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A convolutional neural network 
based tool for predicting protein 
AMPylation sites from binary 
profile representation
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AMPylation is an emerging post-translational modification that occurs on the hydroxyl group of 
threonine, serine, or tyrosine via a phosphodiester bond. AMPylators catalyze this process as covalent 
attachment of adenosine monophosphate to the amino acid side chain of a peptide. Recent studies 
have shown that this post-translational modification is directly responsible for the regulation of 
neurodevelopment and neurodegeneration and is also involved in many physiological processes. 
Despite the importance of this post-translational modification, there is no peptide sequence dataset 
available for conducting computation analysis. Therefore, so far, no computational approach has been 
proposed for predicting AMPylation. In this study, we introduce a new dataset of this distinct post-
translational modification and develop a new machine learning tool using a deep convolutional neural 
network called DeepAmp to predict AMPylation sites in proteins. DeepAmp achieves 77.7%, 79.1%, 
76.8%, 0.55, and 0.85 in terms of Accuracy, Sensitivity, Specificity, Matthews Correlation Coefficient, 
and Area Under Curve for AMPylation site prediction task, respectively. As the first machine learning 
model, DeepAmp demonstrate promising results which highlight its potential to solve this problem. 
Our presented dataset and DeepAmp as a standalone predictor are publicly available at https:// github. 
com/ Mehed iAzim/ DeepA mp.

Post Translational Modification (PTM) is the enzymic or chemical modification of a protein after it is translated 
or synthesized in the ribosome. The PTMs are occurred via removal of parts of a translated protein, covalent 
modifications, or degradation of modified  proteins1,2. These modifications provide important insight into various 
cellular functions and biological processes of proteins such as cellular dynamics and elasticity.

PTMs are important mechanisms to increase proteomic diversity, and play a vital role in functional proteomic 
because they regulate activity, localization, and interaction with other cellular molecules such as proteins, nucleic 
acids, lipids, and  cofactors3. They can impact the structure, electrophilicity, and interactions of proteins. PTMs 
also regulate protein folding via targeting specific subcellular compartments, interacting with ligands or other 
proteins, or by initiating a change in their functional state including signaling or catalytic  activity4. A wide range 
of PTMs have been identified so far. The common PTMs include phosphorylation, glycosylation, ubiquitination, 
nitrosylation, methylation, acetylation, lipidation, and proteolysis which influence almost all aspects of normal 
cell biology and  pathogenesis5.

AMPylation is an emerging Post Translational Modification mediated by a bacterial virulence factor that 
transfers Adenosine Monophosphate (AMP) from Adenosine Triphosphate (ATP) to a threonine residue of 
eukaryotic  substrates6,7. AMPylation is the covalent attachment of AMP to a protein or  peptide8. It has been 
studied exclusively with the Fic domain proteins, which are preserved and found in proteins stretching from 
bacteria to humans. By adding AMP to Rho-family GTPases, these enzymes can thereby mediate both bacte-
rial pathogenesis and eukaryotic  signaling9,10. The most common and stable form of AMPylation occurs on 
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the hydroxyl group of threonine, serine, or tyrosine via a phosphodiester bond. In the AMPylation process, 
Adenosine Monophosphate (AMP) gets covalently attached to the amino acid side chain of a protein molecule. 
AMPylation involves a phosphodiester bond between a hydroxyl group of the molecule undergoing AMPylation 
and the phosphate group of the adenosine monophosphate nucleotide (i.e. adenylic acid)14. The enzymes that are 
capable of catalyzing this process are called AMPylators. Threonine (T) and Tyrosine (Y) amino acids are usual 
targets of AMPylation while this PTM can sometimes be observed in Serine (S) as well.

Recent proteomics studies demonstrated that this PTM is more common than generally acknowledged and 
it is emerging as a significant regulatory mechanism for both eukaryotic and prokaryotic cells. It is impelled in a 
vast area of biological processes stretching from regulation of nitrogen metabolism in bacteria and regulation of 
signaling pathways to pathogenesis in several animal  species11–14. AMPylation has also found to play a significant 
role in the regulation of neurodevelopment and  neurodegeneration15.

