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Background: Due to nonspecific symptoms, rare dyslipidaemias are frequently

misdiagnosed, overlooked, and undertreated, leading to increased risk for severe

cardiovascular disease, pancreatitis and/ormultiple organ failures before diagnosis.

Better guidelines for the recognition and early diagnosis of rare dyslipidaemias are

urgently required.

Methods:Genomic DNAwas isolated from blood samples of a Pakistani paediatric

patient with hypertriglyceridemia, and from his parents and siblings. Next-

generation sequencing (NGS) was performed, and an expanded dyslipidaemia

panel was employed for genetic analysis.

Results: The NGS revealed the presence of a homozygous missense pathogenic

variant c.230G>A (NM_178172.6) in exon 3 of the GPIHBP1

(glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein

1) gene resulting in amino acid change p.Cys77Tyr (NP_835466.2). The patient

was 5.5 years old at the time of genetic diagnosis. The maximal total cholesterol

and triglyceride levels were measured at the age of 10months (850.7mg/dl,

22.0mmol/L and 5,137mg/dl, 58.0mmol/L, respectively). The patient had

cholesterol deposits at the hard palate, eruptive xanthomas, lethargy, poor

appetite, and mild splenomegaly. Both parents and sister were heterozygous for

the familial variant in the GPIHBP1 gene. Moreover, in the systematic review, we

present 62 patients with pathogenic variants in the GPIHBP1 gene and clinical

findings, associated with hyperlipoproteinemia.

Conclusion: In a child with severe hypertriglyceridemia, we identified a pathogenic

variant in the GPIHBP1 gene causing hyperlipoproteinemia (type 1D). In cases of

severe elevations of plasma cholesterol and/or triglycerides genetic testing for rare
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dyslipidaemias should be performed as soon as possible for optimal therapy and

patient management.
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Introduction

Affecting 15–20% of the population (Parhofer and Laufs,

2019; Basit et al., 2020), hypertriglyceridemia has been

associated with an increased risk for pancreatitis

(Carrasquilla et al.; Simha, 2020; Álvarez-López et al.,

2021). In adults with severe hypertriglyceridemia only up

to 2% of the cases could be explained by a monogenic

variant in genes involved in triglyceride (TG) metabolism

(Hegele et al., 2020). Polygenic variants of smaller effects

combined with environmental factors are considered a

primary cause of hypertriglyceridemia. Secondary causes

include diabetes mellitus, metabolic syndrome, alcohol and

commonly used drugs (Simha, 2020).

Hypertriglyceridemia is defined as fasting triglyceride

(TG) levels over 2 mmol/L (180 mg/dl), whereas in severe

hypertriglyceridemia fasting TG levels exceed 10 mmol/L

(885 mg/dl) (Hegele et al., 2020). Patients with the most

severe phenotypes start expressing clinical symptoms at a

younger age, usually have serum TG levels above

11.3 mmol/L (1000 mg/dl), and in some cases also have

abdominal pain related to acute pancreatitis,

hepatosplenomegaly, lipemia retinalis, and eruptive

xanthomata already in childhood (Gonzaga-Jauregui et al.,

2014; Brown et al., 2020; Hegele et al., 2020).

Lipoprotein lipase (LPL) mediates the hydrolysis of

triglycerides packed in lipoproteins such as chylomicrons

and very-low-density lipoprotein (VLDL) (Wu et al.,

2021). Many factors interact with LPL affecting TG

metabolism. Dysfunction of LPL and other factors

interacting with LPL may lead to hypertriglyceridemia (Liu

et al., 2018). Besides LPL there are other genes involved in the

LPL-mediated lipolysis of chylomicrons and VLDL:

ANGPTL4 (angiopoietin-like 4), APOC2 (apoprotein C-II),

APOA5 (apolipoprotein A-V), LMF1 (lipase maturation

factor 1), and GPIHBP1 (glycosylphosphatidylinositol-

anchored high-density lipoprotein binding protein 1)

(Hegele et al., 2020; Kersten, 2021).

GPIHBP1 binds and transports LPL to the capillary lumen

from interstitial space, where it hydrolyses TG and

triglyceride-rich lipoproteins (TRLs) (Supplementary Figure

S1). In patients with GPIHBP1 deficiency, LPL is mislocalized

and intravascular hydrolysis of triglycerides is impaired

(Beigneux et al., 2017; Hegele et al., 2020; Wu et al., 2021).

