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Abstract

Background

Lower birth weight is associated with diabetes although the underlying mechanisms are

unclear. Muscle mass could be a modifiable link and hence a target of intervention. We

assessed the associations of birth weight with muscle and fat mass observationally in a pop-

ulation with little socio-economic patterning of birth weight and using Mendelian randomiza-

tion (MR) for validation.

Methods

In the population-representative “Children of 1997” birth cohort (n = 8,327), we used multi-

variable linear regression to assess the adjusted associations of birth weight (kg) with mus-

cle mass (kg) and body fat (%) at ~17.5 years. Genetically predicted birth weight (effect

size) was applied to summary genetic associations with fat-free mass and fat mass (kg)

from the UK Biobank (n = ~331,000) to obtain unconfounded estimates using inverse-vari-

ance weighting.

Results

Observationally, birth weight was positively associated with muscle mass (3.29 kg per kg

birth weight, 95% confidence interval (CI) 2.83 to 3.75) and body fat (1.09% per kg birth

weight, 95% CI 0.54 to 1.65). Stronger associations with muscle mass were observed in

boys than in girls (p for interaction 0.004). Using MR, birth weight was positively associated

with fat-free mass (0.77 kg per birth weight z-score, 95% CI 0.22 to 1.33) and fat mass

(0.58, 95% CI 0.01 to 1.15). No difference by sex was evident.

Conclusion

Higher birth weight increasing muscle mass may be relevant to lower birth weight increasing

the risk of diabetes and suggests post-natal muscle mass as a potential target of intervention.
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Introduction

Observationally, lower birth weight is associated with higher risk of many chronic diseases

including cardiovascular disease, diabetes and poor liver function,[1–4] but is also associated

with lower risk of hormone-related cancers including breast and prostate cancer.[5, 6]

Although these observations are open to confounding by factors such as socio-economic posi-

tion (SEP), different associations by diseases suggest some of these associations may be causal.

Mendelian randomization (MR) studies, taking advantages of the random allocation of genetic

endowment at conception to obtain un-confounded estimates,[7] suggest an inverse associa-

tion of birth weight with diabetes,[3, 4] but practical implications for prevention are unclear

given birth weight is a complex phenotype. Elucidating the pathways linking birth weight with

diabetes may provide additional insights into the identification of intervention targets, since

birth weight is difficult to change[8] and does not have an “optimal” definition.[9]

Observationally, birth weight is positively associated with muscle mass in both teenagers

and adults.[10, 11] Randomized controlled trials shows resistance training increases muscle

mass and improves Hemoglobin A1c.[12] As such, muscle mass could be a modifiable down-

stream effect of birth weight, partially driven by sex hormones,[13, 14] potentially with sex-

specific effects, consistent with the associations of lower birth weight with lower risk of breast

and prostate cancers.[5, 6] However, previous observational studies assessing the role of birth

weight in muscle mass sometimes adjusted for factors on the causal pathway, such as body

mass index (BMI), height and physical activity, but may not fully adjusted for SEP.[15, 16]

To clarify the role of birth weight in body composition, we conducted two analyses with dif-

ferent assumptions and study designs (Fig 1). First, in an observational setting, we prospec-

tively assessed the overall and sex-specific associations of birth weight with body composition

(muscle mass, grip strength, and fat percentage) in a unique population, Hong Kong’s “Chil-

dren of 1997” birth cohort. In Hong Kong, the usual associations of higher SEP with higher

birth weight and greater gestational age are almost absent,[17] and obesity has little socio-eco-

nomic patterning in young people.[18] Therefore, Hong Kong is an ideal setting to assess the

associations of birth weight and gestational age with body composition. We also assessed

whether these associations differed by sex given the sex-difference in body composition since

such differences are likely interpretable even when associations are confounded.[19] Second,

using an MR design, we validated our findings, by assessing the associations of birth weight

predicted by maternal genetics independent of fetal genetics, as a proxy of maternal intrauter-

ine environment,[20] on body composition (fat-free mass, grip strength, and fat mass) in the

largest publicly available genome wide association study (GWAS).[21] Taking advantage of the

random allocation of genetic endowment at conception, MR studies provide un-confounded

estimates and give the result of a lifelong difference in the risk factor between groups.[7]

Material and methods

Ethics statement

Ethical approval for the study, including comprehensive health related analyses, was obtained

from Institutional Review Board of the University of Hong Kong/Hospital Authority Hong

Kong West Cluster (HKU/HA HKW IRB). Informed written consent was obtained from the

parents/guardians, or from the participant if 18 years or older, before participation in the Bio-

bank Clinical Follow-up.

