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Abstract: Inflammatory Bowel Disease (IBD) is a multifactorial disorder that conceptually occurs as a
result of altered immune responses to commensal and/or pathogenic gut microbes in individuals
most susceptible to the disease. During Crohn’s Disease (CD) or Ulcerative Colitis (UC), two
components of the human IBD, distinct stages define the disease onset, severity, progression and
remission. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important
in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease
pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to
examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome
and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a
unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of
disease pathogenesis.
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1. Defining Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) is a prolonged and relapsing inflammation of all or part of
the gastrointestinal (GI) tract. Inflammation impairs the functioning of affected GI organs leading to
abdominal pain, persistent diarrhea, cramping, weight loss, rectal bleeding, and fatigue etc. IBD may
result in compromised quality and expectancy of life with increased risk for colorectal cancer [1,2].
The two primary types of IBD are Crohn’s Disease (CD) and Ulcerative Colitis (UC). CD affects the GI
tract anywhere from mouth to anus with the frequent presentation of abdominal pain, fever, weight
loss, and clinical signs of bowel obstruction or diarrhea [3]. UC on the other hand affects colon (large
intestine) alone, starting from rectum and extending proximally through the entire colon. Inflammation
in UC is restricted to the mucosal surface of the colon, manifesting as continuous areas of inflammation,
ulceration, edema and hemorrhage [4]. The pathology of CD is characterized by the T helper (Th) 1
response, which is mediated by high levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and
tissue-infiltrating Th17 cells. In contrast, the pathology of UC is characterized by the atypical Th2
response, mediated by high levels of Th17 cells [5,6].

2. Prevalence

The prevalence of IBD has gradually increased in recent years and varies according to geographical
location including urban vs. rural areas [7,8]. In the United States alone, one to two million people
have IBD while several million have it worldwide [7–9]. The prevalence of UC varies from 4.9 to
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505 per 100,000 inhabitants in Europe, 4.9 to 168.3 per 100,000 inhabitants in Asia and the Middle
East, and 37.5 to 248.6 per 100,000 inhabitants in North America. CD estimates range from 0.6 to 322
per 100,000 in Europe, 0.88 to 67.9 per 100,000 in Asia and the Middle East, and 16.7 to 318.5 per 100,000
in North America [7–11]. The prevalence of UC seems to increase with age [11–13]. In the last few
decades, an increase in incidence occurred in industrialized zones which earlier had low incidence
of IBD such as South Korea, China, India, Iran, Lebanon, Thailand, the French West Indies, North
Africa and Japan, has been reported [10,14]. IBD is thus emerging as an important health problem
worldwide. This condition mostly affects young people of both the sexes in the age group between 15
and 35 years [15]. Furthermore, IBD is associated with considerable healthcare costs [16,17]. Whereas
childhood onset IBD represents only 10% to 25% of all IBD cases, genetic research of pediatric IBD has
contributed new knowledge and revealed unsuspected pathways. A substantial proportion of patients
with monogenic diseases present with very early onset intestinal inflammation (at less than 10 years
of age) that is reminiscent of very early onset IBD. There is also considerable overlap with primary
immune-deficiencies and very early onset IBD, a topic which has been reviewed recently [18].