The consequence is low plasma levels of LPL, and severe

hypertriglyceridemia (Beigneux et al., 2017). The prevalence

of type I hyperlipoproteinemia because of a pathogenic

variant in the GPIHBP1 is estimated between 1:500,000 to

1:1,000,000 (Gonzaga-Jauregui et al., 2014).

Methods

Study design and family description

The National Medical Ethics Committee approved the study

in Slovenia (0120-14/2017/5, and 0120-273/2019/9), and the

Ethics Committee approved the study in Pakistan (033-523-

2019). The principles of the Declaration of Helsinki were

followed. Written consent of the patient’s parents was

obtained before inclusion.

Lipid profile analysis

Serum samples were analyzed for lipids including TC, low-

density lipoprotein cholesterol (LDL-C), high-density

lipoprotein cholesterol (HDL-C) and TG. TC, TG and LDL-C

were measured by a homogenous enzymatic method (Cobas

8000 c502 module, Roche, United States).

Lipid levels were considered as normal if: TC < 4.4 mmoL/L

(170 mg/dl), LDL-C <2.8 mmoL/L, (110 mg/dl) HDL-

C >1.2 mmoL/L (45 mg/dl), TG < 0.8 mmoL/L (75 mg/dl) for

children <9 years of age and <1 mmoL/L (90 mg/dl) if > 9 years

of age. Lipid levels were considered as elevated/lowered if: TC >
5.2 mmoL/L (200 mg/dl), LDL-C >3.4 mmoL/L (130 mg/dl),

HDL-C <1 mmoL/L (40 mg/dl), and TG > 1.1 mmol/L

(100 mg/dl) for children <9 years of age and >1.5 mmoL/L

(130 mg/dl) if > 9 years of age. The lipid levels in-between the

cut-offs were considered borderline (De Jesus, 2011).

Genetic analyses

All genetic analyses were performed at the University

Children’s Hospital Ljubljana in Slovenia in the same way as

Slovenian national genetic testing for the universal familial

hypercholesterolemia (FH) screening program in preschool

children (Groselj et al., 2018, 2022; Sustar et al., 2022).

Genomic DNA was isolated from the patient’s and his family

members (mother, father and sister) peripheral blood using a

Flexigene kit (Qiagen). xGen® Lockdown® NGS Probes (IDT,
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United States) for detection of coding and promoter regions for

the genes associated with dyslipidemia were used (ABCA1,

ABCG5, ABCG8, ALMS1, APOA1, APOA5, APOB, APOC2,

APOC3, APOE, CREB3L3, GPIHBP1, LDLR, LDLRAP1, LIPA,

LMF1, LPL, and PCSK9). Samples were sequenced on MiSeq

sequencer with MiSeq Reagent Kit (Illumina, United States)

following the manufacturer’s protocol including

recommendations for quality control parameters. For variant

annotation and filtration, the VafAFT tool was applied

(Desvignes et al., 2018). The detected variants were classified

by the American College of Medical Genetics and Genetics and

the Association for Molecular Pathology (ACMG-AMP)

(Richards et al., 2015) classification criteria as (likely) benign,

variants of uncertain significance (VUS) and (likely) pathogenic.

The pathogenic variant in theGPIHBP1 gene was reconfirmed by

targeted Sanger DNA sequencing.

Systematic literature review

We gathered all accessible scientific case report publications

for the systematic review of pathogenic variants in the GPIHBP1

gene. The systematic review was registered at PROSPERO

(CRD42022336232). An electronic search was performed

using the keyword “GPIHBP1” in the PubMed database on

11 June 2022. Moreover, we searched for the articles related

to pathogenic variants also through the search in the Human

Gene Mutation Database (Stenson et al., 2003) and the Franklin

by Genoox tool based on the pathogenic variant, confirmed in

our patient “NM 178172.6:c.230G>A” (scope: “Gene”). By going
through all of the abstracts and titles found, we included all

articles meeting the following requirements: 1) articles in English

published after 2002, 2) articles containing human data, 3) only

articles or data from articles describing pathogenic variants in the

GPIHBP1 gene, 4) reported patients were homozygous or

compound heterozygous for pathogenic variants, and 5)

clinical data on patients was provided.

Results

The proband was a 5.5-year-old boy. He was born at a full-

term birth weight of 3.7 kg with no known antenatal issues. The

timeline of the diagnosing, treatment and management of the

patient is represented in Figure 1. The parents of the patient are

in a consanguineous marriage and are first-degree relatives. The

patient’s mother has had an early abortion and has a 2-year-old

healthy daughter. The maternal grandfather of the patient had a

heart attack at 28 years of age. No family history of pancreatitis is

known. The lipid profile of the proband and his family members

is represented in Supplementary Figure S2.

