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Abstract: Cyclic oxyterpenes are natural products that are mostly used as fragrances, flavours and
drugs by the cosmetic, food and pharmaceutical industries. However, only a few cyclic oxyterpenes
are accessible via chemical syntheses, which are far from being ecofriendly. We report here the
synthesis of six cyclic oxyterpenes derived from ß-pinene while respecting the principles of green and
sustainable chemistry. Only natural or biosourced catalysts were used in mild conditions that were
optimised for each synthesis. A new generation of ecocatalysts, derived from Mn-rich water lettuce,
was prepared via green processes, characterised by MP-AES, XRPD and TEM analyses, and tested
in catalysis. The epoxidation of ß-pinene led to the platform molecule, ß-pinene oxide, with a good
yield, illustrating the efficacy of the new generation of ecocatalysts. The opening ß-pinene oxide was
investigated in green conditions and led to new and regioselective syntheses of myrtenol, 7-hydroxy-
α-terpineol and perillyl alcohol. Successive oxidations of perillyl alcohol could be performed using
no hazardous oxidant and were controlled using the new generation of ecocatalysts generating
perillaldehyde and cuminaldehyde.

Keywords: ecocatalysis; green chemistry; oxyterpenes; ß-pinene; water lettuce

1. Introduction

Oxygenated terpenoids, or oxyterpenes, are secondary metabolites of plant origin with
a wide range of chemical structures. Their strong fragrances, flavours and pharmacological
effects for some of them, make them attractive yet challenging targets for total synthesis by
cosmetic, food and pharmaceutical industries.

Indeed, a few cyclic oxyterpenes derived from ß-pinene oxide exhibit interesting prop-
erties. For example, myrtenol shows anti-inflammatory [1] and antianxiolytic activities [2].
It can also be used against myocardial ischemia-reperfusion lesions [3].

Perillyl alcohol, which can be found in essential oil of lavender and peppermint, shows
anticancer [4,5], analgesic [6], antibacterial and antifungal properties [7]. While it could be
also used as a drug against Alzheimer’s Disease [8] and malaria [9], it is commonly used in
the fragrance industry [10,11].

Perillaldehyde is largely found in the essential oil of an aromatic plant, Perilla frutescens,
also known by its Japanese name shiso. The essential oil of shiso, and the molecule of
perillaldehyde itself, are widely used in the fragrance and food-industries [12]. Peril-
laldehyde also exhibits anti-inflammatory [13], neuroprotective [14], antidepressant [15],
antifungal [16] and antibacterial [17] properties.

Cuminaldehyde is mostly found in the plant species Cuminum Linn [18–20] and gives
the characteristic flavour of cumin to its essential oil, as its mass fraction is 20–40% [21].
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In addition to the wide use of the essential oil of cumin and cuminaldehyde in cosmetics
and perfumery, cuminaldehyde exhibits antidiabetic, anticancer, neuroprotective, anti-
inflammatory, antimicrobial and antifungal properties [22,23].

Although these cyclic oxyterpenes have various applications, only a few of them
are accessible via chemical syntheses, and require the use of toxic or hazardous reagents,
stoichiometric amounts of oxidants or environmentally unsustainable conditions. We
present here the synthesis of five cyclic oxyterpenes: myrtenol, 7-hydroxy-α-terpineol,
perillyl alcohol, perillyladehyde and cuminaldehyde, via the platform molecule, ß-pinene
oxide, derived from the epoxidation of ß-pinene.

The selective epoxidation of ß-pinene is challenging because of the tensions of the
pinane ring system and the exo position of the double bond on the one hand, and the
high reactivity of the corresponding epoxide on the other hand [24]. Thus, the oxidation
of β-pinene can lead to several oxidation products, including epoxy, [25] which can itself
rearrange into several by-products [26–28]. Indeed, β-pinene oxide is very reactive due
to the many steric constraints imposed by the three rings. It is, therefore, very sensitive
to acidic and basic media and is easily rearranged by opening the pinane ring and/or
the epoxy ring. The rearrangement of the epoxide gives rise to several products, mainly
myrtanal and myrtenol, by opening the epoxide ring, and perillyl alcohol and 7-hydroxy-α-
terpineol by opening the bicyclic structure [29]. Due to its fragility, the preparation and the
selective opening of β-pinene oxide to one of these compounds present a real challenge.

The preparation of this library of cyclic oxyterpenes based on the platform molecule,
ß-pinene oxide, relies on only using green and sustainable chemistry.

The Grison group has shown that remediation phytotechnologies, such as phytoex-
traction [30–32], rhizofiltration [33–35] and biosorption [35–38], generate biomass rich in
transition metals that can be turned into innovative catalysts, called ecocatalysts [39–41].
Using the concept of ecocatalysis, we advanced the aim that only natural or biosourced
catalysts would be used for preparing the cyclic oxyterpenes.

Leaves of Grevillea gillivrayi, an endemic tree from New Caledonia, have been used
for preparing ecocatalysts and proved their efficacy in several syntheses [42]. However,
considering the location and natural abundance of leaves of G. gillivrayi, other sources of
Mn-rich biomass were sought. Roots of water lettuce, Pistia stratiotes, were found to be
an excellent alternative source of Mn-rich biomass [43], as the aquatic plant is an invasive
alien species (IAS), hence abundant and easy to harvest. At the same time, the harvest of
Pistia stratiotes could contribute to eradication, or controlling the species abundance.