The MR study only uses published or publicly-available data. No original data were col-

lected for the MR study. Ethical approval for each of the studies included in the investigation

can be found in the original publications (including informed consent from each participant).
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Observational study—The “Children of 1997” birth cohort

“Children of 1997” is a population-representative Chinese birth cohort (n = 8327), based on

88% of births in Hong Kong in April and May 1997.[22] The original study was designed to

assess the associations of second-hand smoke exposure and breastfeeding with health services

utilization in the first 18 months of life. Recruitment took place at all Maternal and Child

Health Centers (MCHCs) in Hong Kong. Parents are strongly encouraged to take their chil-

dren to the MCHCs for free preventive care and vaccinations to age 5 years. Parental and

infant characteristics were obtained at recruitment. Contact was re-established in 2007. A Bio-

bank clinical follow-up was conducted from 2013–2016 at ~17.5 years, when body composi-

tion was assessed from bio-impedance analysis using a Tanita segmental body composition

monitor (Tanita BC-545, Tanita Co., Tokyo, Japan). Grip strength was measured using a Takei

T.K.K.5401 GRIP D handgrip dynamometer (Takei Scientific Instruments Co. Ltd, Tokyo,

Japan).

Exposure—Birth weight, gestational age-specific birth weight z-score, and gestational

age. Birth weight recorded in grams was considered in kilograms and as internally generated

gestational age-specific birth weight z-scores. Gestational age recorded in days was considered

in weeks. Gestational age was calculated from the actual and expected dates of delivery

reported by the mothers or primary caregivers at the initial MCHCs visit. The reported

expected date of delivery is based on the date of the last menstrual period and any dating

scans.

Outcome—Body composition. Muscle was assessed from whole-body muscle mass (kg),

and dominant hand grip strength (kg). Fat mass was assessed from body fat percentage.

Fig 1. Directed acyclic graph of the observational analysis and the Mendelian randomization analysis.

https://doi.org/10.1371/journal.pone.0222141.g001
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Mendelian randomization study

Exposure—Genetic predictors of maternal only effects on birth weight. Single nucleo-

tide polymorphisms (SNPs) predicting maternal effects on birth weight independent of fetal

genetics (z-score transformed) at genome-wide significance (p-value<5×10−8) adjusted for

gestational age where available (only available in<15% of the sample) and study-specific

covariates were obtained from a GWAS consisting of two components, the Early Growth

Genetics (EGG) Consortium (n = 12,319, 10 studies in the EGG consortium of European

descent imputed up to the HapMap 2 reference panel, and n = 7,542, 2 studies in of European

descent imputed up to the HRC panel) and the UK Biobank (n = 190,406, white European). A

structural equation model was used to decompose the contributions of maternal genetic and

fetal effects on birth weight (264,498 individuals own birth weight and 179,360 individuals off-

spring birth weight).[20]

We obtained independent SNPs (R2>0.01) with the lowest p-value using the “Clumping”
function of the MR-Base (TwoSampleMR) R package, with the 1000 Genomes catalog.[23]

Potentially pleiotropic effects of these SNPs were obtained from up-to-date genotype to pheno-

type cross-references, i.e., GWAS Catalog (https://www.ebi.ac.uk/gwas/), Ensembl (http://

www.ensembl.org/index.html) and Phenoscanner (http://www.phenoscanner.medschl.cam.ac.

uk/). We also checked for potential pleiotropic effects and confounding of these SNPs from

the Bonferroni corrected significance (12 traits × 30 SNPs, p-value<1×10−4) of their associa-

tions with alcohol consumption (past and current), smoking (past and current), physical activ-

ity (light, moderate, and vigorous), socioeconomic position (income and education), age of

voice braking, age of menarche, and height in the UK Biobank summary statistics.[21]

