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Abstract: Identification and functional interpretation of
gene regulatory variants is a major focus of modern
genomics. The application of genetic mapping to
molecular and cellular traits has enabled the detection
of regulatory variation on genome-wide scales and
revealed an enormous diversity of regulatory architecture
in humans and other species. In this review I summarise
the insights gained and questions raised by a decade of
genetic mapping of gene expression variation. I discuss
recent extensions of this approach using alternative
molecular phenotypes that have revealed some of the
biological mechanisms that drive gene expression varia-
tion between individuals. Finally, I highlight outstanding
problems and future directions for development.

Introduction

Mammalian genomes harbour a diverse array of gene

regulatory elements. Fuelled by rapid technological advances, a

decade of genomics research has begun to reveal the location,

diversity, and richness of the regulatory fraction of the human

genome [1]. However, the impact of naturally occurring genetic

regulatory variation on downstream cellular and organismal

phenotypes is not well understood. As a result, human genomics

is becoming increasingly focused on characterising interindividual

regulatory variation. In parallel, genome-wide association studies

(GWASs) have also highlighted the importance of regulatory

polymorphisms in driving human phenotypic variation [2]. To

realise the full potential of association studies, human disease

geneticists are also turning their attention to the functional

interpretation of regulatory variation.

Studies that combine genetic mapping with characterisation of

molecular and cellular traits, sometimes referred to as genetical

genomics [3] or cellular genomics [4], enable identification of

regulatory variation on a genome-wide scale. This study design

features simultaneous assaying of cellular traits in multiple

individuals followed by mapping of genetic correlates using linkage

or association analysis. Because many phenotypes and individuals

are assayed simultaneously, genetical genomics is a powerful

method for observing global properties of regulatory variation [5].

Additionally, molecular or cellular QTLs can connect complex

phenotypes such as disease susceptibility with low-level molecular

changes like gene expression or transcription factor binding [6,7].

Cellular mRNA levels are one of the most readily accessible

cellular phenotypes, both by microarray hybridisation and, more

recently, via high throughput sequencing. The first genome-wide

study of natural genetic variation in gene expression was

attempted in budding yeast [8] and was quickly followed by work

in mice [9] and humans [10–12]. These seminal early studies

highlighted the power of genetical genomics for detecting and

interpreting gene regulatory variation, and introduced lympho-

blastoid cell lines (LCLs) as a model system for understanding this

variation in humans. Since then, eQTL maps have been generated

in a broad range of taxa, cell lines, primary tissues, and population

cohorts. In this review, I will discuss the global properties of

regulatory variation that have emerged from a decade of eQTL

mapping studies. I will focus on recent extensions of genetic

mapping to a rich variety of alternative molecular phenotypes and

the functional insights these have provided. Finally, I will

summarise future challenges and areas for development.

Biological Properties of Regulatory Variation:
Insights from eQTL Studies

Heritability and Genetic Architecture of Gene Expression
In humans, expression levels of between 40% and 90% of genes

are significantly heritable across a range of tissues [13–15] with

median heritability estimates ranging from approximately 15%–

35% [11,13–18]. The genetic architecture of gene expression is

relatively complex, with an average eQTL explaining a small to

moderate fraction of additive genetic variance, from 27% in yeast

[19], ,40% in rats [20], and between 5% and 18% in humans for

SNPs [15,16,21] and 9% and 18% for CNVs [22]. Thus, genetic

control of transcription at most genes appears to be polygenic.

These effect sizes are, however, substantially larger than for typical

whole-organism traits, and association signals in eQTL mapping

studies often exceed standard genome-wide thresholds of signifi-

cance, despite sample sizes as small as 50 individuals [23].

Regulatory variation also appears widespread in humans, with

eQTLs frequently detected at hundreds or thousands of loci [23].

Given the small sample sizes of most eQTL studies, it seems highly

likely that large numbers of small-effect eQTLs remain to be

discovered. The genetics of gene expression also appears to be

complex, with evidence for pleiotropy, epistasis, genotype envi-

ronment interaction, and transgressive segregation (for a review,

see [23]). Population context may also play some role in

determining eQTL magnitude and direction, although this seems

to be a relatively rare occurrence [24].