A new generation of ecocatalysts derived from Mn-rich water lettuce was hence
considered here and compared to the previous ecocatalysts of G. gillivrayi. The new
ecocatalysts were prepared via green processes and characterised by MP-AES and XRD
analyses. They were tested through the epoxidation of ß-pinene into ß-pinene oxide. The
selective opening of ß-pinene oxide was investigated in mild conditions for the synthesis
of myrtenol, 7-hydroxy-α-terpineol and perillyl alcohol. Finally, successive oxidations of
perillyl alcohol were tested using an innocuous and eco-friendly oxidant, and the new
generation of ecocatalysts for the synthesis of perillaldehyde and cuminaldehyde.

2. Results and Discussion
2.1. The Ecocatalyts Toolbox
2.1.1. Preparation of the Ecocatalysts

Considering the diversity of reactions leading to oxyterpenes from ß-pinene, several
classes of ecocatalysts bearing different chemical properties, and hence different reactivities,
were considered for preparation (Figure 1).

Roots from Pistia stratoties, an aquatic invasive alien species (IAS) in France, were
chosen for providing the biomass to transform into ecocatalysts. P. stratoties showed the
spontaneous ability to concentrate heavy metals, especially Mn, in roots by rhizofiltration.
Indeed, roots of P. stratoties in the Rhône canal in France presented high concentrations of
Mn (Table 1, entries 1 & 5).
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Figure 1. Preparation of ecocatalysts bearing different chemical properties.

Table 1. Elemental composition of the ecocatalysts determined by MP-AES analyses.

Composition (Weight% (±%RSD))

Entry Ecocatalyst Mn Ca Fe Mg Na K Al

1 Roots of
P. stratiotes

5.20
(4.97)

5.65
(4.60)

1.66
(1.64)

1.58
(0.83)

2.85
(2.06)

5.19
(2.60)

0.36
(0.36)

2 Eco-MnOx-Ps 7.53
(2.45)

10.56
(4.14)

2.37
(0.77)

3.54
(3.15)

4.57
(0.37)

9.64
(3.32)

0.56
(0.04)

3 Eco-MnCl-Ps 7.03
(2.07)

5.53
(2.67)

2.08
(1.02)

1.47
(0.74)

2.18
(0.88)

5.50
(1.74)

0.40
(0.20)

4 Eco-NaMnOx-Ps 15.94
(2.70)

13.75
(4.75)

5.27
(0.39)

3.59
(0.56)

1.24
(0.76)

0.04
(0.05)

0.89
(0.32)

As has been done previously with G. gillivrayi [31], the Mn-rich biomasses of P. stra-
tiotes could be transformed into three classes of ecocatalysts (Figure 1). A first class of
ecocatalysts was obtained by grinding the air-dried leaves or roots into a 1.5 mm powder,
which was then heated to 550 ◦C, leading to formation of Eco-MnOx-Ps. This first class of
ecocatalysts was transformed using green hydrochloric acid [44] into Eco-MnCl-Ps. This
second class of ecocatalysts was further oxidised using hydrogen peroxide followed by an
alkaline treatment, producing Eco-NaMnOx-Ps.

2.1.2. Characterization of the Ecocatalysts

The elemental composition of the ecocatalysts was determined by MP-AES analyses
(Table 1). As expected, and due to the Mn-rich biomass, Mn was the most or second most
abundant element in the ecocatalyst. Moreover, other physiological elements as Ca, Mg and
K were found in significant amounts, since the biomass was derived from an aquatic plant.
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X-Ray Powder Diffraction Analyses were then performed to characterize the com-
plexes found in the ecocatalysts (Table 2). The complexes involving Mn were different
among the classes of ecocatalysts. Eco-MnOx-Ps, which was obtained after a simple ther-
mal treatment of the biomass, shows two complexes of Mn: Mn(II) oxide and a mixed
complex of Mn(III) and Mn(IV) suggesting oxidative properties in catalysis (Table 2, entry
1). Eco-MnCl-Ps, obtained after a hydrochloride treatment, shows a complex of mixed
potassium/sodium Mn (II) chloride (Table 2, entry 2). Interestingly, this salt, which cannot
be obtained by a chemical synthesis, has a similar hardness to MnCl2 in HSAB theory,
while having a milder Lewis acidity [45].

Table 2. XRPD analyses of the ecocatalysts.

Entry Ecocatalyst Mn Na Ca Si

1 Eco-MnOx-Ps MnO2,
K2Mn4O8

NaCl, KCl,
K3Na(SO4)2

CaCO3 SiO2

2 Eco-MnCl-Ps K3NaMnCl6 NaCl - -

3 [45] Eco-CaMgOx-Gg Ca2Mn3O8
K3Na(SO4)2,

KCl CaCO3 SiO2

4 [45] Eco-MnCl-Gg KMnCl3 NaCl CaCl2 -

Moreover, a comparison between the ecocatalysts derived from P. stratoties and
G. gillivrayi shows different complexes of Mn, suggesting that the plant species leaves
a vegetal footprint, specific of the species, in the ecocatalyst (Table 2, entries 3 & 4).

TEM images of Eco-MnOx-Ps, Eco-NaMnOx-Ps and Eco-MnCl-Ps exhibited different
particles with various shapes (see Supplementary Materials). Small round particles of
about 3–5 nm of diameter with Eco-NaMnOx-Ps, lamellar particles of about 2–5 nm width
over 10–30 nm length with Eco-MnOx-Ps and Eco-MnCl-Ps, respectively, as well as thin
layer-shape particles, were blended together into a matrix.

