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LETTER TO EDITOR

Integrative analysis of multi-omics data reveals the
heterogeneity and signatures of immune therapy
for small cell lung cancer

Dear Editor,
Small cell lung cancer (SCLC) features with high hetero-
geneity and poor prognosis. The major treatment strategy
for SCLC remains combination chemotherapy over past
decades, with only minor improvements.1 And the appli-
cation of immunotherapy has no impressive benefit for
SCLCpatients.2 In this study,we identify a novel subtype of
SCLC (SCLC-I) with immunosuppressive feature and high
genomic instability. Importantly, we find that POU2F3
is effective in predicting SCLC-I, and the POU2F3-high
patients exhibit better responses to immunotherapy.
We performed weighted correlation network analysis

(WGCNA)3 to explore heterogeneity of SCLC through inte-
grating transcriptomic data detailed in the Supplementary
Material (SM), including 19 Chinese surgical samples and
112 samples from two public data.4,5 We firstly transformed
gene expression data into co-expression module to cap-
ture genes with similar expression pattern and extracted 17
coherent modules. All SCLC samples were clustered into
four subtypes (Figure 1A), which showed no obvious dif-
ference in survival (Figure 1B). Each subtype showed com-
parable percentages in these three datasets (Figure 1A, Fig-
ure S5A), indicative of equal contribution of these datasets
in the integrative analysis.
To compare our findings with the previous study, in

which SCLC was classified into SCLC-A, SCLC-N, SCLC-
P and SCLC-Y,6 we evaluated the relative expression of
these markers in our clusters. We observed that cluster
2 and cluster 3 corresponded to the SCLC-A and SCLC-
N, respectively (Figure 1C). Consistent with the obser-
vation from Gay et al.,7 we found that YAP1 had low
expression and did not exclusively define a subtype of
SCLC (Figure 1C). We found that CCSP (SCGB1A1), a
secreted protein mainly produced by club cells to main-
tain airway integrity,8 was specifically highly expressed
in cluster 4 (Figure 1E, Figure S3E), indicating that
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certain SCLC might originate from club cells. Here-
after, we named cluster 4 as SCLC-C. The cluster 1
showed low ASCL1 and NEUROD1 expression and high
POU2F3 and NOTCH2 expression (Figure 1C,D). Gene
set enrichment analysis (GSEA) demonstrated that the
interferon-gamma response, interferon-alpha response,
inflammatory response and IL-6/JAK/STAT3 signaling
were enriched in SCLC-I subtype (Figure 1F), which
clearly confirmed its immune-related characteristic. We
therefore named cluster 1 as ’immune subtype (SCLC-I)’.
Further analysis showed that the enrichment of

immune-related pathways, such as IL-10 signaling
and other interleukin-related pathways, in SCLC-I versus
other subtypes (Figure 2A, Figure S4B). Multiple immuno-
inhibitory factors such as PD1, IL-10, IDO1, CD96 and
BTLA, were highly expressed in SCLC-I (Figure 2B,E,
Figure S4). Immune cell infiltration is considered to
be primary immune signature and strongly associated
with the clinical outcome of cancer immunotherapies.9
Using ImmuCellAI,10 we found that the abundance of
dendritic cells, macrophage, induced regulatory T cells
(iTreg) and CD8+ T cells were significantly increased in
SCLC-I (Figure 2C). Moreover, we observed that most
of the chemokines, such as CXCL10, CCL17, CCL18,
were up-regulated in SCLC-I subtype (Figure 2D). Taken
together, SCLC-I subtype is featured with the activation of
immune checkpoint molecules and infiltration of immune
suppressive cells such as iTreg, which might help the
immune escape.
To explore the unique genetic alterations of each sub-