A genetic variant may influence the expression of one or both

alleles of a transcript, referred to as regulation cis or trans,
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respectively. cis-acting variation is frequently assumed to be

located close to the regulated gene, while trans-acting polymor-

phisms operate distally, perhaps on another chromosome. For the

most part, this assumption is supported by studies of allele-specific

expression [25,26]. The relative importance of cis and trans modes

of regulation has been widely debated in the literature. To date,

the majority of eQTLs detected have been located relatively close

to the regulated gene and probably function in cis, while

convincing trans-eQTLs have been much more difficult to detect

(see below). Indeed, many studies have ignored trans-eQTLs

altogether, and restricted their search window to regions

proximal to the expressed gene. cis-eQTLs show a characteristic

distribution around genes and are strongly enriched close to

transcription start sites (TSSs) and within gene bodies [24,27,28].

However, eQTLs near the TSS are not easily explained at the

sequence level and do not appear to be strongly enriched in some

canonical core promoter motifs such as the TATA box, although

they show weak enrichment in other element types [29]. Perhaps

surprisingly, eQTLs are overrepresented within exons [27]. In

microarray data, at least some of this signal emanates from

alternative splicing of the exon to which an array probe

hybridises, usually located in the 39 UTR [30]. Alternative

explanations for enrichment in coding exons could include

changes in miRNA regulation or activation of degradation

pathways, such as nonsense-mediated decay, which manifest as

changes in steady-state mRNA level (see below) [31].

Detection of Trans-eQTLs: Technical and Biological
Complexities

Despite the prevalence of regulatory variation, most expression

heritability is not explained by detectable eQTLs, suggesting that

at many loci genetic variation in gene expression is driven by

undetected variants of small effect [13,18,19,32]. Some of this

missing expression heritability may be explained by trans-acting

regulatory variation [13,18,33], and indeed, trans-eQTLs do

appear to have smaller effect sizes than their cis counterparts

[20]. However, mapping trans-eQTLs has proved to be a

challenging problem and many detected signals have replicated

poorly [34]. The apparent small effect size of trans-eQTLs reduces

power for detection [20], while the number of SNP–gene

combinations required imposes a severe multiple testing penalty.

These problems are compounded by small samples sizes in most

eQTL studies. Computational methods to remove batch technical

artefacts may also inadvertently remove trans eQTLs that affect

large numbers of loci [35]. Regulation in trans may also be more

tissue-specific and more difficult to detect in heterogeneous tissue

samples [13].

In spite of these difficulties, recent large-scale studies have made

progress in detection of trans-eQTLs [18,21,36–38] with some

renewed support for spatial clustering of trans-eQTLs, for example

near the MHC locus [36,37]. However, even in these larger

sample sizes, the numbers of trans-eQTLs detected has been

modest and their replication rates have varied. Furthermore,

although the search for trans-effects is frequently motivated by

improved explanation of heritability of gene expression, the extent

of this improvement remains unclear.

Although the small effect size of trans-eQTLs appears to be

well supported, there may be a number of important exceptions

to this rule. First, many trans-acting factors may function in

signalling pathways and only activate in response to environ-

mental stimuli. If so, large-effect trans-eQTLs may remain

hidden when examining steady-state mRNA levels in quiescent

cells, and there is some evidence that large effect trans-acting

mutations only become apparent following cellular stimulation

(B. Fairfax, personal communication) [39]. Second, it has

recently been demonstrated that certain transcription factors,

such as c-Myc, may act as ‘‘universal amplifiers’’ that increase

the production of mRNA from thousands of genes simulta-

neously [40]. This result violates a standard experimental

assumption that the total amount of RNA does not vary

substantially from cell to cell across experimental treatments.

One implication is that very large trans-effects could be missed

when the same amount of RNA is extracted from all samples

[41]. Although it seems unlikely that many such dramatic

changes could be segregating as common variants in the

population, it is possible that some large effect trans-eQTLs

are missed altogether by this mechanism.

Tissue-Specificity of eQTLs
eQTL studies in humans have been heavily biased toward

LCLs. In some respects LCLs appear to be reasonable biological

models. For example, eQTLs detected in LCLs are also found in

primary tissues [42] and are highly enriched in disease associations

[6,7], which would be unlikely if most were artefacts of cell line

transformation. However, gene expression levels in LCLs signif-

icantly correlate with other cellular traits, including EBV load and

growth rate [43], and may exhibit monoallelic expression at some

genes, which could reduce power to detect associations [44].