At 2 months of age, the patient had an episode of

gastroenteritis needing intravenous hydration. At that time

mother was first notified of “pink blood” (lipemic sample).

Repeated sampling confirmed the same finding. The child was

later taken to a local hospital where he was seen by a paediatric

gastroenterologist who advised liver biopsy. The child had an

initial liver biopsy done at 10 months of age, which showed a

severely autolytic sample with Periodic acid–Schiff (PAS) stain

positive in preserved areas suggestive of glycogen storage disease

(GSD). At the same time, other laboratory measurements were

elevated: total serum cholesterol of 850.7 mg/dl (22.0 mmol/L)

and serum triglycerides of 5,137 mg/dl (58.0 mmol/L). However,

fasting glucose was raised significantly (29.5 mmol/L) along with

total bilirubin levels (110.0 umol/L) and ALT 550 U/L. The TC

and TG levels of the patient over time are represented in Figure 2.

On examination, he had pallor and a soft abdomen with no

hepatomegaly. The patient was labelled as a case of GSD. Based

on that, the patient was advised to start taking cornstarch,

fenofibrate, allopurinol, and vitamins A, D and E.

Aged 1 year and 5 months the patient presented to the

Paediatric outpatient department in Shifa Hospital for the first

time with complaints of one episode of vague seizure-like activity

and abdominal pain for 3 months. At age 1 year and 8 months,

the patient developed hoarseness of voice. He was noted to have

2–3 yellow plaques on the hard palate. At this visit, his TC level

FIGURE 1
The timeline represents important complications and milestones in diagnosing and managing the patient. GSD, glycogen storage disease.
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was 368.0 mg/dl (9.5 mmol/L). Twomonths later he had eruptive

xanthomas, a TC levels of 636.0 mg/dl (16.4 mmol/L). Aged 2 his

TC levels were 370 mg/dl (9.6 mmol/L) and his TG levels were

3,720 mg/dl (42.0 mmol/L). Along with fenofibrate and omega

3 the patient was prescribed atorvastatin (5 mg) with increasing

dosage (10 mg) upon a follow-up visit. Treatment of the patient

over time is represented in Figure 2. The patient presented for

follow-ups with lab results that repeatedly showed TG and total

serum cholesterol above normal limits. He never had any

documented hypoglycemia, drowsiness or seizure activity. He

didn’t have hepatomegaly.

Two years following the initial presentation, with regular

follow-ups in between, the boy presented to the outpatient

department with pain in the abdomen, lethargy and poor

appetite. There was mild splenomegaly and upon repetition of

laboratory tests, ALT (29 U/L) and serum lipase levels were

normal, TC level was 81.0 mg/dl (2.1 mmol/L), LDL-C

18.0 mg/dl (0.5 mmol/L), HDL 8 mg/dl (0.2 mmol/L),

triglycerides were 1,068 mg/dl (12.1 mmol/L) and 2,883 mg/dl

(32.6 mmol/L) subsequently, despite receiving the treatment with

atorvastatin, fenofibrate 50 mg once daily and omega 3 capsules

twice a day.

The diagnosis was reviewed at age 4.5 years due to

persistently high serum TG and relabeled as a case of

primary/familial hypertriglyceridemia based on the lipid

profile. The patient was advised to stop using cornstarch,

allopurinol and atorvastatin and continue fenofibrate. On

follow-up, the patient, weighing 14 kg at 4 years and

11 months of age, had his TC within normal range,

however, TGs were still deranged (3749 mg/dl, 42.3 mmol/

L). Response to fenofibrate (67 mg twice a day) was inadequate

with persistent high TGs (>1000 mg/dl; 11.3 mmol/L),

therefore gemfibrozil (300 mg twice a day) was added to

the treatment regime. Aged 5 years and 7 months the

triglycerides were 878.0 mg/dl (9.9 mmol/L), TC 110.0 mg/

dl (2.8 mmol/L), LDL-C 10 mg/dl (0.3 mmol/L), HDL-C

0.2 mmol/L (8.0 mg/dl). His weight and height were at the

5th centile for his age and gender. At age 5 years and

11 months his lipid profile levels were: TC: 74 mg/dl

(1.9 mmol/L), LDL-C: 10 mg/dl (0.3 mmol/L), HDL-C:

8 mg/dl (0.2 mmol/L) and TG: 630 mg/dl (7.1 mmol/L). At

that point, he had no xanthomas.