3. Multi-Factorial Causes of IBD

Despite numerous studies, the actual causes of IBD are not known. However, the development
and course of IBD may be affected by the complex interactions between genetic [19,20], environmental
including breast feeding, diet, smoking, drugs [9] etc., and microbial factors [21], producing sustained
inflammation supported by altered mucosal barrier and defects in immune system (Figure 1) [22].
The genetic basis of IBD was recognized early in clinical practice in view of the familial prevalence
of IBD, concordance rates in twin pairs and ethnic differences in disease susceptibility [23–27]. Most
identified and robustly replicated loci have been detected by means of genome-wide association
studies (GWAS) [19,28,29]. GWAS have identified 163 loci related to the development of IBD [30],
out of which 110 loci are shared between CD and UC, others are specifically associated with CD(30
loci) or UC (23 loci) [31]. These findings indicate that same mechanistic pathways and contribution
occur in both the disease conditions. In CD patients, the alterations in innate immunity genes, such as
NOD2 (also known as CARD 15), ATG16L1 (autophagy-related gene), and IRGM (immunity-related
GTPase family), have been reported. In addition, multiple genes implicated in the IL-23 pathway
(IL23R, IL12B, STAT3, JAK2 and TYK2) are associated with both UC and CD [32,33]. Association
of immune related genes to IBD susceptibility and the development of intestinal inflammation in
animal models with defective gastrointestinal immune response suggest that IBD may be caused by a
dysregulated gastrointestinal immune response towards microbiota. Moreover, not all individuals
with IBD-associated genetic variants develop the disease. Classic loss-of-function variants play only
a disease initiation role in pathogenesis. Tobacco smoking has been consistently associated with the
increased disease risk to CD but appears to be protective in UC [34]. Some studies suggest the role
of diet in the etiology of IBD. Protein rich “Western” style diet has been shown to be associated with
an increased risk for the development of CD, and possibly for the UC as well [35]. Antibiotics and
non-steroidal anti-inflammatory agents (NSAIDs) are recognized as being capable of inducing or
reactivating both CD and UC, and are thought to influence the progress of IBD by directly damaging
the intestinal mucosa through the reduction of prostaglandin production [36]. Social stress has also
been proposed to have a role in both diseases. In fact, mood components of perceived stress, such as
depression, may play a strong role in mediating the deterioration of IBD [37]. Finally, while genetic
contribution towards IBD pathogenesis has been enumerated, more recently, epigenetic factors have
been shown to interact with the environment and genome and these factors can affect the development
and progression of IBD. Thus, further investigations are required from all angles to explain the etiology
of this disease [38]. Another related disorder, irritable bowel syndrome (IBS), is a disorder of the
interaction between the brain and the GI tract, although abnormalities in the gut microbiota are
implicated in inflammation and altered bowel function [39], Younger age, prolonged fever, anxiety,
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depression, and history of childhood physical and psychological abuse are often associated with the
development of IBS after acute infectious gastroenteritis [40].
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Figure 1. The cross-talk amongst the intestinal epithelium, gut microbiota, environmental factors and 
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disease onset such as microbial flora, environmental factors, or the host immune response by directly 
interacting with those factors. Both the innate and adaptive immune responses show a disturbance in 
homeostasis. Flares of diseases have been associated with environmental factors, such as use of 
antibiotics and NSAIDs, stress and smoking. These factors or infections are thought to alter the barrier 
function of the epithelium, leading to loss of immune tolerance to intestinal antigens. The role of 
genetic factors is indicated by familial clustering of cases and higher incidence in monozygotic twins. 
Host genetics can itself influence the gut microbial composition or immune response to affect the 
disease pathogenesis. 

4. Microbiota in Health 

The human body is colonized by a vast number of microorganisms representing the so-called normal 
microflora, the microbiota. The microbiota comprises mainly bacteria; however, viruses, fungi and 
protozoans live in a mutually beneficial relationship with the host. Microbiota colonizes the surface of the 
human body exposed to the external environment, including the skin, oral cavity, respiratory, urogenital 
and gastrointestinal tract. Of these, the gastrointestinal (GI) tract is the most densely colonized organ with 
about 100 trillion diverse microbes which is 10 times the number of all body cells [41] although recent 
studies refute this claim suggesting that there is a ratio of 1.3 bacteria to every one human cell [42]. The 
microbes of gut represent an ecosystem of the highest complexity [43] comprising over 1000 bacterial 
species and 150-fold more genes than found in the human genome [44,45]. The number and composition 
of microbiota varies in different regions of the GI tract with a relatively low number and few species 
residing in the stomach and upper small intestine. However, there is a diverse and dense population 
of microbiota in distal part of the small intestine and colon ranging up to 1011/g to 1012/g of luminal 
contents [46]. Metagenomic research that provides access to the functional gene composition of 
microbial communities, suggests that gut microbiota is mainly dominated by the Gram-negative 
Bacteroidetes (17%–60%) and Gram-positive Firmicutes (35%–80%) [45]. The other less prevalent phyla 
include Actinobacteria, Proteobacteria and Euryarchaeota [47,48]. The composition of the gut microbiota is 
dynamic and is influenced by a range of factors that include host genetics and immunity, the microbial 
species acquired at birth, antibiotic usage [49,50] and environmental factors such as diet [51–54].  

Figure 1. The cross-talk amongst the intestinal epithelium, gut microbiota, environmental factors and
immune response along with host genetics dictates IBD pathogenesis. The intestinal epithelium is
at the crossroad of IBD pathogenesis by coordinating the link amongst the factors implicated in the
disease onset such as microbial flora, environmental factors, or the host immune response by directly
interacting with those factors. Both the innate and adaptive immune responses show a disturbance
in homeostasis. Flares of diseases have been associated with environmental factors, such as use of
antibiotics and NSAIDs, stress and smoking. These factors or infections are thought to alter the barrier
function of the epithelium, leading to loss of immune tolerance to intestinal antigens. The role of
genetic factors is indicated by familial clustering of cases and higher incidence in monozygotic twins.
Host genetics can itself influence the gut microbial composition or immune response to affect the
disease pathogenesis.

