–27) showed that AEH and EC shared
common predisposing risk factors, such as age, postmenopausal
status, nulliparity, obesity, diabetes, PCOS, and long-term
tamoxifen therapy. Liakou et al. (14) found that myometrial
Frontiers in Oncology | www.frontiersin.org 7
invasion on conventional MRI was associated with increased
CEC risk for AEH patients; nevertheless, the sensitivity and
specificity of MRI in identifying cancer were poor (37% and 89%,
respectively). In the current study, we adopted the aforementioned
clinical parameters into our clinical predictive model. Nulliparity
and ET >11mm observed on conventional MRI were found to be
independently associated with the differentiation of CEC from
AEH. Nulliparity is an established risk factor for endometrial
cancer, and each pregnancy provides an additional risk reduction
(28). The study of ET as a predictive factor for endometrial
pathology with abnormal uterine bleeding is a debated topic with
conflicting results, especially in premenopausal patients, since its
predictive performance is affected by menstrual cycle phases. Vetter
et al. (29) demonstrated that ET >2cm on preoperative transvaginal
ultrasound was associated with increased odds of CEC in AEH
patients while controlling for age. Wise et al. (30) proved a strong
association between ET > 11 mm and AEH/EC in premenopausal
women. Based on the median, we found that the same ET cut-off
value (>11 mm) on MRI was associated with CEC in AEH patients
in the current study. Moreover, our study produced consistent
results that a higher proportion of CEC than AEH patients had an
ET >11mm in different subgroups based on menopausal status and
parity. However, the clinical model’s performance was
unsatisfactory, especially for patients with inconsistent
preoperative biopsy results.

Next, we constructed radiomics signatures based on different
MRI images (T2WI, DWI, and ADC maps). T2WI radiomics
signature performed better for categorizing CEC and AEH than
DWI. A reasonable explanation could be that T2WI is the critical
conventional sequence of non-enhanced MRI in diagnosing
endometrial diseases, providing detailed anatomical
characteristics with high contrast and spatial resolution. On
T2WI, AEH usually has a similar signal intensity with that of
the normal endometrium, while EC shows intermediate-low signal
intensity relative to hyperintense normal endometrium (21, 31). In
this study, multiple T2WI radiomic features were selected in the
T2WI radiomics signature, such as tumor shape, intensity, and
gray level texture features (from GLSZM and GLDM), reflecting
different aspects of intratumor heterogeneity and thus improving
the discriminative ability of CEC and AEH.
TABLE 4 | Performances of Different Models in the Training and Validation Sets.

Model Data sets AUC 95%CI Bootstrap Corrected AUC Sensitivity Specificity Accuracy F1-score

T2WI Radiomics Training Set 0.887 0.818-0.956 0.838 0.930 0.720 0.790 0.843
Validation Set 0.895 0.778-1.000 NA 0.929 0.857 0.886 0.897

DWI Radiomics Training Set 0.785 0.688-0.883 0.752 0.900 0.600 0.700 0.781
Validation Set 0.735 0.566-0.903 NA 0.500 0.904 0.743 0.627

ADC Radiomics Training Set 0.833 0.741-0.925 0.832 0.870 0.720 0.770 0.807
Validation Set 0.854 0.729-0.979 NA 0.643 0.905 0.800 0.739

Combined Radiomics Training Set 0.920 0.865-0.974 0.892 0.900 0.810 0.840 0.860
Validation Set 0.942 0.857-1.000 NA 0.857 0.952 0.914 0.900

Clinical Model Training Set 0.708 0.588-0.827 0.687 0.730 0.670 0.690 0.692
Validation Set 0.641 0.448-0.834 NA 0.571 0.667 0.629 0.600

Clinical-Radiomics Model Training Set 0.932 0.880-0.984 0.922 0.870 0.880 0.870 0.871
Validation Set 0.942 0.852-1.000 NA 0.857 1.000 0.943 0.923
May 2022 | Vo
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ACC, accuracy; AUC, area under the receiver operating characteristic curve; CI, confidence interval; NA, not applicable.
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CEC patients tend to have small tumors that may not be
associated with endometrial thickening or have a signal intensity
similar to that of the normal endometrium. In those cases,
functional sequences, such as DWI, can be beneficial. A high
b-value makes images more sensitive to water diffusion, thus
increasing contrast enhancement between normal and cancerous
tissue (32). Therefore, the presence of restricted diffusion on
DWI within thickened endometrium will raise suspicion for the
existence of EC. This study included only first-order statistics
(Kurtosis) and shape-based features (Maximum 2D Diameter
Row, Flatness) in the DWI radiomics signature. No other texture
features were highly correlated to the classification task, probably
due to its relatively poor spatial resolution. Flatness was included
in both T2WI and DWI radiomics signatures, disillusioning
Frontiers in Oncology | www.frontiersin.org 8
largest from smallest principal components in the VOI shape,
with a value range between 1 (non-flat, sphere-like) and 0 (a flat
object, or single-slice segmentation). Flatness may provide
information as complementation for ET in detecting small-size
CEC from AEH.