Experimental approaches used to determine PTM sites are expensive, laborious, and time taking. Hence, many 
studies have been proposed to predict PTM sites using fast and cost effective computational  approaches16–28. 
In 2015, Khater and Mohanty, used SVM and HMM to develop a computational protocol for identification of 
AMPylation domains and their classification into various functional subfamilies such as, catalyzing AMPyla-
tion, deAMPylation, phosphorylation, and phosphocholine  transfer29. However, they did not directly predict if 
a given peptide is AMPylation or non-AMPylation.

To the best of our knowledge, so far no computational approach has been proposed for predicting AMPyla-
tion sites of Fic domain protein. One of the main reasons is that there is no AMPylation dataset available to be 
used for this task. In this study, we are presenting a new dataset of protein AMPylation sites. Furthermore, we 
also propose a new deep convolutional neural network (CNN) model called DeepAmp for predicting protein 
AMPylation sites on the newly found dataset of AMP modified proteins. DeepAmp achieves 77.7%, 79.1%, 
76.8%, 0.55, and 0.85 in terms of Accuracy, Sensitivity, Specificity, Matthews Correlation Coefficient (MCC), 
and Area Under Curve (AUC) for AMPylation site prediction task, respectively. As the first machine learning 
model, DeepAmp demonstrate promising results which highlight its potential to solve this problem. We believe 
this study will help researchers immensely in terms of mitigating the current research gap in this subject. Our 
presented dataset and DeepAmp as an standalone predictor are publicly available at https:// github. com/ Mehed 
iAzim/ DeepA mp.

Results and discussion
Evaluation metrics. In order to ensure standardized evaluation of our model and to provide more insights 
into our results, we calculate the Accuracy, Sensitivity, Specificity, and Mathews correlation coefficient (MCC) as 
the evaluation metrics. These metrics are characterized by the following equations:

where tp denotes true positive, and tn, fp, fn denote true negative, false positive, and false negative, respectively.
Additionally, to show the model’s distinguishing capability between AMPylated and non-AMPylated sites, 

we calculated the Area Under the Curve (AUC). AUC measures the ability of a classifier to distinguish between 
classes. The higher the AUC, the better the performance of the model at distinguishing between the positive and 
negative instances. AUC value of 1 indicates that the classifier can differentiate between all the Positive and the 
Negative class points, correctly. While, an AUC value of 0 indicates poor  performance30.

Comparison with different machine learning techniques. Since DeepAmp is the first computational 
model proposed to predict AMPylation PTM, it is not possible to compare model performance with any other 
studies. However, to investigate the effectiveness of CNN to build DeepAmp, we compare it with other ML 
models to solve this problem. Results achieved using DeepAmp compared to other ML models including Sup-
port Vector Machine (SVM), Random Forest (RF), Linear Regression (LR), Decision Tree (DT), and K-Nearest 
Neighbor (KNN) using same set of features are presented in Tables 1 and 2 for fivefold and tenfold cross-valida-
tions, respectively. We present the average of 10 runs of fivefold and tenfold cross-validations model for all the 
metrics in Tables 1 and 2. As shown in these tables, DeepAmp achieves significantly better results in terms of all 
four metrics than other machine learning methods which are investigated in this study.

As shown in Table 1, DeepAmp achieves 75.9%, 77.2%, 75.2%, 0.52, and 0.84 in terms of Accuracy, Sensitivity, 
Specificity, MCC, and AUC for AMPylation site prediction task using fivefold cross validation, respectively. Also, 
according to Table 2, DeepAmp achieves 77.7%, 79.1%, 76.8%, 0.55, and 0.85 in terms of Accuracy, Sensitivity, 
Specificity, MCC, and AUC for AMPylation site prediction task using tenfold cross validation, respectively. As 

(1)Accuracy =
tp+ tn

tp+ tn+ fp+ fn
× 100,

(2)Sensitivity =
tp

tp+ fn
× 100,

(3)Specificity =
tn

tn+ fp
× 100,

(4)MCC =
(tp× tn)− (fp× fn)

√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
,
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shown in these Tables, the prediction accuracy and MCC of other classifiers explored in this study are all below 
70.0% and 0.30, respectively which demonstrate the effectiveness of using CNN to build DeepAmp.

As shown in Tables 1 and 2, the results using tenfold cross-validation are slightly better than those reported 
using fivefold cross-validation. This can be associated with larger number of samples used to train our model in 
tenfold cross-validation. In k-fold we evaluate the model on 1/k part of the data and train on the rest. Therefore, 
for our dataset, in tenfold we are using 362 samples for training while in fivefold we are using 320 samples for 
training in each iteration. As a result, there are more samples available to train the model using tenfold rather 
than 5-fold. This also suggest that by having a larger dataset, DeepAmp is able to achieve even better results.