At age 5.5 genetic testing was performed and we identified

a homozygous variant c.230G>A (NM_178172.6) in exon 3 of

the GPIHBP1 gene (NG_034256.1) leading to a protein change

p.Cys77Tyr (NP_835466.2). The patient’s family members

(father, mother and sister) were heterozygous for the

c.230G>A variant (Supplementary Figures S2, S3). The

variant has already been reported in the ClinVar

(VCV000917845.1) (Landrum et al., 2018) as likely

pathogenic in association with hyperlipoproteinemia (type

ID) phenotype. The variant was classified as pathogenic by

the in silico prediction tools (Revel, MetaLR, MetaSVM)

(Ioannidis et al., 2016). The frequency of the variant in the

gnomAD population databases (Karczewski et al., 2020) is

extremely low. Following the American College of Medical

Genetics and Genetics and the Association for Molecular

Pathology (ACMG-AMP) criteria (Richards et al., 2015) the

variant was classified as likely pathogenic.

In Table 1 we reviewed the literature on the pathogenic

variants in the GPIHBP1 gene containing additional clinical

information about the patients. Fifty-four patients were

homozygous while seven were compound heterozygous for

a pathogenic variant in the GPIHBP1 gene. One patient was

heterozygous for variants in GPIHBP1 and APOC2 genes. We

presented 32 unique variants in the GPIHBP1 gene.

5 pathogenic variants are located in exon 1, 3 in exon 2,

10 in exon 3 and 10 in exon 4. 4 variants represent major

deletion of a whole exon/multiple exons/whole

GPIHBP1 gene.

FIGURE 2
(A) Total cholesterol (TC) and (B) triglyceride (TG) levels over time for the patient with the homozygous GPIHBP1 pathogenic variant. Vertical
lines represent the initiation and/or modification of the treatment.
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TABLE 1 Review of pathogenic variants in GPIHBP1 gene from the literature.

Reference Nationality Gender Age HGVS Transcript and Protein Change Zygosity TG
(mg/dL)

TG
(mmol/L)

EX HSM AP C

(Ariza et al., 2016) Ecuadorean F 25 NM_178172.6:c.3G>T, NP_835466.2:p.(Met1?) HOM 3,82 43.1 No No Yes Yes

(Hegele et al., 2018) NM_178172.6:c.17C>A, NP_835466.2:p.(Ala6Asp) HOM

(Paquette et al., 2018) Vietnamese F 33 NM_178172.6:c.40_41insGCGG, NP_835466.2:p.(Phe14CysfsTer25) HOM 5,973 67.4 No No Yes No

(Yamamoto et al., 2013) Japanese F 54 NM_178172.6:c.202T>C, NP_835466.2:p.(Cys68Arg) HOM 2,64 No No Yes Yes

(Liu et al., 2022) Chinese F 29 days NM_178172.6:c.45_48dupGCGG, NP_835466.2:p.(Pro17AlafsTer22) HOM 2,255 25.46 No No

(Lin et al., 2020) Chinese F 35 NM_178172.6:c.48_49insGCGG, NP_835466.2:p.(Pro17AlafsTer22) HOM 1,514 17.09 No Yes Yes

(Ahmad and Wilson, 2014) Caucasian F 2 mth NM_178172.6:c.85_88GAGGdel, NP_835466.2:p.(Glu29ThrfsTer50) CHET 2,663 30.1 Yes No Yes No

NM_178172.6:c.267C>A, NP_835466.2:p.(Cys89Ter)
(Buonuomo et al., 2015) Italian 3 days NM_178172.6:c.154_162AACAGGCTCdelTCTTins, NP_835466.2:

p.(Asn52SerfsTer253)
CHET 1,667 18.8 No

NM_178172.6:c.319T>C, NP_835466.2:p.(Ser107Pro)
(Wang and Hegele, 2007) F 47 NM_178172.6:c.166G>C, NP_835466.2:p.(Gly56Arg) HOM 7,094 80.1 Yes No

(Wang and Hegele, 2007) M 52 NM_178172.6:c.166G>C, NP_835466.2:p.(Gly56Arg) HOM 48.0 Yes

(Lima et al., 2021) Brazilian F 30 NM_178172.6:c.182-1G>T, NP_835466.2:p.? HOM 2,498 28.2 No No Yes No

(Lima et al., 2021) Brazilian F 11 NM_178172.6:c.182-1G>T, NP_835466.2:p.? HOM 1,248 14.1 No No No No