Outcome—Genetic associations with body composition. Genetic associations with fat-

free mass (kg), grip strength (kg) (left and right hand), and fat mass (kg) were obtained from

the UK Biobank (~331,000 people of genetically verified white British ancestry). The genetic

associations were assessed from multivariable linear regression adjusted for the first 20 princi-

pal components, sex, age, age-squared, the sex and age interaction and the sex and age-squared

interaction.[21]

Statistical analyses

Observational analyses. We compared “Children of 1997” who were included and

excluded on baseline characteristics using chi-squared tests, and Cohen effect sizes[24] to

obtain the magnitude of the differences between groups. Cohen effect sizes are usually catego-

rized as 0.20 for small, 0.50 for medium and 0.80 for large for continuous variables, and as 0.10

for small, 0.30 for medium and 0.50 for large for categorical variables.

The associations of muscle mass, grip strength and fat percentage with potential confound-

ers were assessed using independent t-tests or analysis of variance for continuous variables

and chi-square tests for categorical variables. We used multivariable linear regression to obtain

the observational associations of birth weight, birth weight z-score and gestational age with

body composition adjusting for second-hand and maternal smoking, parental education,

parental occupation, household income, type of housing, and sex. We additionally adjusted for

gestational age in the association of birth weight with body composition. Sex differences were

assessed from the significance of interaction terms adjusted for the other potential confound-

ing interactions with sex.

Taking missingness into account, multiple imputation and inverse probability weighting

were applied.[25] Firstly, we created 20 sets of imputed data accounting for missing confound-

ers and exposures for all participants. Secondly, logistic regression was used to predict loss-to-

follow-up based on gestational age (log-transformed because of the long tail of the
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distribution), second-hand and maternal smoking, sex, type of housing, type of hospital at

delivery, maternal migrant status, maternal age, and, breastfeeding with the lowest Akaike

information criterion value. We also used the Hosmer-Lemeshow test to check model fit.

Additionally, weights were checked to ensure acceptable stability. Unstable weights indicate

model misspecification.[25] Lastly, we combined each inverse probability weighting effect esti-

mator and its corresponding sandwich variance estimator according to Rubin’s Rules.[26]

Mendelian randomization. The strength of the genetic instruments was assessed from

the F-statistic, obtained using an approximation (square of SNP on exposure divided by vari-

ance of SNP on exposure).[27, 28] A higher F-statistic indicates a lower risk of weak instru-

ment bias.[27] The effects of birth weight on the outcomes were obtained from a meta-analysis

of SNP-specific Wald estimates (SNP-outcome association divided by SNP-exposure associa-

tion) using inverse variance weighting with multiplicative random effects assuming balanced

pleiotropy. Heterogeneity of the Wald estimates was assessed from the I2 statistic, where a high

I2 may indicate the presence of invalid SNPs.[29] Differences by sex were additionally

assessed.[30] Power calculations were performed using the approximation that the sample size

for Mendelian randomization equates to that of the same regression analysis with the sample

size divided by the r2 for genetic variant on exposure.[31]

Sensitivity analyses relevant to the observational designs. A complete case analysis was

conducted as a validation without taking missingness into account.

Sensitivity analyses relevant to Mendelian randomization. As sensitivity analyses, we

excluded SNPs which may be invalid. These included 1)SNPs associated with potentially pleio-

tropic effects on muscle or fat given in Ensembl or the GWAS Catalog; 2) SNPs associated

with potential confounders and/or pleiotropic effects in the UK Biobank at Bonferroni cor-

rected significance (p-value<1×10−4) and in PhenoScanner (p-value <1×10−5).

Estimates were obtained from sensitivity analyses with different assumptions.

Specifically, we used a weighted median which may generate correct estimates if >50% of

weight is contributed by valid SNPs.[32] MR-Egger was used which generates correct estimates

if all the SNPs are invalid instruments as long as the instrument strength independent of direct

effect assumption is satisfied.[29] A non-null intercept from MR-Egger indicates potential

directional pleiotropy and an invalid inverse variance weighting estimate.[32] The Mendelian

randomization pleiotropy residual sum and outlier (MR-PRESSO) was additionally used,

which detects and corrects for pleiotropic outliers assuming >50% of the instruments are

valid, balanced pleiotropy and the instrument strength independent of direct effect assumption

are satisfied.[33, 34]

All statistical analyses were conducted using R version 3.4.2 (R Foundation for Statistical

Computing, Vienna, Austria). The R packages MendelianRandomization [35] and MRPRESSO
[34] were used to generate the estimates.