4. Microbiota in Health

The human body is colonized by a vast number of microorganisms representing the so-called
normal microflora, the microbiota. The microbiota comprises mainly bacteria; however, viruses,
fungi and protozoans live in a mutually beneficial relationship with the host. Microbiota colonizes
the surface of the human body exposed to the external environment, including the skin, oral cavity,
respiratory, urogenital and gastrointestinal tract. Of these, the gastrointestinal (GI) tract is the most
densely colonized organ with about 100 trillion diverse microbes which is 10 times the number
of all body cells [41] although recent studies refute this claim suggesting that there is a ratio
of 1.3 bacteria to every one human cell [42]. The microbes of gut represent an ecosystem of the
highest complexity [43] comprising over 1000 bacterial species and 150-fold more genes than found in
the human genome [44,45]. The number and composition of microbiota varies in different regions of
the GI tract with a relatively low number and few species residing in the stomach and upper small
intestine. However, there is a diverse and dense population of microbiota in distal part of the small
intestine and colon ranging up to 1011/g to 1012/g of luminal contents [46]. Metagenomic research
that provides access to the functional gene composition of microbial communities, suggests that gut
microbiota is mainly dominated by the Gram-negative Bacteroidetes (17%–60%) and Gram-positive
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Firmicutes (35%–80%) [45]. The other less prevalent phyla include Actinobacteria, Proteobacteria and
Euryarchaeota [47,48]. The composition of the gut microbiota is dynamic and is influenced by a range
of factors that include host genetics and immunity, the microbial species acquired at birth, antibiotic
usage [49,50] and environmental factors such as diet [51–54].

In healthy individuals, gut microbiota lives symbiotically with the host and allows digestion
of otherwise indigestible carbohydrates to produce short chain fatty acids (SCFA) to protect against
epithelial injury, regulate fat metabolism, synthesize vitamins (e.g., vitamin K, vitamin B12 and folic
acid) and essential amino acids, biotransform conjugated bile acids, cause intestinal motility, boost
intestinal angiogenesis, and promote proper development of the immune system [55–58]. In addition,
the gut microbiota resist the colonization of pathogenic bacteria and produce antimicrobial compounds.
Thus, gut microbiota protect gut epithelial barrier from the harmful effects of pathogens, prevent
bacterial overgrowth and reduce host susceptibility to enteric infections [59]. The diversity of the
microbiome alters across body sites, between people, and with age and is diet-dependent, resulting in
a series of unique habitats within and between individuals that are subject to temporal variation and
variation between populations [60,61]. However, although inter-individual variability in microbial
composition is amazingly diverse, recent meta-transcriptomic studies suggest that many of these
microbial genes that differ between individuals may in fact be phenocopies and therefore capable of
carrying out the same functions for the host [62]. The question as to what constitutes a healthy
microbiome remains largely unanswered because of the uniqueness of the microbiome of each
individual, especially at the species and strain level, although there are clearly communities at the
family and class levels that have been identified as consistent with gut health [63].

5. Dysbiotic and/or Pathogenic Bacteria in IBD

Dysbiosis is defined as an increase in pathogenic bacteria concomitant with decreases in beneficial
bacterial species [64]. The healthy host has a tolerance towards microbiota, and maintains immune
homeostasis. Dysregulation of this homeostasis is a defining event in the development of IBD. Indeed,
several studies conducted in patients and in animal models have clearly shown the central role of
bacteria in the pathogenesis of IBD. Some of the most convincing pieces of evidence come from
germ free mouse models, which develop chronic intestinal inflammation after colonization with
commensal gut bacteria, but remain disease free in bacteria-free conditions, suggesting a primary role
of non-pathogenic enteric bacteria in the pathogenesis of UC [65,66]. This led to the current theory of
“no bacteria, no IBD” [67,68]. In addition, several findings suggest that the use of “beneficial bacteria”
or probiotics can ameliorate IBD [69,70].

Recent metagenomic studies suggest that both quantity and composition of microbiota changes
during IBD (Table 1). In general, an overall decrease in microbial diversity and stability of the
intestinal microbiota has been observed in IBD patients [71]. On average, 25% fewer genes could be
detected in the fecal samples of IBD patients compared with individuals not suffering from IBD [45].
These results infer that the microbiota of IBD patients has a lower functional diversity compared to
healthy individuals. In comparison to healthy controls, the IBD patients have fewer bacteria with
anti-inflammatory properties and/or more bacteria with pro-inflammatory properties.