type, we performed analyses of 115 samples with avail-
able genomic sequencing data and RNA-sequencing data.
We found that each subtype harbored specific gene muta-
tions, for example, LRP1, CD163, MME, ABCB1 muta-
tions were frequently observed in SCLC-I (Figure 3A). In
comparison with other samples, SCLC-I group showed
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F IGURE 1 Subtyping 129 human small cell lung cancer (SCLC) using weighted gene co-expression network. (A) Heatmap of
eigenvectors of 17 network modules from weighted correlation network analysis (WGCNA). We combined three datasets after removing the
batch effect by ComBat from ‘sva’ package in R. We divided the network into modules according to the correlations between the genes. The
minimum size of the module was set as 10. We obtained 1016 genes for calculating adjacency matrix (power = 3). The co-expression network
was finally partitioned into 17 modules. All samples were divided into four clusters according to the module eigengenes by hierarchical
clustering analysis (Euclidean distance, ward.D2 linkage). (B) Survival analysis of four SCLC clusters. (C) Violin plots indicating the range of
expression of four markers (ASCL1, NEUROD1, YAP1 and POU2F3) among different clusters. (D) Violin plot of NOTCH2 level in each cluster.
(E) Violin plot of CCSP level in each cluster. (F) Gene set enrichment analysis (GSEA) with normalized enrichment score (NES) and Nominal
p-values for hallmark gene sets associated with four clusters. The brighter color of NES indicates the up-regulation of the pathway

significantly higher genetic alterations (Figure 3B,C),
which indicated the increased genomic instability. SCLC-I
hadmore gene amplifications on Chr2, Chr6, Chr11, Chr12
and Chr19, whereas SCLC-A hadmore gene amplifications
on Chr17, SCLC-N had more amplified genes on Chr9 and
Chr21, and SCLC-C had more amplified genes on Chr14

(Figure 3E, Table S2). Over 3000 genes were observed sig-
nificantly amplified with high alteration frequency (>50%)
in SCLC-I (Figure 3D, Table S2). Further analysis showed
that the cholesterol biosynthesis I pathway was signifi-
cantly enriched in SCLC-I subtype (Figure 3F). Consis-
tent with the GSEA result using gene expression profile
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F IGURE 2 Immune signatures in the four small cell lung cancer (SCLC) subtypes. (A) Representative gene set enrichment analysis plot
showing the enrichment of IL-10 signaling pathway in SCLC-I subtype. (B) Boxplots of PD1 expression in each cluster. (C) Relative abundance
of indicated immune cell types in each cluster (calculated using the ImmuCellAI algorithm). The Kruskal-Wallis test was conducted and
annotated as follows: ***p < 0.001, **p < 0.01, *p < 0.05. (D) Heatmap of chemokines expression in each cluster. Chemokines are secreted
proteins promoting immune cell infiltration and play an important role in tumour microenvironment. (E) The mean mRNA levels of
immunostimulators (up) and immunoinhibitors (bottom) in each cluster. Annotated colors represent four subtypes (Skyblue = SCLC-I,
Pink = SCLC-A, Gold = SCLC-N, and Grey = SCLC-C)

(Figure 1F), theWNT/beta-catenin signaling was enriched
in both SCLC-I and SCLC-N subtypes. Collectively, these
data show that SCLC-I subtype has higher level of genomic
instability and each subtype harbors unique gene muta-
tions and copy number variations.
To determine whether our findings have clinical rel-

evance, we then identified the biomarker for SCLC-I.
According to feature selection from random forest model,
we found that 10 genes (POU2F3, ANXA1, LRMP, GFI1B,
SLC7A14, PHYHIPL, MAP2, SYP, KCNK3 and CPE) were
most important in distinguishing SCLC-I from other
subtypes (Figure 4A, SM 6 and Figure S6A). Using these
genes to build random forest model on 100 sets of different
testing data, we got the average prediction accuracy of