Results

Children of 1997

Among the originally recruited 8327 participants, 6850 are contactable and living in Hong

Kong. 3460 (51%) participated in the Biobank clinical follow-up, of which 3455 had muscle

mass, grip strength or fat percentage (Fig 2). The mean and standard deviation (SD) of muscle

mass, grip strength and fat percentage were 42.6kg (SD 8.8kg), 25.8kg (SD 8.3kg) and 21.7%

(SD 8.8%). Boys had higher muscle mass and grip strength but lower fat percentage than girls.

Body composition had little association with SEP (Table 1). Differences between participants

included and excluded from the study were found for gestational age, sex, second-hand and
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maternal smoking exposure, and SEP using chi-squared tests, but the magnitude of these dif-

ferences was small (Cohen effect size <0.15) (S1 Table).

Observationally, birth weight and birth weight z-score were positively associated with mus-

cle mass, grip strength, and, fat percentage. The associations were strengthened after adjusting

for gestational age. Gestational age was not associated with muscle mass, grip strength or fat

percentage. Associations with muscle muss differed by sex for birth weight z-score and birth

weight adjusted for gestational age, with stronger associations in boys (Table 2). Similar esti-

mates were obtained in the complete case analyses (S2 Table).

Mendelian randomization

Genetic instruments for maternal only effects on birth weight. Altogether, 30 SNPs

independently predicted effects of maternal genetics net of infant genetics on birth weight (p-

value<5×10−8) in people of European ancestry.[20] The average of SNP-specific F statistics

was 79, and all were >30 (S3 Table); the variance explained (r2) was 0.013. As such, the MR

study had 80% power with 5% alpha to detect a difference of 0.04 of an effect size in fat-free

mass and fat mass per z-score of birth weight.

Of the 30 SNPs predicting birth weight, 5 palindromic SNPs were aligned (S3 Table); 5

SNPs had potentially pleiotropic effects, i.e., (height and metabolic response) in Ensembl or

the GWAS Catalog. Of the remaining 25 SNPs, 15 remained after excluding SNPs related to

height, menarche, income, and basal metabolic rate in the UK Biobank (p-value<1×10−4) and

in PhenoScanner (p-value <1×10−5) (S4 and S5 Tables).

Mendelian randomization estimates. Based on all 30 SNPs, genetically predicted birth

weight (maternal effects net of infant effects) was positively associated with fat-free mass, fat

mass, and grip strength. No sex differences were evident. After excluding 5 potentially pleio-

tropic SNPs, the positive associations remained, however, the associations were not robust

after additionally excluding 10 potentially pleiotropic and confounded SNPs (S5 Table).

Detecting and correcting for pleiotropic outliers, MR-PRESSO indicated robust positive esti-

mates, in particular with fat mass (Fig 3). MR-Egger had wider confidence intervals but had no

indication of potential pleiotropy (S5 Table).

Discussion

Using two different designs, with different assumptions and data sources, we found consistent

evidence that birth weight was positively associated with muscle mass (fat-free mass), grip

strength and fat percentage (fat mass). These findings are consistent with previous observa-

tional studies,[10, 36, 37] but add by validating these observations in a setting with little socio-

economic patterning of birth weight and the use of MR.

These two study designs have contrasting limitations. First, residual confounding could not

be ruled out in the observational design. SEP is hard to measure precisely and eliminate. In

Hong Kong, the usual positive association of SEP with birth weight and gestational age is

almost absent,[17] and SEP has little association with adiposity in young people.[18] However,

other familial factors might affect birth weight and body composition.[38, 39] It is also difficult

to disentangle correlated factors reliably in an observational study. Second, follow-up was

incomplete (51%). Selection bias is unlikely, given no major difference between the partici-

pants with and without body composition indices. Moreover, differences by sex were observed,

which are less open to confounding.[19] Third, MR studies have stringent assumptions, i.e.,

the genetic instruments should strongly predict the exposure, should not be confounded and

should only be linked with the outcomes via the exposure. To examine the robustness of our

findings, we excluded SNPs which may have pleiotropic effects or be associated with potential

Birth weight on body composition
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Fig 2. Flowchart of the Hong Kong’s “Children of 1997” birth cohort, Hong Kong, China, 1997 to 2016.

https://doi.org/10.1371/journal.pone.0222141.g002
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confounders, and the results were similar. MR-PRESSO also gave consistently positive sex-spe-

cific estimates after taking potential pleiotropy into account (Fig 3). Although some of the I2

were large, after excluding potentially pleiotropic and/or confounded SNPs, they became

Table 1. Baseline characteristics muscle mass, grip strength, and fat percentage among participants in Hong Kong’s “Children of 1997” birth cohort, Hong Kong,

China, 1997 to 2016.