The most well defined change that several metagenomic-based studies have noted in patients
with IBD is the reduced abundance of the phyla Firmicutes [72–75]. Fecal microbiota analysis of CD
patients show decreased presence of anti-inflammatory F. prausnitzii, B. adolescentis, D. invisus and an
unknown species of Clostridium cluster XIVa, and an increased presence of potentially proinflammatory
R. gnavus [76]. However there are contradictory reports regarding phylum Bacteroidetes wherein, some
studies show reduced abundance during IBD [51,77–79] while others report increases in Bacteroidetes
in IBD patients [80,81]. Likewise, most of the known pathogenic bacteria in human gastrointestinal
disease belong to the phylum Proteobacteria [82]. Microbial diversity analysis has shown dual finding
of decrease in Firmicutes associated with parallel increase in Proteobacteria, suggesting their key role
in IBD [80,83–86]. While these data clearly suggest that dysbiosis may play an important role in the
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pathogenesis of IBD, it remains to be seen whether changes in phylogenetic composition are causative
in the onset of IBD or simply a consequence of an altered gastrointestinal environment that affects the
disease process.

Increased concentrations of Escherichia coli including pathogenic variants have been documented
in ileal CD [87,88]. E. coli has been studied extensively in IBD patients and a new pathogenic group,
namely adherent-invasive E. coli (AIEC) has been designated [89]. It has been reported that compared
to healthy controls, the IBD patients have abnormal colonization of AIEC in ileal mucosa [90]. About
38% of patients with active ileal CD have AIEC while normal controls and patients with colonic CD
contain very low percentage of this strain [84,90]. AIEC initiates chronic inflammation in susceptible
hosts by altering the gut microbiota composition that gives it an inherently greater ability to activate
innate immunity/pro-inflammatory gene expression. Similarly, Western diet induces changes in gut
microbiota composition and alters host homeostasis to promote AIEC gut colonization in genetically
susceptible mice. In humans, mucosal-associated E. coli are commonly found in inflamed tissues during
IBD. While it is true that these bacteria often possess an adherent and invasive phenotype, they lack
virulence-associated features of well-described intestinal E. coli pathogens, and are of diverse serology
and phylotypes, making it difficult to correlate strain characteristics with the exacerbation of the disease.
It is also true that AIEC-like isolates are more abundant in Crohn’s disease patients while the prevalence
of AIEC is not high in UC patients [90]. Likewise, coinfection with Mycobacterium avium subsp.
paratuberculosis (MAP) and AIEC is common and persistent in CD. However, high MAP and E. coli
detection in cirrhotic patients with ascites suggests that colonization is, at least partially dependent on
increased gut permeability. Since majority of the studies overwhelmingly and definitively support the
role of MAP in at least 30%–50% of CD patients [91], facilitative mechanisms between a susceptible
host and these two potential human pathogens may allow their implication in CD pathogenesis [92].

A second adherent, invasive proteobacterium, Campylobacter concisus, has also been associated
with IBD [82,93–95]. C. concisus invasion affects membrane permeability and drives inflammation in
host epithelial cells. Intestinal inflammation can also be caused by other enteric bacterial pathogens.
Clostridium difficile toxin A for example, is associated with acute inflammation and fluid secretion.
Toxin A can cause enterocyte apoptosis and inflammation in experimental models [96], and may have
the ability to reactivate IBD [97]. Bacteroides fragilis is a normal colonic commensal bacterial species
found in the majority of adults. One of its subset strains, termed enterotoxigenic B. fragilis (ETBF),
secretes a pro-inflammatory zinc-dependent metalloprotease toxin that is associated with diarrheal
illnesses in children and adults. ETBF is present in 19.3% of patients with clinically active IBD [77].
In animal studies, ETBF has been shown to cause colitis with severe inflammation and overproduction
of interleukin-17 (IL-17), a central regulator of inflammation and autoimmunity [98].

6. Dietary Strategies Affecting the Microbiome, Metabolome and IBD

The gut is colonized by bacteria during birth and their composition is determined by the mode
of delivery [54,99]. Gut microbiota becomes stable and adult like around 2–3 years of age [100]
starting with the introduction of solid foods into the diet [61,101]. Several studies have explored
the impact of diet on the newborn gut microbiota and have compared breastfeeding with formula
feeding. A consistent finding has been the higher proportion of Bifidobacteria in breastfed infants as
compared to formula-fed infants [102–105]. Several studies have examined the association between
dietary patterns and the incidence of IBD [106,107]. It has been proposed that increased and refined
carbohydrates and animal fat/protein and reductions in dietary fibers are major etiologic factors in
the development of both UC and CD [108,109]. Consumption of high dietary intake of total fats,
polyunsaturated fatty acids (PUFAs), omega-6 fatty acids, and meat are associated with an increased
risk of CD and UC; high fiber and fruit intakes with a decreased CD risk; and high vegetable intake
with a decreased UC risk [107]. In one study, children in Burkina Faso, a country with low incidence
of IBD, fed with high-fiber, plant-based diet exhibited different gut microbial community than their
European counterparts who consumed sugar, fat and protein rich diet [110]. The results were similar
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when the microbiota of healthy individuals from South America and South Asia were compared
with healthy individuals from an industrialized country such as the United States [61]. These studies
support the idea that the alteration of gut microbiota community structure through the consumption
of agrarian vs. a “Westernized” diet may play a role in either reducing or increasing, respectively, the
risk for the development of IBD. It is surprising, however, that there is little evidence to show that any
specific dietary component acts as a risk factor for the development of UC or CD [111–113].