Perhaps most importantly LCLs are derived from a blood cell

lineage (peripheral B-lymphocytes) and it is unclear how appro-

priate these cell lines are as models for nonblood or immune

tissues.

Partly in response to this lack of cellular diversity, eQTL maps

have been generated in a wider range of primary cells and tissues

including whole blood, adipose tissues, primary B-cells, osteoblasts,

monocytes, lymphocytes, skin, liver, and a variety of brain tissues

[17,21,28,45–49]. Many of these studies have focused on the cross-

tissue replicability of eQTL signals. This is important because the

level of replicability of eQTL signals between tissues determines

whether an experimentally tractable cell line such as LCLs can be

used as a proxy for other, less-accessible tissues. However, it is

worth noting that ‘‘tissue-specificity’’ permits multiple interpreta-

tions including differences in effect size, allelic direction, or

alternate effects on the same gene at unlinked SNPs [50], and

these have not always been consistently defined across studies.

Cross-tissue replication is also heavily dependent on the exact

tissue comparison and on the extent of shared versus tissue-specific

gene expression. Thus, although tissue-specificity of eQTLs is

biologically plausible given the diversity of regulatory architecture

across cell types, it is difficult to draw general conclusions from the

results of individual studies.

One early report suggested that tissue-specificity of eQTLs was

widespread, with only 20%–30% of signals observed in one tissue

replicating successfully when tested in an alternative [28].

However, subsequent work has highlighted how correction for

low power can increase overlap in eQTLs from different tissues

substantially (from between 30% and 50% to approximately 70%)

[51]. A recent reanalysis of the data set in [28] using a method that

explicitly models eQTL-sharing across tissues has suggested that

the true overlap of eQTLs across the three tissues in this data set is

closer to 63% (http://arxiv.org/abs/1212.4786). More generally,

results from multiple studies have estimated that replicability of

eQTLs across tissues typically varies between 40% and 80% with

more similar tissues unsurprisingly sharing a greater fraction of

common eQTL signals [17,18,45,50,52,53], although this rela-

tively high degree of cross-tissue sharing has been disputed by

some [13,14].
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eQTLs in Disease and Complex Traits
In the majority of cases, human disease and complex trait

association studies do not identify plausible coding variants

implicating a single gene. As a result, post hoc identification of

the causal gene(s) that underlie an association signal remains a

significant problem that can limit the biological interpretability of

disease association study results. However, eQTLs are by

definition associated with a specific gene, and trait-associated

variants that are also eQTLs can identify potentially causal genes

for further functional studies. An early example of the power of

this approach was highlighted by the discovery that asthma-

associated variants spanning a region of 206 kb (and several gene

loci) on the long arm of chromosome 17 [54]. A subsequent eQTL

mapping experiment revealed that associated variants were also

correlated with expression changes at a specific gene, ORMDL3.

Further follow-up studies have suggested that changes in

expression of ORMDL3 alter endoplasmic reticulum-mediated

calcium signalling, which in turn may effect a change in

inflammatory response [55]. Driven by the success of this and

other studies, eQTL mapping is now becoming a standard tool for

the identification of the genes and regulatory networks that are

important for phenotypic variation, with recent applications to

psoriasis susceptibility [51], psoriatic arthritis [56], LDL choles-

terol levels [57], schizophrenia susceptibility [58], Type 2 diabetes

[59], and obesity-related-traits [17] (for a comprehensive review,

see [60]).

In summary, eQTL studies have demonstrated that the

influence of common genetic variation on gene expression in

humans is widespread. Genetic variation in gene expression likely

results from the combined action of small numbers of relatively

large effect cis-acting mutations, which are characteristically

enriched near the regulated gene, and a more polygenic trans

component that mostly eludes detection. The biological mecha-

nisms that drive expression variation, however, remain less clear.