2.2. Syntheses of Oxyterpenes

The green and sustainable synthesis of five oxyterpenes 3–7 of diverse industrial
interests was considered through the epoxidation of ß-pinene 1 into the platform molecule
2, ß-pinene oxide, and its selective opening (Figure 2).
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Selective Epoxidation of ß-Pinene 1 into ß-Pinene Oxide 2

The epoxidation of ß-pinene 1 into ß-pinene oxide 2 is far from trivial since this reac-
tion can lead to nine major products [46,47]. Moreover, the low stability of ß-pinene oxide
2, which can be degraded into about 10 side-products [48,49], is also a key parameter for
choosing the reaction conditions. Indeed, classic conditions of epoxidation require organic
peroxides or percarboxylic acids such as m-CPBA [50], which lead to a significant degrada-
tion rate of ß-pinene oxide 2 and/or are questionable in terms of safety considerations and
waste production. Ideally, eco-friendly oxidants such as hydrogen peroxide in combination
with Mn constitute effective catalysts for epoxydation. For the epoxidation of β-pinene,
different Mn catalytic systems based on the joint use of H2O2 and NaHCO3 have been
described in the literature. A yield of 76% can be obtained with manganese sulfate [51] and
84% with Mn (II) dispersed on graphene oxide [52]. However, in both cases, a toxic solvent,
DMF, is used. Sodium perborate was also used, but wastes containing boron are now
restricted by REACH regulations [53]. Catalysts based on expensive, scarce and/or toxic
metallic elements, such as palladium, gold, niobium or tungsten have been described but
resulted in either low conversion or low selectivity for epoxide, as they led to competitive
oxidation of the allylic position [26,46,47].

The right balance between the selectivity of epoxidation and the stability of the product
formed, while respecting an environmentally friendly process, was hence considered. The
previous generation of ecocatalyst derived from G. gillivrayi, and presenting mild oxidative
properties, Eco-CaMnOx-Gg, was first tested as a biosourced catalyst with a mild base
(sodium bicarbonate,) and a green co-oxidant (hydrogen peroxide) in a mixture of green
solvents (acetone and water) (Table 3, entry 1). Despite high conversion, the yield did
not exceed 33%. The new generation of ecocatalyst derived from P. stratiotes, and also
presenting mild oxidative properties, Eco-MnOx-Ps, was tested in the same conditions and
resulted in total conversion and the best yield of 63% (Table 3, entry 2). Increase in the
catalytic loading and the use of a Lewis acid support, MK10, were tested but led to more
degradation of ß-pinene oxide 2 (Table 3, entries 3 & 4). Another class of ecocatalyst derived
from P. stratiotes and presenting Lewis acid properties instead of oxidative properties, Eco-
MnCl-Ps, was also tested (Table 3, entry 5) but did not improve the yield and also produced
63% of ß-pinene oxide 2. The use of MK10-supported Eco-MnCl-Ps was also tested but
decreased the yield due to product degradation (Table 3 entry 6).

Table 3. Synthesis of ß-pinene oxide 2 a.
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Considering the moderate yield obtained here, other experimental parameters were
investigated and then analysed using Principal Component Analyses (PCA). The tempera-
ture, reaction time, stirring speed, quantity of ß-pinene 1, quantity of peroxide hydrogen,
and time of addition of peroxide hydrogen were tested using Eco-MnOx-Ps as the catalyst.
A first PCA was modelled using all these parameters together (Figure 3A). It shows that
the stirring speed and quantity of peroxide hydrogen had an impact on the conversion and
yield of epoxidation. A second PCA was refined using these two parameters (Figure 3B).
This shows that the time of addition of hydrogen peroxide and the concentration of ß-
pinene 1 are anti-correlated to the yield. Hence hydrogen peroxide was added drop-wise
to the reaction mixture and the concentration of ß-pinene 1 was low.
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Despite this accurate study of the reaction parameters, it was not possible to improve
the yield and selectivity towards the formation of ß-pinene oxide 2.
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Although the yield of this reaction remained moderate, it was better than gold, palla-
dium, molybdenum, niobium, titanium and tungsten systems, and equivalent to the yield
using other manganese catalysts [47,54–57]. However, the conditions described here are
eco-friendlier. Indeed, the ecocatalyst (Eco-MnOx-Ps) and solvents (acetone/H2O) can be
derived from easily available renewable feedstock. The low loading of Mn (0.005 eq.), the
absence of ligand, the moderate time (2 h) and temperature (30 ◦C) illustrate the perfor-
mances of the catalytic system as a greener and sustainable alternative to classic catalysts.

2.3. Selective Opening of ß-Pinene Oxide 2

The opening of the platform molecule 2, ß-pinene oxide, can lead to about 10 products
according to the conditions of reaction [46,47]. Considering the mechanism of opening,
myrtenol 3, the constrained bicyclic compound would be the kinetic product. Perillyl
alcohol 5, the six-membered ring compound, should be lower in energy and thermo-
dynamically more stable. However, Corma et al. have shown that myrtenol is not an
intermediate that is rearranged further into perillyl alcohol, but the two products come
from different pathways. The opening of ß-pinene oxide 2 can lead to perillyl alcohol 5,
based on the rearrangement of the bicyclic carbon atom skeleton, followed by epoxide ring
opening. The opening of ß-pinene oxide 2 can lead to myrtenol 3 following a b-elimination
mechanism [24].

Specific conditions were tested for selectively opening the epoxide into myrtenol 3,
7-hydroxy-α-terpineol 4 and perillyl alcohol 5.

2.3.1. Synthesis of Myrtenol 3

The synthesis of myrtenol 3 based on the opening of ß-pinene oxide 2 has not been
extensively reported in the literature. Indeed, myrtenol 3 is mostly considered a side-
product of the formation of perillyl alcohol 5 by the action of a Brønsted acid on ß-pinene
oxide 2 [24–27]. Several Brønsted acid catalysts were tested to favour the formation of
myrtenol 3 instead of perillyl alcohol 5 (Table 4). Among the biosourced catalysts tested
here, betaine hydrochloride, which has the strongest acidity, gave the best selectivity
towards myrtenol 3 (Table 4 entry 1).