According to the existing literature, diet may serve as a symptomatic treatment for irritable bowel
syndrome-like symptoms in IBD. Although the evidence is not substantial, enteral nutrition (EN) may
be useful for maintaining remission in patients with quiescent Crohn’s disease. In pediatric patients
with CD, EN reaches remission rates similar to steroids [114]. In adult patients however, meta-analyses
have shown EN to be inferior to corticosteroids in adults with active Crohn’s disease while EN is not
effective in UC [114]. A significant change occurs in the production of microbial metabolites after
enteral feeding in both healthy volunteers and patients with CD. Many of those detected in CD are
toxic and may feasibly lead to the immunological attack on the gut microbiota, which is characteristic
of IBD. The reduction in the levels of such metabolites after enteral feeding may be the reason for
its effectiveness in CD [115]. Exclusive enteral nutrition (EEN) refers to the exclusive use of liquid
diet in an effort to induce remission in CD. Proposed mechanisms for the efficacy of EEN include
alterations of the microbiota. A recent study used high throughput sequencing to determine changes
in fecal microbiota before and after EEN in children with CD. Results showed decrease in number
of operational taxonomic units after starting EEN, which corresponded with remission. In addition,
recurrence of disease corresponded with increase in operational taxonomic units [116]. Other possible
mechanisms include improved epithelial barrier function and anti-inflammatory effects [117].

A meta-analysis of pediatric studies showed remission rates with EEN that were equivalent to
those of corticosteroids [118] and other studies have suggested greater rates of remission in ileal or
ileo-colonic CD than in colonic phenotypes [119]. Due to the reduced palatability of EEN, in clinical
practice food is typically slowly reintroduced after 8–12 weeks of EEN. In many cases, this leads
to disease recurrence, however the period of remission allows for initiation of immunomodulators
that may take weeks to become efficacious. Since gut dysbiosis is believed to play a role in the
pathogenesis of IBD, fecal microbiota transplantation (FMT) is an effective strategy to restore intestinal
microbial diversity and has been reported to have a potential therapeutic value in IBD. A recent study
reported a holistic integrative therapy called “step-up FMT strategy,” which was beneficial in treating
steroid-dependent IBD patients. This strategy consists of scheduled FMTs combined with steroids,
anti-TNF-α antibody treatment or EN [120].

Total parenteral nutrition in IBD is not superior to steroids or EN. Despite the preference for
enteral nutrition, some patients are unable to utilize their gut and therefore require parenteral
nutrition (PN) although there are complications associated with the approach and mechanisms behind
these complications are multifactorial and have yet to be fully elucidated. Recent studies utilizing
both animal and human models have provided further information regarding parenteral nutrition’s
deleterious effect on intestinal epithelial barrier function along with the complications associated with
enterocyte deprivation. Parenteral nutrition has been a life-saving treatment in infants intolerant of
enteral feedings. However, PN is associated with liver injury (PN Associated Liver Injury: PNALI) in
a significant number of PN-dependent infants. Microbiome analysis in the PNALI mouse identified
specific alterations within colonic microbiota associated with PNALI and further association of these
communities with the lipid composition of the PN solution. Intestinal inflammation or soy oil-based
PN infusion alone (in the absence of enteral feeds) caused shifts within the gut microbiota. However,
the combination resulted in accumulation of a specific taxon, Erysipelotrichaceae (23.8% vs. 1.7% in saline
infused controls), in PNALI mice. Moreover, PNALI was markedly attenuated by enteral antibiotic
treatment, due partially to significant reduction of Erysipelotrichaceae (0.6%) and a Gram-negative
constituent, the S24-7 lineage of Bacteroidetes. Importantly, removal of soy oil based-lipid emulsion
from the PN solution resulted in significant reduction of Erysipelotrichaceae as well as attenuation of
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PNALI. Finally, addition of soy-derived plant sterol to fish oil-based PN restored Erysipelotrichaceae
abundance and PNALI [121].

Animal disease models provide better evidence for the involvement of specific dietary components
in the etiology of IBD. Using the genetically susceptible IL-10 deficient mouse model, Devkota et al.
showed that feeding a Western-based diet rich in saturated milk fat elicited negative effects on intestinal
health. This diet alters host production of the secondary bile acid taurocholate and provides an organic
sulfur source for δ-proteobacteria, B. wadsworthia to bloom and thus increasing the incidence and
severity of Th1-mediated spontaneous colitis [122,123]. It is quite evident that diet not only affects the
composition and richness of the gut microbiota but also impacts the microbial metabolome by serving
as a substrate to gut microbiota for the production of small molecules that impact host physiology [63].