Understanding Mechanism with Alternative
Molecular Phenotypes

Functional characterisation of eQTLs remains a significant

challenge. Associated SNPs are usually spread over many

kilobases, and because long-range regulation of gene expression

is not uncommon, it can be difficult to prioritise individual variants

based on their genomic location. In addition, steady-state mRNA

levels are a function of a diverse set of molecular processes, any

one of which can be affected by a given mutation (Figure 1). One

approach to understanding this complexity is to extend mapping

to additional molecular phenotypes, such as splicing, methylation,

or transcription factor binding. Next-generation sequencing has

made a variety of alternative molecular phenotypes accessible, and

recent studies have begun to highlight the diversity of biological

processes that regulatory variants may perturb.

Pre-transcriptional Regulatory Variation
Transcription factor binding and chromatin struc-

ture. The rate at which pre-mRNA is produced can be

regulated at any one of a series of steps prior to transcription

(for a detailed review, see [61]), and there is some evidence that a

large fraction of regulatory variation may be active at this stage of

gene expression [31,62]. Because many pretranscriptional pro-

cesses are mediated by the binding of transcription factors to

regulatory motifs, many such variants likely alter the binding

activity of these factors, either directly or indirectly. Assays of

transcription factor (TF) occupancy are therefore a key alternative

molecular phenotype for understanding the biological basis of

gene expression variation.

A common experimental approach for measuring occupancy

genome-wide is chromatin immunoprecipitation followed by

hybridisation with a microarray or high-throughput sequencing

(ChIP-chip or ChIP-seq). Although powerful, ChIP-seq is not

feasible for most transcription factors, as it requires an extremely

high-quality antibody. An alternative is to assay molecular

features, such as chromatin accessibility or histone modification,

which are common to many regulatory regions regardless of

exactly which transcription factors are bound [63,64].

Recent work has established that changes in TF binding driven

by genetic differences between individuals are relatively common

and can be reliably detected using sequencing-based assays. Ref

[65] used ChIP-seq for Ste12, a yeast transcriptional activator, in

an experimental cross and detected genotype binding associations

at ,21% of variable binding regions. In humans, significant

interindividual variation and allele-specificity has also been

detected at between 7% and 11% of NFkB and CTCF binding

sites in LCLs using ChIP-seq [66,67]. A study of 24 TFs and a

transcriptional co-activator in a single individual estimated that

5.5% of all binding sites containing a heterozygous SNP show

significant allele-specificity [68]. Chromatin states are also clearly

influenced by common genetic variation. Histone modifications

show significant familial clustering and allele-specificity in human

pedigrees [67,69], and genetic associations with chromatin

openness (DNase-sensitivity QTLs or ds-QTLs) have been

detected at thousands of loci [62].

Association mapping of TF-binding offers significant improve-

ments in variant localisation and biological interpretability over

eQTL mapping. From the perspective of complex-trait studies,

TF-binding or chromatin accessibility QTLs could enable the

identification of causal mutations and point to the upstream

processes that they disrupt to produce a disease phenotype. For

example, it has been estimated that 56% of causal chromatin

accessibility QTLs are found within the open chromatin itself, a

region usually hundreds of base pairs in size [62]. Maps of open

chromatin QTLs therefore offer a mapping resolution orders of

magnitude higher than the mean size of a linkage disequilibrium

block in humans.

In addition to improved resolution, association mapping of TF

binding can enhance functional interpretation, in particular for

those TFs with an associated position weight matrix (PWM).

Evidence to date suggests that TF binding QTLs are strongly

enriched in the canonical binding motifs of their cognate factors,

suggesting many function by altering binding directly at the point

of protein–DNA contact [65–67,70]. Likewise, chromatin acces-

sibility-associated variants are highly enriched in DNaseI foot-

prints that also precisely mark the sites of protein–DNA

interaction [62]. Changes within binding motifs also appear to

alter TF occupancy or chromatin openness in the direction

expected under the appropriate PWM model (Figure 1A) [62,65–

67]. These results suggest that it will soon be possible to

understand regulatory variation at the level of the DNA sequence.