92.74% and average score of area under curve (AUC) of
93.32% (Figure 4B, Table S3). Among 10 genes used for
SCLC-I prediction, POU2F3 stood out as the most signifi-
cantly up-regulated gene with high expression (Figures 4C
and 1C and Table S5). Moreover, the SCLC-P samples iden-
tified in the previous study6 were all included in SCLC-I
with up-regulated immune-related pathways (Figure S6C).
We further collected a cohort containing 28 relapsed

SCLC samples from patients receiving immunotherapy or
chemo-immunotherapy (Table S4, SM 7) and performed
immunohistochemical staining of POU2F3 in these spec-
imens (Figure 4D, Table S4). Our data showed that the
patients with high POU2F3 expression exhibited a sig-
nificantly improved objective response rate (ORR) to
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F IGURE 3 Copy number alterations and mutations in the four small cell lung cancer (SCLC) subtypes. (A) Top bar graph shows the
number of nucleotide substitution mutations in each patient. Tumour samples are arranged from left to right according to different subtypes.
Genes with high mutation rate or significantly mutated in each subtype (prop.test) are shown in waterfall plot. (B) Total number of gene
alterations (mutations, gene amplifications and deletions) in SCLC-I versus the rest of SCLC specimens. (C) Number of copy number
alteration genes (sum of amplified and loss genes) of all clusters. (D) Number of significant gain genes (p < 0.05) with high alteration
frequency (>50%) in four subtypes. (E) Correlation network analysis (CNA) heatmap across all chromosomes using median copy number in
each subtype. We replace copy number as follows: −2 <= 0, −1 <= 1, 0 <= 2, 1 <= 3, 2 <= 4 and greater. From outside to inside, there are
SCLC-I, SCLC-A, SCLC-N and SCLC-C. Some significant alteration genes in each subtype are highlighted in the inner ring. (F) Pathway
enrichment analysis (IPA) using significant amplified genes with high genetic alteration frequency (freq > 50%, p < 0.001 for SCLC-I, p < 0.05
for others) in each subtype. Heatmap is colored by ’−log10(p-value)’
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F IGURE 4 Patients with high POU2F3 levels respond well to second-line immunotherapy. (A) Importance of the 10 features from
100-times random sampling trainings. We built a random forest classifier based on the transcriptomic data to predict small cell lung cancer
(SCLC)-I subtype. We firstly performed 100-times random samplings to divide training data and testing data. We chose 1000 genes with the
highest coefficient of variation from training data to build each model. Then, we obtained the gene list ranked by Gini index. We counted the
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immunotherapy, with a high AUC of 0.813 (Figure 4E).
Moreover, the POU2F3 protein level was positively cor-
related with patient prognosis (Figure 4F). Importantly,
two patients with high POU2F3 level showed dramatic
regression of lung tumours (Figure 4G,H). The posi-
tive response to immunotherapy indicated the potentially
strong immune cell infiltration in POU2F3-high SCLC.
These results together supported that the SCLC-I patients
are more sensitive to immunotherapy, and POU2F3 might
serve as a biomarker for SCLC immunotherapy.
In conclusion, our work systematically uncovers the

transcriptomic and genomic heterogeneity in SCLC and
characterizes a novel immune subtype with high sensitiv-
ity to immunotherapy. We identified POU2F3 as a poten-
tial biomarkerwith a goodprediction power to assess SCLC
immunotherapy response. Gay et al. identifies an inflamed
subtype of SCLCwhich shows a significant overall survival
(OS) benefit relative to all other subtypes with the com-
bined chemotherapy and immunotherapy.7 In our study,
the immune subtype seems correspond to a combination
of SCLC-P and SCLC-I from Gay et al. cohorts. Although
we used a different method and biomarkers to identify this
special subtype of SCLC, both our study and Gay et al.
study have proven the potential of SCLC re-clustering in
current clinical immunotherapy. Of course, the small size
of the validation cohort is a limiting factor. Future clinical
efforts and larger cohorts are required to validate the effec-
tiveness of immunotherapy in this subtype.
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