Table 4. Selective opening of ß-pinene oxide 2 into myrtenol 3 a.
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Entry Acid Conv. (%) b
Yield (%) b

3 4 5

1 betaine hydrochloride >99 45 (44) c 0 5
2 thiamine hydrochloride >99 33 0 12
3 acetic acid 97 21 17 3
4 ascorbic acid >99 10 0 20

a ß-pinene oxide (0.5 mmol, 1 eq.), acid (2.5 mmol, 5 eq.), CPME (10 mL), 110 ◦C, 10 h. b Conversions and yields
were determined by GCMS FID using biphenyl as an internal standard. c Isolated yield.

These results are surprising given the studies of Corma et al. [24], which suggested
the use of weak acids. Betaine hydrochloride can be advantageously used to replace other
Brønsted acids in terms of selectivity and sustainability [24–26].

2.3.2. Synthesis of 7-Hydroxy-α-terpineol 4

To our knowledge, the synthesis of 7-hydroxy-α-terpineol 4 has never been reported
in the literature as a targeted product but has been observed as a side-product during the
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formation of perillyl alcohol 5 in the presence of water, with a maximum yield of 25% [50].
Here is reported, for the first time, the synthesis of 7-hydroxy-α-terpineol 4, which can
be reached in a one-pot synthesis from ß-pinene 1, or sequentially from ß-pinene oxide 2
using Brønsted acids in a mixture of water and acetone (Table 5).

Table 5. Selective opening of ß-pinene oxide 2 into 7-hydroxy-α-terpineol 4 a.
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Entry Acid Eq. of Acid Conv. (%) b Yield (%) b

1
HCl

1 66 31
2 3 >99 76

3 oxalic acid 3 >99 76(72) c

4 formic acid 3 >99 73
5 citric acid 3 >99 65
6 betaine hydrochloride 3 >99 75
7 thiamine hydrochloride 3 >99 73

a ß-pinene oxide (1.7 mmol, 1 eq.), acid (x eq.), in H2O (20 mL): acetone (20 mL), 30 ◦C, 1 h. b Conversions and
yields were determined by GCMS FID using biphenyl as an internal standard. c Yields after purification.

The optimization was first carried out using HCl (Table 5 entries 1 & 2) and then
tested with green biosourced acids (Table 5 entries 3–7). Three equivalents of oxalic acid,
formic acid, betaine hydrochloride or thiamine hydrochloride led to similar high yields of
7-hydroxy-α-terpineol 4 in only one hour at moderate temperature and in green solvents.

2.3.3. Synthesis of Perillyl Alcohol 5

In the literature, perillyl alcohol 5 can be obtained with a yield of 47% using natural
zeolite over several hours at 70 ◦C [28]. Another clay, hectorite, could improve the yield to
64% but using pyridinium nitrate in the presence of nitric acid [27]. Other catalytic systems,
based on metal enriched zeolites or mesoporous materials, led to higher selectivities of
60–70%. However, these syntheses relied on the use of hazardous and toxic solvents [25,26].

Considering the mechanism described by Corma et al. [24] (Figure 4), the formation
of perillyl alcohol 5 is favoured by adjusting a combination of acid-base properties of the
reaction medium.
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Eco-MnCl-Ps, which presents both Lewis and Brønsted acid properties, was first tested
in a basic and green solvent, CPME, but mainly led to the opening of epoxide prior to
the rearrangement of the bicyclic carbon atom skeleton (Table 6, entry 1). Another green
catalyst bearing both but weaker acid properties, the natural clay, Montmorillonite K10
(MK10), was used instead, and led to a better selectivity towards perillyl alcohol 5 (Table 6,
entries 2–4). However, dimerization side-products were still observed in high quantity.
Dilution of the catalyst and different catalytic loadings were tested (Table 6, entries 5–8).
The highest dilution and moderate catalytic loading led to the best yield (Table 6, entry 6).
Several tests on temperature and reaction time were performed but no further improvement
was obtained.

Table 6. Selective opening of ß-pinene oxide 2 into perillyl alcohol 5 a.
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Entry Catalyst Catalytic Loading Solvent Conv. (%) b Yield (%) b

1 Eco-MnCl-Ps 85 mg CPME
(2 mL) >99 4

2

MK10 85 mg

DCM
(2 mL) >99 26

3 Me-THF
(2 mL) >99 34

4 CPME
(2 mL) >99 28

5
MK10 85 mg

Me-THF
(50 mL) >99 27

6 CPME
(50 mL) >99 40(38) c

7
MK10

8.5 mg CPME
(50 mL)

>99 35
8 850 mg >99 36

a ß-pinene oxide (0.5 mmol), catalyst (x mg) in CPME (x mL), rt, 1 h. b Conversions and yields were determined
by GCMS FID using biphenyl as an internal standard. c Yields after purification.

Although the yield of this reaction was rather low, it was equivalent to the yields
described in the literature and the conditions described here are eco-friendlier. Other de-
scribed chemical procedures are dependent on the use of high temperatures (hydrothermal
synthesis of zeolites), toxic solvents (N,N-dimethyl formamide, N-methyl pyrrolidone,
N,N-dimethyl acetamide, dimethyl sulfoxide, dioxane [25,26] or hazardous reagents (nitric
acid, [26,27], tin, [25], pyridinium nitrate [27]. Conversely, this work presents a method
where none of these environmentally “unfriendly” parameters are needed, and which can,
therefore, be considered “green” and cleaner that other reported processes.