Variants associated with changes in chromatin accessibility and

TF occupancy also appear to explain downstream expression

changes at nearby genes in an interpretable fashion. Allele-specific

TF occupancy is substantially enriched near genes with eQTLs

[68]. Similarly, ds-QTLs are 450-fold more likely to also be

associated with changes in gene expression than a random SNP

and a substantial fraction of eQTLs (55%) are also ds-QTLs

(Figure 1A) [62]. The relationship between ds-QTLs and eQTLs

also depends on genomic architecture in ways that illuminate

underlying biological mechanisms. For example, the probability
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that a ds-QTL is also associated with gene expression change

depends on, among other factors, whether open chromatin and

gene TSS are separated by an insulator element and on the

distance of an enhancer mark to the TSS [62].

Despite this progress, these studies have also highlighted our

incomplete understanding of the regulatory code underlying

transcription factor binding. For example, [68] demonstrate that

many allele-specific differences in TF occupancy cannot be

explained by variants in the canonical binding motif, suggesting

a possible role for alterations in co-factors or chromatin structure.

Clearly, future studies will need to incorporate these additional

aspects to fully understand variation in TF-binding between

individuals.

CpG methylation. Transcriptional silencing is frequently

associated with CpG hypermethylation of gene promoters. In

mammals, allele-specific CpG methylation is synonymous with

genomic imprinting and X inactivation. However, genome-wide

assays of CpG methylation have revealed an abundance of allele-

specific methylation in humans extending beyond the modest

number of known imprinted loci [71–74]. Similarly F1 crosses in

mice have revealed hundreds or thousands of differentially

methylated regions, many of which correlate with segregating

genetic variation [75,76]. More recently, association studies of

genome-wide methylation in human brain tissue and LCLs have

detected many significant associations between genotype and

methylation level (methylation QTLs, or meQTLs), the majority

of which appear to be in cis and close to the site of methylation

[48,77,78]. Differential methylation appears to occur across

multiple neighbouring CpG sites in many cases, suggesting

correlated effects of genetic variation across a relatively large area

[76–78]. Most studies have not assessed to what extent variable

methylation is due to polymorphism at the CpG sites themselves

versus at other sites, although this may contribute a substantial

fraction of the variation in allele-specific methylation [74]. The

immediate sequence context of the methylated cytosine may also

play an important role in determining the impact of variant [76].

The biological mechanism whereby variable methylation alters

gene expression is not entirely clear. CpG methylation may

regulate gene expression directly, by blocking the access of

transcription factors to the DNA or by binding of methyl-CpG-

binding proteins that drive chromatin remodelling and compac-

tion. Alternatively, changes in methylation levels may passively

reflect other regulatory processes such as transcription factor

eviction [79]. Some fraction of changes in DNaseI sensitivity do

manifest at the level of methylation [79], and it has been estimated

that approximately 30% of dsQTLs also manifest as meQTLs,

suggesting some overlap in mechanism [62]. In this case,

methylation assays may be extremely useful as proxies for other

phenotypes because DNA extraction for methylation analysis often

requires smaller amounts of material, and is less laborious, than

methods such as ChIP-seq or DNaseI-seq. However, although

meQTLs are strongly enriched for associations with mRNA levels,

Figure 1. Three examples of alternative biological routes to
gene expression variation identified using alternative molec-
ular phenotypes from the recent literature. (A) A joint DNase-
sensitivity/eQTL in the gene SLFN5 from [62]. The left-hand panel shows
the landscape of open chromatin in a region ,10 kb upstream of the
gene TSS across 70 individuals grouped according to genotype at SNP
rs11080327. The SNP is located in an interferon stimulated response
element (inset), a TFBS that binds a range of related immune response
TFs. The right-hand panel shows RNA-seq read depth across the
transcript region, with the gene annotation from ENSEMBL underneath.
This plot has been shortened slightly from the original for formatting
reasons. Adapted with permission from [62]. (B) A splice variant that
alters both the expression level and relative isoform abundance in the
gene MRPL43 from [31]. The top panel shows RNA-seq read depth in
two individuals that are homozygous or heterozygous for a SNP
(rs2863095) immediately downstream of a splice donor site in exon 3.
Below are shown the transcript annotations inferred from RNA-seq. The
pie chart shows the relative isoform abundance usage in the two