In Fig. 1, the receiver operating characteristic curves (ROC curves) clearly illustrate the capability of distin-
guishing the AMPylation and non-AMPylation sites of the DeepAmp model. To provide further information for 
the readers, the ROC curve for fivefold and tenfold cross validation (ROC curve for each fold) are also provided 
as supplementary materials (Figs. S1, S2). Also, as shown in Tables 1 and 2, in terms of the MCC score, the other 
ML models display mediocre classification quality, conversely, DeepAmp shows significant improvement in 
the classification quality. It demonstrate the effectiveness of DeepAmp over other classifiers in identification of 
positive and negative samples, consistently.

Methods and materials
This section describes the proposed method and benchmark dataset presented in this study.

Table 1.  Different models result on AMPylation (fivefold CV).

Model Accuracy Sensitivity Specificity MCC AUC 

DeepAMP 75.9 77.2 75.2 0.52 0.84

LR 65.5 49.0 75.6 0.26 0.68

SVM 62.5 47.7 71.6 0.20 0.65

DT 59.6 51.0 64.8 0.16 0.57

KNN 46.4 86.3 22.0 0.10 0.55

RF 66.0 39.9 82.0 0.25 0.67

Table 2.  Different models result on AMPylation dataset (10 fold CV).

Model Accuracy Sensitivity Specificity MCC AUC 

DeepAMP 77.7 79.0 76.8 0.55 0.85

LR 66.2 51.0 75.6 0.28 0.69

SVM 65.0 51.6 73.2 0.26 0.66

DT 61.7 61.4 62.0 0.23 0.67

KNN 46.4 86.9 21.6 0.11 0.56

RF 67.0 40.5 83.2 0.27 0.72

Figure 1.  Receiver operating characteristic (ROC) curves for 5-fold CV and 10-fold CV DeepAmp model.
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Benchmark dataset. Kielkowski et al.9 has identified the AMPylation in intact cancer cells via LC-MS/MS 
as well as imaging methods. Using a pronucleotide probe they identified the protein AMPylation in living cells. 
They synthesized an N6-propargyl adenosine phosporamidate proneucleotide (pro-N6pA) and treated differ-
ent cell lines such as HeLa, SH-SY5Y, etc. to identify the sites. The AMPylated proteins found here are engaged 
in a variety of metabolic pathways, including a widely conserved key regulator of glycolysis ATP-dependent 
6-phosphofructokinase (PFKP), proteolysis (CTSA, CTSB), regulation of PTMs (PPME1), and UPR (HSPA5 
and SQSTM1). They identified a total of 162 protein sequences to be involved in this distinct modification. We 
investigated these proteins through UniProt database and identified a total of 133 unique protein sequences 
which are used to build our dataset.

We then use CD-Hit to remove proteins with over 40% sequential similarities to discard redundancy in the 
 dataset31. The resulting dataset contains 130 unique proteins with less than 40% sequential similarities. After 
that, for each AMPylation and non AMPylation site, a 31-residue peptide containing central AMPylation /non 
AMPylation site with 15 residues upstream and 15 residues downstream was extracted. We tried different length 
of peptide-containing which among them, using 31-residue peptides attained the best results. To build the pep-
tides sequence for AMPylation sites at the two ends of the proteins with less than 15 neighboring amino acids 
on each side, we use equalized by padding with “X” residue. As a result, a total of 153 peptides with AMPylated 
sites and 28872 peptides with non-AMPylated sites were extracted from 130 protein sequences. From the 28872 
non-AMPylated sites, we selected 250 sequences randomly to balance our dataset having almost 2:1 ratio of nega-
tive to positive samples. Thus our final dataset of 403 peptide sequences with 153 AMPylated peptides and 250 
non- AMPylated peptides was created. This dataset is available at https:// github. com/ Mehed iAzim/ DeepA mp.