2.4. Synthesis of Perillaldehyde 6

The oxidation of perillyl alcohol 5 into perillaldehyde 6 is not well documented in the
literature. Li et al. reported the synthesis of perillaldehyde via the selective oxidation of
perillyl alcohol by supported CrO3/SiO2 oxidant in CH2Cl2. However, CrO3 and CH2Cl2
are both toxic molecules regulated by REACH [58].

This transformation was studied using dioxygene in cyclohexane to allow its maxi-
mum dissolution. Previous studies on the oxidation of the allyl alcohol of geraniol into
the aldehyde of geranial showed that the use of ecocatalyst derived from G. gillivrayi,
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Eco-NaMnOx-Gg, led to a quantitative yield [59]. Herein, Eco-CaMnOx-Gg and Eco-
MnOx-Ps were tested for catalysing the synthesis of perillaldehyde 6 but did not give the
desired product. An ecocatalyst with stronger oxidative properties was chosen instead,
Eco-NaMnOx-Ps (Table 7, entries 2–8). After increase of catalytic loading, the use of four
equivalents of a co-oxidant, CuO, was tested and gave the best yield of 66% (Table 7, entries
4). The co-oxidant alone was tested as a negative control and no reaction occurred (Table 7,
entry 6). Since the conversion was not complete in 2 h, longer reaction times were tested
but did not increase the yield and led to more degradation (Table 7, entries 7 & 8).

Table 7. Synthesis of perillaldehyde 6 a.
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2.5. Synthesis of Cuminaldehyde 7

To our knowledge, we report the synthesis of cuminaldehyde 7 from perillaldehyde 6
for the first time. This transformation relies on the migration of the exocyclic double bond
into the 6-membered ring, giving the intermediate p-menta-1,3-dien-7-al, which facilitates
a final aromatisation. Considering this mechanism, an ecocatalyst bearing both Bronsted
acid and oxidative properties, Eco-MnCl-Ps, was first chosen in solvent-free conditions
(Table 8 entry 1). However, almost no desired product was formed.

A similar oxidation, the oxidation of citronellal into p-cymene, has been described
using clays as catalysts [59]. MK10 and Eco-MnCl-Ps supported on MK10 were tested
but no improvement was observed (Table 8, entries 2 & 3). Moreover, the intermediate,
p-menta-1,3-dien-7-al, was never observed in these conditions, suggesting that the Brønsted
acidity of MK10 is too weak and prevents the first step occurring. A stronger Brønsted acid,
citric acid functionalised coffee grounds (coffee ground-CA), was added to Eco-MnCl-Ps
and gave a better yield (Table 8, entry 5). As a control, coffee ground-CA was tested alone
and led to no conversion (Table 8, entry 4).

Since Eco-MnCl-Ps used in the presence of coffee ground-CA led to main side-products
derived from polymerisation of perillaldehyde 6, dilution of the reagents was tested in
a green solvent, CPME, and the highest dilution rate gave the best yield of 55% (Table 8,
entry 9).
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Table 8. Synthesis of cuminaldehyde 7 a.
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Entry Catalyst CPME (mL) Time (h) c Conv. (%) b Yield (%) b

1 Eco-MnCl-Ps

0 2

>99 6
2 MK10 >99 5
3 Eco-MnCl-Ps + MK10 >99 5

4 Coffee ground-CA d 0 -

5 Eco-MnCl-Ps + Coffee
ground- CA d >99 9

6 Eco-MnCl-Ps
2 5

>99 27

7 Eco-MnCl-Ps + Coffee
ground-CA d >99 29

8 Eco-MnCl-Ps
10 27

96 22
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a Perillaldehyde (0.5 mmol), Eco-MnCl-Ps (1 g), Coffee ground-CA (1 g), CPME (x mL), 110 ◦C. b Conversions and
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3. Materials and Methods
3.1. General Information

GC-MS analyses were performed on a Thermo Scientific™ Trace 1300 GC coupled with
an ISQ QD quadrupole. The detection system was connected with a Thermo TG-5SILMS
column (0.18 µm × 0.18 µm × 20 m). GC-FID analyses were performed on a similar column
connected to a flame ionization detector (FID). In each case, hydrogen was used as carrier
gas (1 mL.min−1), using the following temperature program: 80 ◦C isothermal (1 mn),
80 ◦C to 260 ◦C gradient at 40 ◦C.min−1, then 260 ◦C isothermal (1 mn).

The samples were prepared in ethyl acetate, and biphenyl was used as internal
standard for GC-FID quantifications. Mass spectra were recorded in impact electronic
mode at 70 V and identification was made by the NIST 14 database.

NMR spectra were recorded on a Brücker Avance III HD–400 MHz at room temper-
ature. The 1H frequency was at 400 MHz and the 13C frequency was at 100 MHz. NMR
quantifications were established by 1H quantitative analyses using an internal standard
with a structure similar to the target-molecule.

Transmission Electron Microscopy (TEM) analyses were performed at 200 kV on a
JEOL 2200 FS equipped with a CCD Gatan Ultrascan 4000 CCD (4092 × 4092 px2) at the
MEA platform (University of Montpellier, Montpellier, France).

Product purification was made by Puriflash InterChim 430 coupled with a UV detector.
A silica gel column was used with a mixture of cyclohexane:ethyl acetate as eluent at a
flow rate of 30 mL/min.