individuals, while the height of the pie chart reflects overall gene
expression, summed over all transcripts. The star shows the location of
the splice polymorphism in the transcript. Adapted with permission
from [31]. (C) An example of a SNP (rs10954213) that alters 39
polyadenylation site usage in IRF5 from [91]. Shown is the transcript
annotation with the two alternative polyadenylation sites used, and the
39 paired end RNA-seq data from six individuals with read pairs from
each genotype colored dark red, blue, or green and the intervening
sequence fragment colored pale red, blue, or green. Adapted with
permission from [91].
doi:10.1371/journal.pgen.1003501.g001
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a relatively small fraction of eQTLs appear to be explained by

changes in methylation [77,80]. Many sites of allele-specific

methylation appear to occur in isolation in the genome with

minimal downstream impact on gene expression [76]. In addition,

in the absence of additional molecular phenotypes, methylation

variation may be less amenable to functional interpretation.

Co/Post-transcriptional Regulatory Variation
Splicing. Splicing is the removal of transcribed introns from

the pre-mRNA by a complex of small nucleolar RNAs and

proteins known as the spliceosome, and is one of several important

regulatory processes occurring during and after transcription. The

development of splicing-oriented microarrays with probes target-

ing individual exons, and more recently, direct high-throughput

sequencing of cDNA libraries, has enabled the study of transcript

processing at a genome-wide level [81].

Detection of splicing-associated variants poses a number of

unique challenges, and a consensus has yet to be reached on the

optimal analysis strategy. A key issue is differentiating pre-

transcriptional regulatory variation, which alters transcription rate

uniformly over all isoforms of a gene, from post-transcriptional

variants, which alter the relative abundances of a set of isoforms and

could be more correctly described as splice QTLs (sQTLs).

Current technologies cannot measure individual isoform abun-

dances directly and so differences in isoform expression levels must

be inferred from individual exons, while also accounting for

uniform changes across all expressed transcripts. This is further

complicated by the fact that alternative isoforms may not share the

same TSS. Approaches to this problem have varied widely and

comparisons across studies are therefore problematic. A second

issue is that, so far, association studies of splicing variation have

featured relatively small sample sizes and have performed a

substantially larger number of tests than eQTL mapping

experiments. As a result, multiple testing thresholds are often

severe and the numbers of sQTLs reaching genome-wide

significance are modest.

Early applications of exon array technology suggested that

alternative splicing of an exon between individuals is heritable and

relatively commonplace (occurring in 1%–5% of measured exons)

[82]. Mapping of sQTLs has now been performed in a variety of

experimental settings, with significant associations (controlling

study-wide FDR at between 5% and 10%) detected in roughly

10% of genes assayed [26,45,83–86].

Compared with whole gene expression, splicing variation has

proved slightly more amenable to functional interpretation. sQTLs

are enriched close to, or within, the spliced exon itself [26,85],

within the intronic binding sites of splice factors and in the

canonical donor and acceptor splice sites [26]. Alternatively

spliced exons also appear to be nonrandomly distributed across the

transcript, with some evidence of enrichment toward the 39 UTR

[83,85,86], although this may reflect biases in sequence coverage

due to the larger size of the 39 UTR relative to internal exons. The

most common form of splice variation appears to be simple exon

skipping, with more exotic varieties such as mutual exon exclusion

and intron retention detected in a small fraction of cases [86]. In

addition to changes in the ultimate protein product, transcript

compositional change can also indirectly influence total mRNA

levels. Ref. [31] presents a series of examples where genetic

variation in splice sites effects a post-transcriptional change on

both relative isoform abundances and total mRNA levels via

altered splice site efficiency, activation of nonsense-mediated

decay, or SNPs in the 59 UTR altering RNA stability (Figure 1B).

miRNAs, polyadenylation, and mRNA decay. Following

RNA processing, the fully mature mRNA molecule is subject to

spontaneous and directed degradation, possibly via interaction

with small RNAs. Genetic variation affecting either mRNA

stability or small RNA activity can alter the rate of mRNA decay

and, ultimately, change steady-state mRNA levels. Although this

area is still poorly understood, recent work has begun to examine

the importance of these pathways in explaining interindividual

expression variation, again focussing on human LCLs as a model

system [87]. After treatment of cells with an RNA elongation

inhibitor, they used a time-course of mRNA extractions to

examine the decay rate of all expressed protein coding genes

and detected joint RNA-decay (rdQTLs) and gene expression

QTLs at 195 loci. They estimated that up to 19% of eQTLs could

be explained by variation in mRNA decay rates and the within-

gene distribution of associations suggests that many joint QTLs

function by altering miRNA binding sites. Surprisingly, however,

almost half of the detected associations in this study unexpectedly

showed a positive correlation between decay rates and expression

levels, in opposition to the intuitive model where higher decay

rates lead to lower expression.