Metabolomics is defined as a comprehensive and quantitative analysis of the small molecule
metabolites synthesized by a biological system [124]. It is less invasive yet a robust and sensitive means
of identifying metabolites produced by microbes and host cells in urine, serum, tissue or feces [125,126].
Metabolomics and metabolite profiling have been widely used to identify disease biomarkers. For
example, the first microbiome studies sought to identify taxa that correlated with disease, physiological
state, drug use, or dietary intake. However, not all exposures can alter the composition of the microbial
community or its gene content; some can affect gene expression [127,128]. Humanized mice (created
by transplanting human fecal microbiota into the mouse gut) have metabolomes distinct from those of
conventionally raised mice [129]. This observation indicates that different gut microbes can produce
changes in metabolites throughout their host.

Metabolomics has fundamentally and conceptually been divided into four major areas: target
analysis, metabolite profiling, metabolomics, and metabolic fingerprinting [130]. While target analysis
includes measurement of a small set of known metabolites, metabolite profiling analyses a larger
set of compounds using GC-MS, including plants [131], microbes [132], urine [133], and plasma
samples [134]. Metabolomics basically employs complementary methodologies including LC-MS/MS,
GC-MS, and/or NMR to determine and quantify metabolites. Finally, during metabolic fingerprinting,
a metabolic signature of the sample of interest is developed to screen for differences between the
samples and once the metabolites are identified, the biological relevance of that compound can be
determined that greatly reduces the analysis time.

Various metagenomic studies suggest that the metabolites derived from diverse microbial
community can affect human health and disease [135] (Table 1). In a murine model of DSS-induced
colitis, a total of 77 and 92 metabolites were detected in serum and colon tissue, respectively, and among
the metabolites the compositions of TCA cycle intermediates and amino acids changed depending
on the degree of colitis. Using a multiple classification analysis tool, partial least square discriminant
analysis (PLS-DA), distinct clustering and clear separation of the groups was based on the degree of
colitis. Furthermore, PLS-DA loading plots revealed that succinic acid, indole-3-acetic acid, glutamic
acid, and glutamine were the main contributors to the separation of each stage of colitis. In addition,
it was revealed that supplementation with glutamine, the level of which was significantly decreased
in the acute phase of colonic inflammation, attenuated colitis induced by DSS [136].

In a human study published in 2014 [137], the metabolites that allowed to distinguish between the
group of patients with active IBD and the group with IBD in remission were: N-acetylated compounds
and phenylalanine which were up-regulated in serum, low-density lipoproteins and very low-density
lipoproteins that decreased in the serum along with glycine that increased in urine and acetoacetate
that exhibited a reduced levels in the urine. The significant differences in metabolomic profiles
were also found between the group of patients with active IBD and healthy controls providing the
PLS-DA models with a very good separation (p value < 0.001 for serum and 0.003 for urine). The
metabolites with the strongest biomarkers included in this case: leucine, isoleucine, 3-hydroxybutyric
acid, N-acetylated compounds, acetoacetate, glycine, phenylalanine and lactate that increased in serum,
creatine, dimethyl sulfone, histidine, choline and its derivatives that decreased in serum as well as
citrate, hippurate, trigonelline, taurine, succinate and 2-hydroxyisobutyrate that decreased in urine.
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No clear separation in PLS-DA models was found between CD and UC patients based on the analysis
of serum and urine samples, although one metabolite (formate) in univariate statistical analysis was
significantly lower in serum of patients with active CD, and two metabolites (alanine and N-acetylated
compounds) were significantly higher in serum of patients with CD when comparing jointly patients
in the remission and active phase of the diseases. Contrary to the results obtained from the serum
samples, the analysis of urine samples allowed distinguishing patients with IBD in remission from
healthy control subjects. The metabolites of importance included in this case up-regulated acetoacetate
and down-regulated citrate, hippurate, taurine, succinate, glycine, alanine and formate.

A more recent study examined the metabolic activity in CD, UC or pouchitis patients and
compared with healthy controls (HC) to determine whether eventual differences might be related to the
pathogenesis of the disease. The number of metabolites identified in HC (54) was significantly higher
than in patients with CD (44, p < 0.001), UC (47, p = 0.042) and pouchitis (43, p = 0.036). Multivariate
discriminant analysis predicted HC, CD, UC and pouchitis group membership with high sensitivity
and specificity. The levels of medium-chain fatty acids (MCFAs: pentanoate, hexanoate, heptanoate,
octanoate and nonanoate), and of some protein fermentation metabolites, were significantly decreased
in patients with CD, UC and pouchitis. Hexanoate levels were inversely correlated to disease activity
in CD (correlation coefficient = ´0.157, p = 0.046), whereas a significant positive correlation was found
between styrene levels and disease activity in UC (correlation coefficient = 0.338, p = 0.001) [138].