Characteristics Muscle mass (kg) Grip strength (kg) Fat percentage (%)

No. % Mean (SD) P-valuea No. % Mean (SD) P-valuea No. % Mean (SD) P-valuea

Muscle mass (kg) 3440 42.6 (8.8)

Grip strength (kg) 3444 25.8 (8.3)

Fat percentage (%) 3452 21.7 (8.8)

Sex 3440 <0.001 3444 <0.001 3452 <0.001

Girl 1707 49.6% 35.3 (3.4) 1710 49.7% 19.9 (4.5) 1714 49.7% 28.1 (5.9)

Boy 1733 50.4% 49.7 (6.3) 1734 50.3% 31.6 (7.0) 1738 50.3% 15.3 (6.4)

Unknown 0 0.0% - 0 0.0% - 0 0.0% -

Second-hand and maternal smoking

exposure

3440 0.07 3444 0.77 3452 0.17

None 940 27.3% 42.1 (8.4) 939 27.3% 25.6 (8.1) 943 27.3% 21.2 (8.5)

Prenatal second-hand smoking 1275 37.1% 42.7 (8.8) 1276 37.0% 26.0 (8.4) 1276 37.0% 21.6 (9.0)

Postnatal second-hand smoking 953 27.7% 43.0 (9.2) 956 27.8% 25.7 (8.3) 960 27.8% 22.0 (9.0)

Maternal smoking 128 3.7% 42.7 (8.8) 128 3.7% 26.0 (8.2) 128 3.7% 22.9 (8.6)

Unknown 144 4.2% 41.1 (8.6) 145 4.2% 25.3 (8.7) 145 4.2% 21.9 (9.0)

Highest parental education level 3440 0.06 3444 0.12 3452 0.04

Grade< = 9 984 28.6% 42.2 (9.1) 988 28.7% 25.4 (8.3) 989 28.7% 22.2 (9.0)

Grades 10–11 1481 43.1% 42.4 (8.6) 1483 43.1% 25.7 (8.4) 1488 43.1% 21.6 (8.8)

Grades> = 12 959 27.9% 43.1 (8.9) 957 27.8% 26.3 (8.1) 959 27.8% 21.1 (8.7)

Unknown 16 0.5% 39.7 (7.3) 16 0.5% 24.4 (6.8) 16 0.5% 23.9 (8.6)

Highest parental occupation 3440 0.32 3444 0.04 3452 0.12

Ⅰ(unskilled) 98 2.8% 41.9 (9.3) 99 2.9% 25.4 (8.6) 99 2.9% 21.8 (8.1)

Ⅱ(semiskilled) 281 8.2% 43.0 (9.0) 283 8.2% 26.4 (8.3) 285 8.3% 21.9 (8.8)

Ⅲ(semiskilled) 503 14.6% 42.3 (9.0) 504 14.6% 25.1 (8.4) 503 14.6% 21.5 (8.8)

Ⅲ(nonmanual skilled) 876 25.5% 42.4 (8.7) 878 25.5% 25.4 (8.1) 879 25.5% 22.2 (9.2)

Ⅳ (managerial) 438 12.7% 43.2 (9.5) 438 12.7% 26.5 (8.5) 439 12.7% 22.2 (8.6)

Ⅴ(professional) 794 23.1% 42.8 (8.5) 792 23.0% 26.2 (8.2) 795 23.0% 21.0 (8.5)

Unknown 450 13.1% 42.0 (8.5) 450 13.1% 25.3 (8.4) 452 13.1% 21.5 (9.2)

Household income per head at

recruitment

3440 0.07 3444 0.16 3452 0.15

First quintile 566 16.5% 42.0 (8.5) 572 16.6% 25.6 (8.5) 571 16.5% 21.7 (8.9)