(Lima et al., 2021) Brazilian M 15 NM_178172.6:c.182-1G>T, NP_835466.2:p.? HOM 2,204 24.9 Yes No No No

(Lima et al., 2021) Brazilian F 48 NM_178172.6:c.182-1G>T, NP_835466.2:p.? HOM 2,84 32.1 Yes No Yes Yes

(Lima et al., 2021) Brazilian F 42 NM_178172.6:c.182-1G>T, NP_835466.2:p.? HOM 6,381 72.0 Yes No Yes Yes

(Lima et al., 2021) Brazilian F 37 NM_178172.6:c.182-1G>T, NP_835466.2:p.? HOM 1,975 22.3 No No Yes No

(Lima et al., 2021) Brazilian F 1 NM_178172.6:c.182-1G>T, NP_835466.2:p.? HOM 20,6 232.6 No No No No

(Lima et al., 2021) Brazilian F 1 NM_178172.6:c.182-1G>T, NP_835466.2:p.? HOM 4,142 46.8 Yes No No Yes

(Lima et al., 2021) Brazilian F 30 NM_178172.6:c.182-1G>T, NP_835466.2:p.? HOM 885 10.0 No No No Yes

(Lima et al., 2021) Brazilian M 27 NM_178172.6:c.182-1G>T, NP_835466.2:p.? HOM 924 10.4 No No No Yes

(Lima et al., 2021) Brazilian F 0.5 NM_178172.6:c.182-1G>T, NP_835466.2:p.? HOM 18 203.2 No No No No

(Lima et al., 2021) Brazilian M 0.6 NM_178172.6:c.182-1G>T, NP_835466.2:p.? HOM 40,141 453.2 No No No Yes

(Surendran et al., 2012) Dutch NM_178172.6:c.194G>A, NP_835466.2:p.(Cys65Tyr) HOM

(Franssen et al., 2010) UAE M 3 NM_178172.6:c.194G>A, NP_835466.2:p.(Cys65Tyr) HOM 4,005 45.2 No No Yes

(Olivecrona et al., 2010) Swedish M 10 NM_178172.6:c.194G>C, NP_835466.2:p.(Cys65Ser) CHET 1,727 19.5 No Yes No

NM_178172.6:c.202T>G, NP_835466.2:p.(Cys68Gly)
(Iacocca et al., 2019) Swedish F 9 mth NM_178172.6:c.194G>C, NP_835466.2:p.(Cys65Ser) CHET 5,049 57.0 No Yes Yes No

NM_178172.6:c.202T>G, NP_835466.2:p.(Cys68Gly)
(Iacocca et al., 2019) Swedish F 16 mth NM_178172.6:c.194G>C, NP_835466.2:p.(Cys65Ser) CHET 4,296 48.5 No Yes Yes No

NM_178172.6:c.202T>G, NP_835466.2:p.(Cys68Gly)

(Continued on following page)
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TABLE 1 (Continued) Review of pathogenic variants in GPIHBP1 gene from the literature.

Reference Nationality Gender Age HGVS Transcript and Protein Change Zygosity TG
(mg/dL)

TG
(mmol/L)

EX HSM AP C

(Coca-Prieto et al., 2011) Spanish F 30 NM_178172.6:c.203G>A, NP_835466.2:p.(Cys68Tyr) HOM >1,000 >11.3 No No Yes

(Chokshi et al., 2014) Salvadorean F 24 NM_178172.6:c.203G>A, NP_835466.2:p.(Cys68Tyr) HOM Yes Yes Yes No

(Rios et al., 2012) Salvadorean F 36 NM_178172.6:c.203G>A, NP_835466.2:p.(Cys68Tyr) HOM 6,48 73.2 Yes No Yes No

(Ariza et al., 2016) Pakistani M 39 NM_178172.6:c.239C>A, NP_835466.2:p.(Thr80Lys) HOM 4,489 50.7 No No

(Rabacchi et al., 2016) 42 NM_178172.6:c.247T>C, NP_835466.2:p.(Cys83Arg) HOM Yes

(Rabacchi et al., 2016) M 40 NM_178172.6:c.247T>C, NP_835466.2:p.(Cys83Arg) HOM No

(Charrière et al., 2011) M 6 mth NM_178172.6:c.266G>T, NP_835466.2:p.(Cys89Phe) CHET 1,736 19.6 Yes

ex1_3 del

(Rabacchi et al., 2016) F 55 NM_178172.6:c.267C>A, NP_835466.2:p.(Cys89Ter) HOM Yes Yes