Finally, effect of low fermentable oligosaccharides, disaccharides and monosaccharides and
polyols (FODMAP) and high FODMAP diets on symptoms, the metabolome and the microbiome
of patients with IBS was investigated. Thirty-seven patients (19 low FODMAP; 18 high FODMAP)
completed the 3-week diet. The IBS symptom severity scoring (IBS-SSS) was reduced in the low
FODMAP diet group (p < 0.001) but not the high FODMAP group. Lactulose breath test (LBTs)
showed a minor decrease in H2 production in the low FODMAP compared with the high FODMAP
group. Metabolic profiling of urine showed groups of patients with IBS differed significantly after
the diet (p < 0.01), with three metabolites (histamine, p-hydroxybenzoic acid, azelaic acid) being
primarily responsible for discrimination between the two groups. Histamine, a measure of immune
activation, was reduced eightfold in the low FODMAP group (p < 0.05). Low FODMAP diet increased
Actinobacteria richness and diversity, and high FODMAP diet decreased the relative abundance of
bacteria involved in gas consumption [139].

The dietary components that escape digestion in the upper gastrointestinal tract provide most of
the substrates for the intestinal microbiota. Fermentation of carbohydrates by the intestinal microbiota
leads to the production of short chain fatty acids (SCFAs) such as butyrate, propionate, and acetate.
Studies have shown that patients with inflammatory bowel diseases such as ulcerative colitis have
fewer butyrate producing bacteria (e.g., Roseburia hominis and Faecalibacterium prausnitzii) in their
intestine, resulting in lower levels of butyrate [140,141]. In addition to butyrate, propionate can
potentiate de novo generation of regulatory T cells in the peripheral immune system. Modulation of
butyrate- and propionate-producing microbes might therefore be used to treat inflammatory bowel
diseases such as ulcerative colitis. Indeed, drug companies are now targeting receptors for these
metabolites with small molecules [142]. Despite these advances however, the anti-inflammatory
mechanisms of butyrate and other short-chain fatty acids remain poorly defined and clinicians continue
to struggle with putting patients on low FODMAP (fermentable, oligo-, di-, monosaccharides, and
polyols) diet that offers lower rates of abdominal pain, bloating, gas and diarrhea. Suffice to say, IBD
patients need lot of nutritional advice since a credibility gap exists when it comes to diet and IBD.
Studies of IBD patients have also shown that even when inflammation is in remission, the altered
enteric nerves and abnormal microbiota can generate IBS-like symptoms. The efficacy of the low
FODMAP diet as a treatment for bloating, flatulence, and abdominal discomfort has been demonstrated
by randomized controlled trials. MRI studies, which can quantify intestinal volumes, have provided
new insights into how FODMAPs cause symptoms [143].
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7. Clinical Significance of Metabolomics

UC and CD are two distinct forms of IBD and are distinguished on the basis of variety of clinical,
endoscopic, radiologic, serologic and pathologic evaluations. Unfortunately, there is a very thin line of
distinction between these two diseases due to overlapping of etiological, clinical, and pathological
features making it difficult to accurately diagnose the disease, especially in the pediatric age group.
For tailored clinical management, it remains a challenge in 5%–20% cases to distinguish between UC
and CD [144–147] which otherwise would lead to misclassification or repeated examinations [148].
The diagnosis of IBD using clinical, endoscopic, radiologic and histologic examination implicates
that diagnosis is only possible at a relatively advanced stage of the disease. However, it would be
useful for primary diagnosis, surveillance, and early detection of relapses to use less invasive yet more
informative methods such as analysis of biomarkers from urine, serum, or feces. Fortunately some
metabolomic biomarkers have been tested in clinical trials including C-reactive protein, fecal markers
(lactoferrin, calprotectin, and PMN-elastase) and serological markers (antibodies against luminal
antigens and anti-glycan antibodies) [149]. The spectrum of antibodies to different microbial antigens
and autoantibodies associated with IBD is rapidly expanding. Most of these antibodies are associated
with CD like anti-glycan antibodies: anti-Saccharomices cerevisiae (ASCA) and the recently described
anti-laminaribioside (ALCA), anti-chitobioside (ACCA), anti-mannobioside (AMCA), anti-laminarin
(anti-L) and anti-chitin (anti-C) antibodies; in addition to other antibodies that target microbial antigens:
anti-outer membrane porin C (anti-OmpC), anti-Cbir1 flagellin etc. In addition, autoantibodies
targeting the exocrine pancreas (PAB) were shown to be highly specific for CD [150]. Patients who
are ASCA-positive have been shown to be more likely to have Crohn’s than UC, and more likely to
have ileal disease than patients who are ASCA-negative. In addition, ASCA-positive patients may be
more likely to undergo ileocecal resection [151]. Anti-glycan, anti-GP2 and anti-GM-CSF antibodies
are especially associated with CD and seem to be correlated with complicated disease phenotypes
even if results differ between studies. Although anti-glycan Ab and anti-GP2 Ab have low sensitivity
in diagnosis of IBD, they could identify a small number of CD patients not detected by other tests such
as ASCA. Anti-glycan Abs are associated with a progression to a more severe disease course and a
higher risk for IBD-related surgery. Anti-GP2 Ab could particularly contribute to better stratify cases
of pouchitis. Anti-GM-CSF Ab seems to be correlated with disease activity and could help predict
relapses [143]. In contrast, UC has been associated with anti-neutrophil cytoplasmic autoantibodies
(pANCA) and antibodies against goblet cells (GAB). Current evidence suggests that serologic panels
of multiple antibodies are useful in differential diagnosis of CD versus UC and can be a valuable aid in
stratifying patients according to disease phenotype and risk of complications [152].