Feature encoding. Feature encoding is an important step in building an effective machine learning model. 
Binary profile features (also known as one-hot-encoding) are straightforward, yet shown to be very effective for 
the prediction of different functionalities in the multi-omics  dataset32,33. In this study, we generate Binary profiles 
for each peptide, by representing each amino acid as a vector of 20 dimensions in term of one hot encoding. 
For instance, Alanine is replaced by a 20 size one hot vector which is [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]. As 
a result, a sequence of length L was represented by a vector of dimensions L 20. Considering L= 31 (length of 
peptides), we extract 620 features for each peptide (31 20). This feature encoding process is depicted in Fig. 2. 
Considering that we use convolutional neural network to build our model, binary profile can potentially provide 
extensive information to train our model.

Classification technique. Convolutional neural network (CNN) is widely used in computational biology 
for predicting different biological and chemical functionalities and entities from multi-omics datasets. It has 
shown tremendous success in the prediction of different PTMs, cancer cell types classification tasks, origins of 
replication prediction, and many  more34–36. Like any other neural network, a CNN consists of an input layer, hid-
den layer, and an output layer. Extracting feature maps using convolution operation makes the CNN architecture 
different from the regular neural nets. Unlike hidden layers of regular neural net which basically constructed by 
a set of fully connected neurons, the hidden layers of CNN mainly consist of a convolutional layer, pooling layer, 
and fully connected  layer37.

The CNN architecture we used is depicted in Fig. 3. Our CNN classifier consists of three Conv1D layers with 
the number of filters and kernel sizes of [24, 7], [16, 5] and [8, 3], respectively. We also use two Maxpooling1D 
layers as well as two Dense layers. The input is the L 20 matrix where L is the length of the protein sequence (31). 
We applied one-dimensional kernels to the input vectors. The output of our first 1-D convolutional layer which 
can also be thought of as a motif scanner is then passed to the max-pooling layer. Among the three convolutional 
layers we used, max-pooling was applied in the first two of them. The last convolutional layer output is directly 
passed to a fully connected layer and the prediction layer. Rectified Linear Unit (ReLU) was used as activation 
function for each intermediate layer as it is popularly used for its simplicity and  effectiveness38,39. In each of the 
convolutional layers and the fully connected layer, we used dropout to avoid  overfitting40.

Figure 2.  Binary profile feature generation of peptide sequences.
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Even though for computer vision problems deeper CNN models provide the best  result41, for biological 
sequence data which are presented in term of matrix as input, different studies have shown that increasing the 
depth of the convolutional layer does not necessarily lead to improvement in prediction accuracy specially 
for the smaller datasets similar to  ours42. Furthermore, it reduces the chance of overfitting and requires fewer 
instances for  training40,43. In order to prevent overfitting, we develop a shallow CNN architecture. With only 
7825 trainable parameters the model provides a balanced result. Additionally, to prevent the overfitting we use 
two regularization methods namely, dropout and L2 for each Conv1D.

Evaluation methods. In order to measure the efficacy of DeepAmp, k-fold cross-validation is used here. 
In k-fold cross-validation, the dataset is split into k subsets. From this k subset, k-1 is used for training and the 
remaining fold is used for validation. This way the whole dataset gets used for training. Since the training size 
gets bigger, the classifiers tend to show better results. We used stratified k-fold cross validation which maintains 
a fixed ratio of negative and positive sites in the training and validation  dataset44. In this study, we evaluate our 
model using k = 5 and 10 as two common values for this parameter.

Conclusion
In this study, we presented a new dataset that can be used to evaluate computational methods specially machine 
learning based models to predict AMPylation PTM. On top of that, we proposed a new deep learning-based tool 
called DeepAmp for predicting AMPylation using CNN and binary profile feature vector. DeepAmp achieves an 
accuracy of 77.7% and sensitivity, specificity, MCC, and AUC score of 79.1%, 76.8%, 0.55, and 0.85 respectively 
for tenfold cross-validation. DeepAmp also significantly outperforms widely used machine learning models 
including Support Vector Machine, K-nearest Neighbor, and Random Forest for predicting AMPylation sites. 
Due to the limitation of the sample size available, prediction with high accuracy is strenuous. In the future refine-
ment of our work, we aim to incorporate new AMPylation sites into the dataset and create a larger database for 
AMPylation PTM. Furthermore, we aim to ameliorate our predictor’s performance by using different feature 
sets and deeper CNN architectures. Our presented dataset and DeepAmp as an standalone predictor are publicly 
available at https:// github. com/ Mehed iAzim/ DeepA mp.
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