(Plengpanich et al., 2014) Thai F 46 NM_178172.6:c.320C>G, NP_835466.2:p.(Ser107Cys) HOM 3,164 35.7 No No

(Plengpanich et al., 2014) Thai M 64 NM_178172.6:c.320C>G, NP_835466.2:p.(Ser107Cys) HOM 842 9.5 No

(Plengpanich et al., 2014) Thai M 43 NM_178172.6:c.320C>G, NP_835466.2:p.(Ser107Cys) HOM 673 7.6 No

(Chyzhyk et al., 2019) Middle East F 6 weeks NM_178172.6:c.323C>G, NP_835466.2:p.(Thr108Arg) HOM 3,15 35.6 No No

(Chyzhyk et al., 2019) Middle East F 2 NM_178172.6:c.323C>G, NP_835466.2:p.(Thr108Arg) HOM 1,838 20.8 Yes No

(Surendran et al., 2012) Caucasian M 1 NM_178172.6:c.323C>G, NP_835466.2:p.(Thr108Arg) HOM Yes

(Gonzaga-Jauregui et al.,
2014)

Spanish F 5 weeks NM_178172.6:c.331A>C, NP_835466.2:p.(Thr111Pro) CHET 12,046 136.0 No Yes No

NM_178172.6:c.413_429del, NP_835466.2:p.(Pro140SerfsTer161)

(Beigneux et al., 2009a) Colombian M 33 NM_178172.6:c.344A>C, NP_835466.2:p.(Gln115Pro) HOM 3,366 38.0 No Yes No

(Surendran et al., 2012) Dutch NM_178172.6:c.344A>C, NP_835466.2:p.(Gln115Pro) HOM

(Hegele et al., 2018) NM_178172.6:c.394C>T, NP_835466.2:p.(Gln132Ter) HOM

(Jung et al., 2017) Algerian M 1 mth NM_178172.6:c.476delG, NP_835466.2:p.(Gly159AlafsTer94) HOM >5,000 No No No

(Ariza et al., 2018) Spanish NM_178172.6:c.502delC, NP_835466.2:p.(Leu168SerfsTer85) HOM No

(Charrière et al., 2011) M 35 NM_178172.6:c.523G>C, NP_835466.2:p.(Gly175Arg) HOM 2,303 26.0 Yes

(Rios et al., 2012) Algerian M 26 NM_178172.6:c.523G>C, NP_835466.2:p.(Gly175Arg) HOM 2,303 No

(Chyzhyk et al., 2019) M 43 NM_178172.6:c.523G>C, NP_835466.2:p.(Gly175Arg) HET >5,000 >56.4 Yes

NM_000483.5:c.2-4G>C, NP_000474.2:p.?
(Berge et al., 2014) Pakistani F 22 ex3 and 4 deletion HOM 5,314 60.0 Yes Yes

(Berge et al., 2014) Pakistani M 37 ex3 and 4 deletion HOM 8,857 100.0 Yes Yes

(Berge et al., 2014) Pakistani M 40 ex3 and 4 deletion HOM 2,073 23.4 No Yes

(Berge et al., 2014) Pakistani F 37 ex3 and 4 deletion HOM 2,028 22.9 Yes Yes

(Iacocca et al., 2019) M 22 ex3 and 4 deletion HOM 2,737 30.9 No

(Iacocca et al., 2019) M 39 ex3 and 4 deletion HOM 1,329 15.0 No

(Iacocca et al., 2019) M 50 ex3 and 4 deletion HOM 957 10.8 Yes

(Continued on following page)
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Discussion

We presented a patient with severe hypertriglyceridemia as a

consequence of a homozygous pathogenic variant in the

GPIHPB1 gene. Additionally, we reviewed the literature on

described cases with pathogenic variants in the GPIHBP1 gene.

Elevated TG levels have been linked to cardiovascular disease

(CVD) and pancreatitis (Carrasquilla et al., 2021). For severe

hypertriglyceridemia, pathogenic variants in genes LPL,

APOA5, APOC2, GPIHBP1, and LMF1, associated with

hyperlipidemia should be considered (Goldberg and Chait,

2020). GPIHBP1 is located on chromosome 8q24.3 and is

composed of 4 exons (Liu et al., 2018). GPIHBP1 is expressed

mostly in the capillary endothelial cells of the heart, brown

adipose tissue and skeletal muscle, involved in energy and

lipid metabolism (Cruz-Bautista et al., 2021). GPIHBP1 acts as

an important partner of the LPL in plasma triglyceride

metabolism (Supplementary Figure S1). The loss-of-

function pathogenic variant in GPIHBP1 impairs LPL

activity and its lipolytic processing of chylomicrons and

very-low-density lipoproteins (Voss et al., 2011; Gin et al.,

2012). LPL unfolds spontaneously and remains within the

interstitial spaces. Due to the loss of its catalytic activity,

triglycerides are not hydrolysed resulting into severe

hypertriglyceridemia (Arora et al., 2019; Miyashita et al.,

2020) (Supplementary Figure S1).