To date, 1H NMR spectroscopy has been employed to characterize activity and severity of human
IBD. Several studies have been performed on small and non-complex molecules, such as amino acids
and related metabolites, on TCA cycle intermediates, and on metabolites involved in fatty acid and
purine metabolism to compare between IBD patients and matched healthy subjects. Indeed there were
differences in these metabolic profiles between IBD patients and healthy controls [153–158] as well as
between the IBD subtypes [153,154,158]. Other common technologies to study metabolomics include
gas chromatography-mass spectrometry (GC-MS) and Ion-cyclotron resonance-Fourier transform
mass spectrometry (ICR-FT/MS) with ultrahigh mass resolution that can measure small but complex
metabolites [159].
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Table 1. Alterations in the microbiome and metabolome during IBD.

S. No Increased Decreased Increased Decreased

1 Phylum proteobacteria [78,81] Phylum Firmicutes [70–72,160]

Colon mucosal tissue
CD: glucose, glycerophosphorylcholine

UC: arginine, glucose,
glycerophosphorylcholine, lysine [144]

Colon mucosal tissue
CD: alanine, choline, formate,

glutamine/glutamate,
isoleucine/leucine/valine, lactate,

myoinositol, succinate
UC: alanine, choline, formate,

glutamine/glutamate,
isoleucine/leucine/valine, lactate,

myoinositol, succinate [144]

2

Adherent-invasive E. coli (AIEC) [87],
Campylobacter concisus [80],

Clostridium difficil) [92],
Bacteroides fragilis [75], Bacteroides vulgatus,

Klebssiella pneumonie,
fusobacterium varium [161])

Butyrate producing bacteria e.g.,
Roseburia hominis and Faecalibacterium [136]

Fecal matter
CD: alanine, glycerol, isoleucine, leucine,

lysine, valine
UC: glutamate, lysine [162]

Fecal matter
CD: acetate, butyrate, methylamine,

Trimethylamine
UC: methylamine, trimethylamine [162]

3 R. gnavus [74] Microbial diversity [69]

Urine
CD: formate, glycine, glycolate,
guanidoacetate, methylhistidine

UC: citrate, glycine, glycolate,
guanidoacetate, methylhistidine [158]

Urine
CD: 4-cresol sulfate, citrate, hippurate
UC: hippurate, trimethyllysine [158]

4 CD:Mycobacterium avium paratuberculosis
(MAP) [72] Microbial genes in feces [43] ND SCFA synthesis [136]

5 Enterotoxigenic B. fragilis (ETBF) [98] Decreased presence of anti-inflammatory
F. prausnitzii, B. adolescentis, D. invisus [74] ND Amino acid biosynthesis [147]

ND = No description.
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8. Conclusions

In conclusion, it is obvious that significant interdependence of the mucosal metabolome and
microbiome exists suggesting that metagenomic composition is predictive to a reasonable degree of
microbial community metabolite pools. Thus, studying the response of various organisms to different
stresses and environments at the genetic, transcript, protein, and metabolite levels using different
methods and comparing these results with those of other organisms will strengthen their integration
into a systems biology framework. The finding that certain metabolites strongly correlate with
microbial community structure suggests that it is worth investigating metabolites as direct mediators
of microbial-associated disease activity and that metabolites may be a direct target for monitoring
and therapeutically manipulating microbial community function in IBD and other intestinal diseases
associated with dysbiosis.
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