Mineral composition of the catalysts was determined using an Agilent Technologies™
4200 Microwave Plasma-Atomic Emission Spectrometer (MP-AES) coupled with a SPS4
autosampler. A One-Neb nebulizer was used. The samples (between 5 and 10 mg for solids,
2 mL for liquids) were digested in 6 mL of reversed aqua regia (1:2 hydrochloric acid (37%):
nitric acid (65%)) under an Anton Paar Multiwave Go™ microwave-assisted digestion with
the following program: 20 ◦C to 164 ◦C in 20 min then 10 min isothermal at 164 ◦C. Samples
were filtered and then diluted to 0.2 g.L−1 in nitric acid (1%). Three analyses were carried
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out for each sample, multi element standards (calibration range between 0.1 and 10 ppm)
and digestion blanks, in order to determine the standard deviation of the measurement.

X-Ray Powder Diffraction (XRPD) data measurements on samples dried at 100 ◦C for
2 h were conducted using a BRUCKER diffractometer (D8 Advance, with Cu Kα radiation
at 1.54086 Å) equipped with a Lynxeyes detector. Analyses were carried out at Institut Jean
Lamour (University of Lorraine, Nancy, France).

3.2. General Procedures
3.2.1. Preparation of the Ecocatalysts
Harvest of Pistia Stratiotes

Plants of Pistia stratiotes grow spontaneously in the Canal of Rhône River. Whole
plants were harvested at Comps in September 2020. Roots were separated from the rest of
the plant on site before being dried.

Transformation of Biomass into Eco-CaMnOx-Gg and Eco-MnOx-Ps

In a typical procedure, the leaves of Grevillea gillivrayi (75 g) or the roots of Pistia
stratiotes (7.85 g) were air-dried at room temperature then ground into a powder with
a granulometry of 1.5 mm. The powder was heated at 550 ◦C for 4 h, producing Eco-
CaMnOx-Gg (3.75 g) and Eco-MnOx-Ps (2.64 g). On average, weight loss was 95% for
Grevillea gillivrayi and 65% for Pistia stratiotes.

Preparation of Green HCl (6 M)

Leaves of sorrel or Rumex acetosa (38 g) were ground, slightly heated and stirred. An
aqueous solution of oxalic acid was obtained (pH ≈ 2.5). The biomass was removed by
filtration. Sodium chloride (10 g) was added to the mixture. The mixture was distilled
using water as an azeotrope and produced 10 mL of a 6 M hydrochloric acid solution [44].

Preparation of Eco-MnCl-Gg and Eco-MnCl-Ps

In a typical procedure, Eco-CaMnOx (50 g) was introduced into a flask and green HCl
(6 M; 500 mL) was added cautiously. The resulting suspension was heated up at 85 ◦C and
stirred for 5 h. The suspension was then cooled down, filtered and washed three times
with green HCl (6 M). Water was removed under reduced pressure and the obtained solid
was dried at 85 ◦C for 24 h, producing Eco-MnCl, which was kept in a desiccator.

Preparation of Eco-NaMnOx-Gg and Eco-NaMnOx-Ps

In a typical procedure, Eco-MnCl (30 g, 36 mmol of Mn, 1 eq.) was dissolved in distilled
water (300 mL). H2O2 (40% w/w in H2O; 108 mmol, 3 eq.) was added while stirring. After
10 min, NaOH (19 M; 1.4 mmol, 40 eq.) was cautiously added. The suspension was stirred
for 1.5 h at room temperature then filtered and washed three times with distilled water.
The obtained solid was placed at 85 ◦C for 24 h, producing Eco-NaMnOx.

Preparation of Eco-MnOx-Ps Supported on MK10

Eco-MnOx-Ps (500 mg) and MK10 (1 g) were introduced into a flask containing
distilled water (20 mL) at 90 ◦C while stirring. The mixture was stirred under reflux for 8 h,
then filtered and washed three times with distilled water. The solid was placed at 85 ◦C for
24 h.

3.2.2. Preparation of Citric Acid Functionalised Coffee Grounds

Coffee grounds were rinsed thoroughly with hot water until elimination of soluble
products, then placed at 85 ◦C for 24 h. The resulting coffee grounds (5 g) and citric acid
(4 g) were introduced into a flask containing anhydrous ethanol (20 mL) and stirred under
reflux for 1 h. Ethanol was then evaporated, and the solid was placed at 120 ◦C for 12 h
then the solid was put in distilled water (20 mL) at room temperature while stirring. After
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15 min, the suspension was filtered and washed with distilled water. The resulting solid
was placed at 85 ◦C for 24 h.

3.2.3. General Procedures for the Synthesis of Oxyterpenes
Synthesis of ß-Pinene Oxide 2

In a typical procedure, ß-pinene 1 (1.7 mmol, 1 eq.), ecocatalyst (8.5 µmol, 0.005 eq. of
Mn) and NaHCO3 (s) (8.5 mmol, 5 eq.) were introduced in a flask containing distilled water
(20 mL) and acetone (20 mL) at 30 ◦C for 10 min. H2O2 (aq.) (40% w/w in H2O; 8.5 mmol,
5 eq.) was added dropwise for 2 h. After 2 h, the suspension was filtered and extracted
three times with ethyl acetate. The organic layers were collected together and dried using
anhydrous MgSO4. The solvent was then evaporated. If the reaction was executed on a
larger scale, ß-pinene oxide was isolated by distillation under vacuum with a cooled trap
(see Supplementary Materials).