This result hints at an unappreciated degree of complexity

underlying post-transcriptional regulation of steady-state mRNA

levels. Despite the results of [87] and although miRNAs are well-

established as negative regulators of gene expression, their role in

mediating interindividual protein-coding expression variation

remains unclear. A number of studies have also investigated

regulatory variation directly affecting miRNA expression levels

using either miRNA-specific microarrays or RNA-seq adapted for

small RNAs [88–90]. The fraction of miRNAs showing a

significant association between expression level and genotype

appears to be approximately the same as for protein-coding genes

in studies of equivalent size [89]. However, the statistical

thresholds used to identify some miRNA eQTLs have been

relatively liberal, and given the relatively small number of miRNAs

that are expressed in a given tissue (,500), the absolute numbers

of significant associations detected are small (,20). In addition, it

is unclear how important interindividual variation in miRNA

levels is for explaining population variation in protein-coding gene

expression. A study of adipose tissue from 131 individuals did not

find a negative correlation between the expression levels of

miRNAs and protein-coding gene targets [89]. This study also

suggested substantial experimental artefacts in the RNA-seq

protocol used, suggesting further technical development may be

required before the true importance of miRNA eQTLs can be

established.

An additional path by which polymorphisms can affect mRNA

stability is via alternative polyadenylation. Following splicing,

mRNA is cleaved and multiple adenines are added to the 39 end.

Polyadenylation is important in preventing the mature mRNA

from undergoing degradation, and polymorphisms interfering with

this process could affect the efficiency of transcription and

ultimately lead to variation in mRNA half-life. In addition,

alternative polyadenylation can provide different substrates within

which further regulation, for example by miRNAs, can occur. Ref.

[91] examined variation in polyadenylation in six LCLs using

RNA-seq and found that mutations located in the 6 bp

polyadenylation signal sequence were significantly more likely to

be associated with gene expression variation relative to mutations

occurring in the 39 UTR overall. In a series of experiments, this

study demonstrated that changes in adenylation appeared to

confer alternative stability on different transcript isoforms, possibly

via the differential inclusion of certain regulatory motifs, such as

AU-rich elements or miRNA binding sites, in the mature

transcript. An example of a regulatory variant affecting polyad-

enylation is given in Figure 1C.
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In summary, studies of alternative molecular phenotypes are

beginning to reveal the biological mechanisms of gene expression

variation. Results to date suggest that a relatively large fraction of

gene expression variation results from genetically driven changes

in transcription factor binding, indicating a regulation at the pre-

transcriptional stage. Some fraction of these changes is also

reflected epigenetically at the level of CpG methylation, although

the extent of this is unclear. Changes in splicing are relatively

common and may be more tractable phenotypically, while the

contribution of other post-transcriptional regulation is currently

uncertain.

Conclusions and Future Directions

Genetic mapping of molecular and cellular traits has an

important future role to play in human genetics and genomics.

In this section I will highlight some areas for future development.

Incorporating Function and Progress toward Predictive
Models

Despite progress using alternative phenotypes, the majority of

eQTLs have resisted interpretation at the level of DNA sequence.

A key goal for future studies will be the incorporation of more

explicit models of gene regulation into the mapping of regulatory

variants. Some progress has been made in this direction by the

development of prior models that incorporate functional data

[27,29,92], but there is much scope for improvement. Incorpo-

ration of regulatory models in eQTL mapping is attractive for

two reasons. First, explicit regulatory models naturally allow for

the inclusion of additional functional data in association

mapping. This can substantially improve prioritization of

individual SNPs for functional follow-up and is particularly

useful for interpretation of disease associations and rare

noncoding variation. Second, this approach provides a natural

framework within which to develop and test models of gene

regulation using naturally occurring genetic variation as an

experimental perturbation. This is a powerful approach for

understanding the regulatory code and, ultimately, for the

development of models to predict the location and impact of

regulatory variants.