GPIHBP1 is a protein composed of 184 amino acids from the

lymphocyte antigen (Ly6) family and consists of a N-terminal

signal peptide region, an amino-terminal acidic domain, a

Ly6 domain of ten disulfide-bonded cysteines and a highly

hydrophobic carboxyl-terminal motif that is replaced within the

endoplasmic reticulum by a glycosylphospatidylinostiol (GPI)

anchor for tethering to the cell membrane. GPIHBP1 is

distinguishable from the other Ly6 family members by the

presence of a high acidic domain composed of 21 aspartates or

glutamates located 12 amino acids prior to the Ly6motif (Beigneux

A. R. et al., 2009; Liu et al., 2018). Both, a high acidic and

Ly6 domain are important for the GPIHBP1 and LPL

interaction. Genetic modifications encoding for one of these two

domains result in chylomicronemia. Most missense variants break

down the disulfide bond of the Ly6 domain, resulting in the

production of GPIHBP1 dimers and multimers, which are

incapable of binding LPL (Beigneux et al., 2015; Fong et al., 2016).

Amino acids at positions 24-50 (exon 2) compose the acidic

domain and amino acids at positions 63-148 (exons 3 and 4)

compose the Ly6 domain of the GPIHBP1 protein (Figure 3).

Amino acids at positions 27-50 (exon 2) are important for LPL

transport to the lumenal surface of endothelial cells. Amino acids

at positions 103-109 (exon 4) are important for interaction with

LPL (UniProt, Q8IV16). The majority of pathogenic variants

disrupt the Ly6 domain’s folding, resulting in multimerized and

defective GPIHBP1 molecules on the cell surface (Holmes and

Cox, 2012; Mysling et al., 2016).T
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Patients with GPIHBP1 deficiency express a similar

phenotype as patients with LPL deficiency, such as severe

chylomicronemia (plasma TG levels above 1,500 mg/dl

(16.9 mmol/L) presented already in childhood and high risk of

pancreatitis (Miyashita et al., 2020). Highest reported TG and TC

levels for the patient at age 10 months were 5,137 mg/dl

(58.0 mmol/L) and 850.7 mg/dl (22.0 mmol/L) respectively.

Because hyperbilirubinemia was detected during this

examination, extreme TC levels could be the consequence of

biliary congestion. Hyperbilirubinemia was not detected on

further examinations, yet increased TC and TG levels remained.

Moreover, as the recessive manner of inheritance of the

disorder, the parents and the younger sister of the patient did

not express the extreme phenotype associated with the disorder,

although the father has elevated TC and TG levels

(Supplementary Figure S1), similarly, as reported by Wang

and Hegele, 2007 for heterozygous family members of a

proband with a homozygous variant in the GPIHBP1 gene.

Likewise, our patient’s father may have an extra genetic

variant that contributes to his phenotype but is not present in

the patient’s mother or sister.

The variant p.Cys77Tyr of our patient is located in exon 3,

encoding for the Ly6 domain of the GPIHBP1 protein

(Figure 3). Cysteine residues of Ly6 domain are essential

for the 3-fingered structural motif formation. Interfering with

any of the disulfide links is expected to cause significant

structural changes in the protein (Rabacchi et al., 2016).

Beigneux et al. (2009b) report that cells expressing the

cysteine mutants in GPIHBP1 are unable to bind and

transport LPL from the subendothelial space to the

endoluminal surface of the endothelial cells. Furthermore,

several genetic variants involving cysteine alterations to

another amino acid have previously been documented.

Eight patients with homozygous and four with compound

heterozygous variants p.Cys65Tyr, p.Cys68Gly, p.Cys83Arg,

p.Cys83Arg, p.Cys89Phe and p.Cys89Ter (Olivecrona et al.,

2010; Charrière et al., 2011; Iacocca et al., 2019) with severe

elevation in TG (1,000–6,480 mg/dl, 11.3–73.2 mmol/L) and

episodes of acute pancreatitis have previously been described.