Numerous studies have reported that ADC measurements
(without confounding T1 or T2 effects of DWI signal) could be
used as additional tools for differentiating between benign and
malignant conditions (19, 33, 34). Moharamzad et al. (35)
performed a meta-analysis and concluded that the combined
sensitivity and specificity of mean ADC values for differentiating
EC from benign lesions were 93% and 94%, respectively. Chen
et al. (36) developed an MRI-based radiomics model including
ADC_10Percentile for distinguishing EC from its benign mimics.
A B

D

E

C

FIGURE 3 | ROCs of the four radiomics signatures in the training (A) and validation (B) sets. ROCs of the clinical model, radiomics signature, and radiomics-clinical
model in the training (C) and validation sets (D). (E) Preoperative nomogram of the radiomics-clinical model. ET, endometrial thickness.
May 2022 | Volume 12 | Article 887546

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics Differentiates CEC From AEH
Furthermore, Yan and colleagues (37) selected ADC_10Percentile
as the only component of ADC radiomics signature in developing
a radiomic nomogram predicting high-risk EC preoperatively.
Similarly, we found that ADC_10Percentile may further promote
the differentiation of CEC from AEH, compared to mean ADC
values. A possible explanation is that lower percentiles of ADC
may better represent aggressive solid components within
CEC (38).
Frontiers in Oncology | www.frontiersin.org 9
Finally, we discovered that a combined radiomics signature and
radiomics-clinical model obtained more precise and
comprehensive information about the tumors and yielded better
diagnostic performance in the classification tasks than single-
modal signatures. In clinical practice, it commonly happens that
endometrial sampling is not possible (usually due to cervical
stenosis) or the histopathology results are inconclusive or
inconsistent with the clinical suspicion. Our study proved that
A B

DC

FIGURE 4 | The calibration plots of the radiomics-clinical model in the training (A) and validation sets (B). Patient risk scores output by the radiomics-clinical model
in the training (C) and validation sets (D), while orange bars show scores for those who have concurrent endometrial carcinoma.
FIGURE 5 | Decision curve analysis for the models in the validation set. It can be concluded that when the threshold probability is over 30% approximately, the
radiomics-clinical model could provide extra profits over the “treat-all” or “treat-none” scheme, the combined radiomics signature, and the clinical model.
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the combined radiomics signature and radiomics-clinical models
performed fairly well, especially for patients with preoperative
endometrial biopsy inconsistent with postoperative pathologic
data, thus indicating the supplementary value of MRI-based
radiomics to preoperative endometrial biopsy.

Accurate preoperative prediction of the presence of CEC in
AEH patients is vital for making proper personalized treatment
decisions and assessing the prognosis of patients. Previous studies
exploring the risk of CEC in patients with AEH have mainly
focused on examining clinical factors such as sampling methods
and histologic characteristics of AEH (39, 40). For the first time,
we have developed and validated a multimodal MRI-based
radiomics-clinical model for evaluating tumor heterogeneity and
thus detecting CEC from AEH preoperatively. Strengths of this
study include final pathology review at a single institution and the
inclusion of clinical data as well as objective quantitative
parameter (Radscore) to better predict the risk of underlying
cancer at the time of hysterectomy for AEH. Knowledge of
lymph node status in EC patients would allow a more tailored
recommendation for postoperative therapy or surveillance. More
recently, SLN mapping has been introduced into the surgical
management of EC to obtain adequate nodal status information
with a reduction in lymphadenectomy-related morbidity (such as
lymphedema and lymphocele) (41). It is essential to know that the
ability to perform SLN mapping in EC depends on intact
lymphatic channels, and it cannot be performed after
hysterectomy (29). AEH patients diagnosed with high-risk EC at
the time of hysterectomy alone would then subsequently require a
full lymphadenectomy. Therefore, for AEH patients with a high
risk of CEC evaluated by our preoperative radiomics-clinical
model, SLN mapping during hysterectomy should be considered.

The present study has some limitations. First, this was a
retrospective study conducted at a single center and with a
Frontiers in Oncology | www.frontiersin.org 10
relatively small sample size. We have to acknowledge that
despite the results of this study being promising, further
investigation with larger study cohorts is necessary to validate
our preliminary study. Second, AEH could not be accurately
contoured with s imilar s ignal intensi ty to normal
endometrium, while some CEC lesions could be detected on
multimodal MR images (we contoured the visible tumor as
VOIs in these cases). The bias introduced by inconsistency in
VOI drawing was inevitable; however, it reflected the “real
world” of routine diagnostic work. It was minimized by
consulting another experienced radiologist in our study.
Third, although we excluded patients with ET<4mm in this
study because of the limitation of visual evaluation, the risk of
developing CEC was relatively low in both pre- and post-
menopausal women (42, 43). Finally, genomic information
was not yet obtained and incorporated into our models. A
combination of gene marker panels and radiomic features could
have an extraordinary impact on the management of AEH in
future studies.

To sum up, this new diagnostic model incorporating
multimodal MRI-based radiomics and clinical information
may be used to distinguish CEC from AEH noninvasively and
effectively before the operation, especially for patients with
under- or over-estimated preoperative endometrial biopsy.
Nevertheless, a multicenter study with a larger dataset is
needed to further validate our models’ reproducibility
and generalizability.
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