Expanding Alternative Phenotypes
High-throughput sequencing continues to be appended to

standard molecular biology techniques, and many different aspects

of gene regulation can now be quantitated using read-coverage

metric. These developments offer the opportunity to genetically

map highly specific molecular processes and dissect gene

regulation on ever-finer scales. For example, recent developments

such as GRO-seq [46] or ChIP-exo [47] could potentially be

extended to extremely high-resolution QTL maps of productive

mRNA elongation or TF-binding. Likewise, as others have

highlighted, association mapping will continue to be extended to

high-level cellular phenotypes, improving our understanding of the

downstream consequences of changes in gene expression [4].

Quantitative, high-throughput measurement of protein expression

levels will be of particular importance for understanding the

functional significance of changes at the mRNA level. Although

progress has been slow, recent developments suggest that detection

of protein QTLs may soon be possible [93]. Finally, as more exotic

species of noncoding RNA continue to be discovered, the

application of eQTL mapping to, for example, long noncoding

RNAs is likely to reveal deeper insights into the importance of

these molecules for phenotypic variation and disease.

Novel Cellular Environments and Inaccessible Tissues
A significant limitation of most cellular association studies to

date has been the restriction to cells in a steady or quiescent state.

In fact, many phenotypes of interest, in particular those that

represent a response to environmental or pathogen stimulus, are

likely to remain hidden in this system. An important area for

future work will be detection of variant–environment interactions,

with a particular focus on stimulation of cells using pathogenic or

other stress factors. Work in this area has already begun to

examine the effects of a variety of environmental stresses,

including radiation and exposure to drugs, steroids, or pathogens,

on maps of regulatory variation [39,43,94,95]. Related to this,

despite many efforts to expand the cellular repertoire of eQTL

maps beyond LCLs and large-scale initiatives such as the

Genotype-Tissue Expression program (http://commonfund.nih.

gov/GTEx/), some cell types are always likely to remain

inaccessible by conventional methods. The advent of induced

pluripotent stem cells will enable the collection of stem cell

lineages from large numbers of healthy individuals and allow for

extension of genetic maps of regulatory variation into early

development and difficult-to-sample cell lineages, such as live

neurons.

Standardised Analysis and Data Release
The utility of cellular QTL mapping studies, both for human

genetics and genomics, strongly depends on the availability and

quality of the data produced. However, despite some efforts at

creating a centralised database (e.g., [96] or http://eqtl.

uchicago.edu/cgi-bin/gbrowse/eqtl/), the results of many

studies are not easily accessible. This inaccessibility is driven

primarily by the lack of a standardised analysis framework and

the failure of many studies to release their full data (genotypes

and molecular traits) into the public domain. Development of

widely appreciated analysis methods, quality control, and

replication criteria has been enormously beneficial for human

disease mapping. In contrast, as others have also highlighted

[23], comparison and interpretation of results from multiple

eQTL mapping studies, even those performed in the same

tissue, is complicated by wide variation in statistical thresholds

and analysis pipelines implemented. Compounding this problem

is the lack of availability of raw data for reanalysis and methods

development. The 10 years since the first human eQTL

mapping studies have seen dramatic improvements in the

statistical analysis of gene expression data (e.g., [97]). This offers

an attractive opportunity for methods development and

reanalysis of previous studies, in particular those performed in

novel or difficult-to-obtain tissue types. It is unfortunate that,

while most groups release raw gene expression data, many do

not release genotype data because of concerns regarding

confidentiality. While most studies do publish lists of signifi-

cantly associated SNPs, this is far from optimal given the wide

variation in analysis methods. A possible solution would be the

use of resources such as the European Genotype Archive

(https://www.ebi.ac.uk/ega/) that allow for managed access to

published data sets, but still facilitate sharing of raw data.

Failing this, emphasis on standardised analysis would at least

facilitate fair comparison and collation across studies. Greater

emphasis on public access of the datasets created for cellular

association studies can greatly improve the impact and uptake of

results produced. Ultimately association studies with cellular

traits should enable greater functional interpretation of the

mechanisms of phenotypic variation and disease, and efforts to

facilitate this should be strongly encouraged.
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