Moreover, Lima et al. (2021) present a series of twelve cases

with an intronic variant c.182-1G>C, resulting in the

skipping of cysteine-rich exon 3. These patients likewise

FIGURE 3
Pathogenic variants in the GPIHBP1 gene based on the literature review represented in Table 1 are organized by exon numbers. The colour of
the exon denotes the protein domain affected by the pathogenic variation. The variant of our patient (c.230G > A) is in bold red colour.
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had extremely elevated TG levels (885–40,141 mg/dl,

10–453.2 mmol/L), but interestingly only four suffered

from acute pancreatitis, none of them had

hepatosplenomegaly and four of them had eruptive

xanthomas. Additionally, twelve patients with deletion of

exon 3 and 4 or entire gene deletion had TG values

between 957 and 37,284 mg/dl (10.8 and 421.0 mmol/L)

and seven of them were affected by acute pancreatitis

(Rios et al., 2012; Berge et al., 2014; Chokshi et al., 2014;

Patni et al., 2016; Iacocca et al., 2019). Table 1 contains

additional information about these patients.

European Atherosclerosis Society provided practical clinical

guidelines for rare dyslipidaemia management for patients with

extreme LDL-C, TG and HDL-C levels (Hegele et al., 2020). Early

detection of rare dyslipidemias in a pre-clinical stage is possible

with an effective FH screening program capable of detecting other

dyslipidemia than FH (Groselj et al., 2018, 2022; Marusic et al.,

2020; Sustar et al., 2022) or with a gene panel applied as a part of a

newborn screening program (Remec et al., 2021). It is important to

implement a worldwide registry for rare dyslipidemias,

comparable to what already exists for FH/homozygous FH

(Tromp et al., 2022; Vallejo-Vaz et al., 2018, 2021).

Statin therapy substantially reduced the CVD risk in patients

with high LDL-C levels (Silverman et al., 2016). Nevertheless, other

factors, such as triglycerides or triglyceride-rich lipoproteins (TRLs),

contribute to the CVD riskwith low-grade inflammation, as a part of

atherosclerosis (Nordestgaard, 2016). The goal of the treatment is to

reduce plasma TG levels to less than 500–1,000 mg/dl to prevent

acute pancreatitis (Okazaki et al., 2021). To prevent abdominal pain

and acute pancreatitis, patients should be on a low-fat diet of total

dietary fat intake of <10–15% of daily calories (<15–20 g per day)

and treated with common lipid-lowering drugs (fibrates, omega-3

fatty acids, statins) (Esan and Wierzbicki, 2020; Navarro Hermoso

and Valdivielso, 2021). Volanesorsen, an antisense oligonucleotide

inhibitor of apoC3 is a promising medicine for the reduction of TG

levels by 70–80% (Esan and Wierzbicki, 2020). Furthermore,

gemfibrozil is a useful medication for the reduction of TGs in

patients with very high TG serum levels. Themechanism of action of

gemfibrozil is based on the activation of nuclear transcription factors

for up-regulation of LPL transcription and down-regulation of the

LPL inhibitor apo C-III, resulting in a decrease in triglyceride levels

and an increase in HDL. Moreover, gemfibrozil reduces hepatic

triglyceride synthesis by inhibiting peripheral lipolysis and

decreasing hepatic removal of free fatty acids. It inhibits the

synthesis and increases the clearance of very low-density

lipoprotein (VLDL) (Goldberg and Hegele, 2012). Our patient

was managed with statins (atorvastatin) and later with a

combination of fibrates (fenofibrate and gemfibrozil).

Combination therapy with fenofibrate and gemfibrozil has helped

in lowering TG levels (<1000 mg/dl) which was not achieved by

monotherapy with fenofibrate. Statins were stopped when the

diagnosis of GSD was dismissed, and the patient was treated as a

case of primary HTG.

In conclusion, genetic testing for rare dyslipidaemias should be

considered early in cases of severe elevations of plasma cholesterol

and/or triglycerides, to enable adequate and precise management of

the patient. Besides LPL, there are other genes involved in primary

hypertriglyceridemia phenotypes (most notably, APOC2, APOA5,

LMF1, and GPIHBP1). Our paediatric patient had a homozygous

pathogenic GPIHBP1 variant, causing severe hypertriglyceridemia,

cholesterol deposits at the hard palate, eruptive xanthomas, lethargy,

poor appetite, and mild splenomegaly. Combination treatment with

fenofibrate and gemfibrozil was shown to help reduce TG levels.
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