Second quintile 613 17.8% 41.9 (9.3) 613 17.8% 25.0 (8.3) 616 17.8% 22.2 (8.7)

Third quintile 616 17.9% 43.3 (8.8) 617 17.9% 26.1 (8.3) 618 17.9% 21.8 (9.1)

Fourth quintile 630 18.3% 42.7 (8.9) 629 18.3% 25.9 (8.5) 630 18.3% 21.2 (8.7)

Fifth quintile 644 18.7% 42.9 (8.6) 642 18.6% 26.1 (7.9) 645 18.7% 21.1 (8.5)

Unknown 371 10.8% 42.6 (9.0) 371 10.8% 26.1 (8.3) 372 10.8% 22.2 (9.2)

Type of housing at recruitment 3440 0.45 3444 0.44 3452 0.36

Public 1435 41.7% 42.5 (8.9) 1440 41.8% 25.8 (8.5) 1445 41.9% 21.9 (9.1)

Subsidized home ownership scheme 545 15.8% 42.2 (8.8) 541 15.7% 25.2 (8.2) 544 15.8% 22.0 (8.9)

Private 1355 39.4% 42.8 (8.8) 1358 39.4% 25.9 (8.1) 1358 39.3% 21.3 (8.5)

Unknown 105 3.1% 41.8 (8.8) 105 3.0% 25.8 (8.7) 105 3.0% 21.2 (8.7)

a Using independent t-test or analysis of variance for continuous variables and chi-square tests for categorical variables

https://doi.org/10.1371/journal.pone.0222141.t001
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smaller. MR-Egger regression did not show directional pleiotropy even though the intercept

test might be underpowered. Fourth, the overlap of the GWAS of birth weight with UK Bio-

bank is ~90%, which might bias estimates towards the exposure-outcome association, never-

theless, the F statistic was 79 suggesting weak instrument bias is less likely.[27] Fifth, the MR

Table 2. Adjusted associations of birth weight, birth weight z-score and gestational age with body composition with inverse probability weighting (IPW) and multi-

ple imputation (MI) in the Hong Kong’s “Children of 1997” birth cohort, Hong Kong, China, 1997 to 2016.

Outcome Exposure Sex-adjusted as

confounder

p-value of interaction with sex Boys Girls

Beta 95% CI Beta 95% CI Beta 95% CI

Muscle mass (kg) Birth weight (kg) 2.32 1.94 to 2.70 0.12 2.59 1.95 to 3.23 1.99 1.61 to 2.36

Birth weight z-score 1.29 1.12 to 1.47 0.002 1.54 1.25 to 1.83 1.01 0.84 to 1.17

Birth weight adjusted for gestational age 3.29 2.83 to 3.75 0.004 3.89 3.12 to 4.66 2.58 2.14 to 3.03

Gestational age (week) 0.00 -0.10 to 0.10 0.25 -0.06 -0.23 to 0.12 0.07 -0.04 to 0.17

Grip strength (kg) Birth weight (kg) 1.39 0.95 to 1.84 0.36 1.58 0.86 to 2.30 1.16 0.66 to 1.66

Birth weight z-score 0.68 0.48 to 0.89 0.35 0.77 0.44 to 1.10 0.57 0.35 to 0.80

Birth weight adjusted for gestational age 1.75 1.22 to 2.29 0.29 2.01 1.14 to 2.87 1.43 0.83 to 2.02

Gestational age (week) 0.08 -0.04 to 0.20 0.89 0.09 -0.11 to 0.28 0.07 -0.06 to 0.21

Fat percentage Birth weight (kg) 0.58 0.11 to 1.04 0.30 0.35 -0.32 to 1.01 0.85 0.20 to 1.50

Birth weight z-score 0.44 0.23 to 0.65 0.58 0.39 0.09 to 0.69 0.51 0.22 to 0.80

Birth weight adjusted for gestational age 1.09 0.54 to 1.65 0.69 1.00 0.20 to 1.79 1.23 0.46 to 2.00

Gestational age (week) -0.09 -0.22 to 0.03 0.23 -0.17 -0.34 to 0.01 -0.01 -0.19 to 0.16

Adjustment: second-hand and maternal smoking, highest parental education, parental occupation, household income, type of housing and sex.