Isomer A (83%):
1H NMR (400 MHz, acetone_d6): δ (ppm): 0.93 (s 3H, H10); 1.24 (s, 3H, H9); 1.45 (t,

1H, H2, J = 5.33 Hz); 1.60 (d, 1H, H8a, J = 10.22 Hz); 1.65–1.74 (m, 1 H, H6a); 1.82–1.89 (m,
2H, H5); 1.94–2.00 (m, 1H, H4); 2.07–2.13 (m, 1H, H6b); 2.23–2.29 (m, 1H, H8b); 2.51 (d, 1H,
H7a, J = 5.16 Hz); 2.68 (d, 1H, H7b, J = 5.16 Hz).

13C NMR (100 MHz, acetone_d6): δ (ppm): 21 (C10); 23 (C5); 24 (C6/C8); 26 (C6/C8);
26 (C9); 41 (C4); 42 (C3); 50 (C2); 56 (C7); 61 (C1).

IR: 1374, 1461, 2873, 2920, 2979, 3028 cm−1.
Isomer B (17%)
1H NMR (400 MHz, acetone_d6): δ (ppm): 0.93 (s 3H, H10); 1.24 (s, 3H, H9); 1.45 (t,

1H, H2, J = 5.33 Hz); 1.60 (d, 1H, H8a, J = 10.22 Hz); 1.65–1.74 (m, 1H, H6a); 1.82–1.89 (m,
2H, H5); 1.94–2.00 (m, 1H, H4); 2.07–2.13 (m, 1H, H6b); 2.23–2.29 (m, 1H, H8b); 2.38 (d, 1H,
H7a, J = 5.16 Hz); 2.45 (d, 1H, H7b, J = 5.16 Hz).

13C NMR (100 MHz, acetone_d6): δ (ppm): 21 (C10); 22 (C5); 23 (C6/C8); 25 (C6/C8);
26 (C9); 41 (C4); 41 (C3); 49 (C2); 56 (C7); 61 (C1).

IR: 1374, 1461, 2873, 2920, 2979, 3028 cm−1.

Synthesis of Myrtenol 3

In a typical procedure, ß-pinene oxide (2) (0.5 mmol) and a source of acid (2.5 mmol,
5 eq.) were introduced in a flask containing CPME (cyclopentyl methyl ether; 10 mL) under
reflux. After 10 h, the suspension was filtered and washed three times with ethyl acetate.
The filtrate was collected, dried using anhydrous MgSO4 and its solvent evaporated.
Myrtenol was purified on a silica column using an eluant of 50% of ethyl acetate and 50%
of petroleum ether.

1H NMR (500 MHz, acetone_d6): δ (ppm): 0.85 (s, 3H, H10); 1.17 (d, 1H, H8a,
J = 8.52 Hz); 1.29 (s, 3H, H9); 2.05–2.15 (m, 2H, H2–H4); 2.18–2.34 (m, 2H, H5); 2.37–2.42
(m, 1H, H8b, J = 8.52 Hz, 5.57 Hz, 11.26 Hz); 3.91 (s, 2H, H7); 5.43 (m, 1H, H6).

13C NMR (500 MHz, acetone_d6): δ (ppm): 20.58 (C10); 25.80 (C9); 30.89 (C5); 31.33
(C8); 37.70 (C3); 41.05 (C4); 43.12 (C2); 64.60 (C7); 115.77 (C6); 148.74 (C1).

One pot Synthesis of 7-Hydroxy-α-terpineol 4 from β-Pinene 1

Formation of 7-hydroxyterpineol 4 is a one-pot synthesis which follows directly ß-
pinene epoxidation. In a typical procedure, ß-pinene 1 (1.7 mmol, 1 eq.), ecocatalyst
(8.5 µmol, 0.005 eq. of Mn) and NaHCO3 (s) (8.5 mmol, 5 eq.) were placed in a mixture of
distilled water (20 mL) and acetone (20 mL) at 30 ◦C for 10 min while stirring. H2O2 (aq.)
(40% w/w in H2O; 8.5 mmol, 5 eq.) was added dropwise for 2 h using a syringe-pushing
device. After 2 h, oxalic acid (13 mmol, 8 eq.) was added into the mixture. This was stirred
for 1 more hour at 30 ◦C then filtered and extracted three times with ethyl acetate. The
organic layers were collected together and extracted with a saturated solution of NaHCO3,
then with brine before being dried using anhydrous MgSO4. The solvent was evaporated.
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7-hydroxy-α-terpineol was purified on a silica column with a gradient of 100% cyclohexane
to 100% ethyl acetate in 30 min followed by 10 min at 100% ethyl acetate.

1H NMR (400 MHz, acetone_d6): δ (ppm): 1.12 (s, 3H, H10); 1.14 (s, 3H, H9); 1.19–1,25
(m, 1H, H3a); 1.80–1.87 (m, 1H, H5a); 1.94 (m, 1H, H4, J = 17.11 Hz, 11.94 Hz, 5.16 Hz,
2.09 Hz); 1.96–2.00 (m, 2H, H2a–H3b); 2.08–2.14 (m, 2H, H2b–H5b); 3.13 (s, 1H, H12); 3.54
(t, 1H, H11); 3.86–3.93 (m, 2H, H7); 5.62 (s, 1H, H6).

13C NMR (100 MHz, acetone_d6): δ (ppm): 24 (C3); 27 (C10); 27 (C2/C5); 27 (C2/C5);
28 (C9); 46 (C4); 67 (C7); 72 (C8); 122 (C6); 139 (C1).

IR: 1674, 2842, 2864, 2885, 2923, 2976, 3285 cm−1.

Sequential Synthesis of 7-Hydroxy-α-terpineol 4 from β-Pinene Oxide 2

In a typical procedure, ß-pinene oxide 2 (0.25 mmol, 1 eq.) was dissolved in distilled
water (5 mL) and acetone (5 mL). Hydrochloric acid (0.11 mol.L−1, 3 eq.) was added and the
reaction mixture was stirred at room temperature for 1 h. It was extracted three times with
ethyl acetate. The organic layers were collected together and extracted with a saturated
solution of NaHCO3, then with brine before being dried using anhydrous MgSO4. The
solvent was evaporated.

Synthesis of Perillyl Alcohol 5

In a typical procedure, ß-pinene oxide 2 (0.5 mmol) and catalyst (85 mg) were in-
troduced in a flask containing CPME (20 mL) at room temperature. After 10 min, the
suspension was filtered and washed three times with ethyl acetate. The filtrate was col-
lected and its solvent was evaporated. Perillyl alcohol was purified on a silica column with
a gradient of 100% cyclohexane to 90% cyclohexane: 10% ethyl acetate in 10 min followed
by 10 min at 90% cyclohexane: 10% ethyl acetate.

1H NMR (400 MHz, acetone_d6): δ (ppm): 1.40–1.48 (m, 1H, H3a); 1.72 (s, 3H, H10);
1.79–1.84 (m, 1H, H3b); 1.87–1.96 (m, 1H, H5a); 2.07–2.17 (m, 4H, H2-H4-H5b); 3.66 (s, 1H,
HOH); 3.86–3.93 (m, 2H, H7); 4.70 (s, 2H, H9); 5.64 (s, 1H, H6).

13C NMR (100 MHz, acetone_d6): δ (ppm): 21 (C10); 27 (C2); 28 (C3); 31 (C5); 42 (C4);
67 (C7); 109 (C9); 121 (C6); 139 (C1); 151 (C8).

IR: 1375, 1434, 1646, 2837, 2923, 2964, 3075, 3318 cm−1.

Synthesis of Perillaldehyde 6

In a typical procedure, perillyl alcohol 5 (4 mmol, 1 eq.), Eco-NaMnOx-Ps (8 mmol,
2 eq. of Mn) and CuO (16 mmol, 4 eq.) were introduced in a flask containing cyclohexane
(20 mL) under reflux and an O2 atmosphere for 2 h. The O2 atmosphere was ensured by
using a bottle of dioxygene with an exit pressure of 0.1 mbar. The mixture was filtered
and washed three times with ethyl acetate. The filtrate was collected, and its solvent was
evaporated. Perillaldehyde was purified on a silica column using an eluant of 10% ethyl
acetate and 90% of cyclohexane.

1H NMR (400 MHz, acetone_d6): δ (ppm): 1.40–1.47 (m, 1H, H3b); 1.76 (s, 3H, H10);
1.93–1.88 (m, 1H, H4); 2.11–2.14 (m, 1H, H3a); 2.29–2.23 (m, 2H, H2); 2.40–2.32 (m, 1H,
H5b); 2.53–2.44 (m, 1H, H5a); 4.76–4.74 (m, 1H, H9b); 4.78–4.76 (m, 1H, H9a); 6.92 (m, 1H,
H6); 9.44 (s, 1H, H7).

13C NMR (100 MHz, acetone_d6): δ (ppm): 20 (C10); 22 (C2); 27 (C3); 32 (C5); 41 (C4);
110 (C9); 142 (C1); 149 (C8); 151 (C6); 194 (C7).

IR: 888, 1166, 1376, 1435, 1643, 1680, 2720, 2811, 2929, 2966, 3079 cm−1.

Synthesis of Cuminaldehyde 7

In a typical procedure, perillaldehyde 6 (0.5 mmol, 1 eq.), ecocatalyst (1.3 mmol, 2.6 eq.
of Mn) and citric acid functionalised coffee grounds (500 mg) were introduced in a flask
containing CPME (2 mL) under reflux. After 5 h, the suspension was filtered and washed
three times with ethyl acetate. The filtrate was collected, and its solvent was evaporated.



Molecules 2021, 26, 7194 15 of 17

Cuminaldehyde was purified on a silica column using an eluant of 50% of diethyl ether
and 50% of petroleum ether.

1H NMR (400 MHz, acetone_d6): δ (ppm): 1.26 (d, 6H, H9–H10, J = 6.87 Hz); 3.01 (spt,
1H, H8, J = 6.87 Hz); 7.48 (d, 2H, H3–H5, J = 8.35 Hz); 7.85 (d, 2H, H2–H6, J = 8.35 Hz); 9.99
(s, 1H, H7).

13C NMR (100 MHz, acetone_d6): δ (ppm): 23 (C9-C10); 128 (C3-C5); 131 (C2-C6); 136
(C1); 157 (C4); 192 (C7).

4. Conclusions

Although challenging because of their low stability, the synthesis of six cyclic oxyter-
penes was achieved in moderate to good yields. The syntheses of ß-pinene oxide, perillyl
alcohol and perillaldehyde led to yields equivalent to those found in the literature. In
addition, new selective syntheses of myrtenol, 7-hydroxy-α-terpineol and cuminaldehyde
are reported here for the first time.

The oxidation reactions were successfully catalysed using a new generation of ecocat-
alysts. This new generation of ecocatalysts, derived from Mn-rich water lettuce, presents a
double environmental advantage, as the ecocatalysts are biosourced and the plant species
is an invasive alien species. Its harvest is, therefore, valuable to the environment. For the
reactions in which the ecocatalysts could not produce the desired product, other natural or
biosourced catalysts were found to be efficient.

Moreover, only green solvents and renewable resources were systematically used in
mild conditions for each of the six syntheses. Our strategy, based on using a toolbox of eco-
catalysts, which combines synthetic performances and environmental benefits, integrates
the pillars of sustainability.
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