https://doi.org/10.1371/journal.pone.0222141.t002

Fig 3. Mendelian randomization estimates of the effect of genetically predicted birth weight (maternal effects net of infant effects) (per z-score) on body

composition with and without potentially pleiotropic SNPs and potentially confounded SNPs using MR-PRESSO. SNP = 30: all SNPs; SNP = 25, excluding

maternal genotype related SNPs, and potential pleiotropic SNPs from GWAS catalog and Ensembl: rs560887 (G6PC2), rs2971669 (GCK), rs148982377 (ZNF789),

rs2168101 (LMO1), rs10830963 (MTNR1B); excluding potential pleiotropic and/or confounded SNPs in UK Biobank in Bonferroni corrected significance (p-

value<1×10−4) and in PhenoScanner (p-value<1×10−5): rs934232 (ZFP36L2), rs34471628 (DUSP1), rs9379084 (RREB1), rs6911024 (MICA), rs6995390 (ZFHX4),

rs10814916 (GLIS3), rs111867185 (AGBL2), rs6487930 (IPO8), rs180438 (SLC38A4), rs597808 (ATXN2). MR-PRESSO: Mendelian randomization pleiotropy residual

sum and outlier.

https://doi.org/10.1371/journal.pone.0222141.g003
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study mainly pertains to people of European ancestry. However, restricting the MR study to

the European ancestry could mitigate the potential confounding bias caused by hidden popula-

tion structure, if the genetic associations vary by ethnic groups.[40] Ethnic differences between

the MR study and the observational study is another concern, although we usually expect

causal factors to act consistently across populations, unless we have evidence that the causal

mechanism differs or is less relevant in some specific populations. Given the distribution of

body composition varies by ethnicity, it is possible that the drivers of body composition also

vary by ethnicity. However, more parsimoniously, it is likely that the drivers of body composi-

tion are similar across populations but their relevance varies. However, causes are usually con-

sistent although not relevant in all contexts. Replicating the MR study in a Chinese population

would be very helpful. Sixth, using summary statistics from different samples in the MR study

means differences by age and sex could not be comprehensively assessed since no sex-specific

genetic predictors of birth weight are available and hence we were only able to assess differ-

ences by sex observationally. Seventh, canalization might compensate for genetic variation in

birth weight. However, whether such canalization exists is unknown. Eighth, MR provides an

estimate of the effect of lifetime exposure rather than indicating the exact size of the corre-

sponding intervention, as such it indicates an etiological pathway. Birth weight is affected by

maternal and fetal genetics.[20, 41, 42] We used maternal genetics predictors net of infant

genetics so the associations found with offspring body composition indicate the role of the

intrauterine environment. Whether the intrauterine environment is a modifiable target of

intervention, or whether subsequent consequences of the intrauterine environment would be

more suitable for intervention requires investigation. Lastly, different genetic effects by genera-

tion is a concern. Given summary data was used, the genetic effects of maternal genetics net of

infant genetics with offspring body composition were approximated by the genetic effects of

maternal genetics net of infant genetics with maternal body composition. However, effects of

genetic are likely consistent across generations.[43] We cannot rule out the possibility of the

gene-environmental and/or gene-gene interactions leading to heritable epigenetic changes,

which requires further exploration with individual maternal and infant genetic data.[43]

Positive associations of birth weight with body composition seem intuitive and might arise

for several reasons. Development before birth is critical for skeletal muscle and adiposity. Spe-

cifically, myogenesis forms most fiber, and muscle fiber numbers do not increase after birth.

[36, 44] Similarly, fat cell number is complete at birth and postnatal fat mass is mainly via

increasing adipocyte size.[45, 46] Mechanisms driving differential development of muscle and

fat cells before birth are unclear, but likely related to nutrition, acting via hormones. We have

previously proposed that lower levels of androgens might cause higher diabetes risks via lower

muscle mass.[13, 14, 47] Lower birth weight might indicate lower levels of androgens thus gen-

erating positive associations of birth weight with muscle mass and the stronger associations in

men seen in both the observational and MR designs, although a difference by sex was not evi-

dent in the MR design. From an etiological perspective, a causal association of birth weight

with muscle mass provides a potential mechanistic, a modifiable pathway from lower birth

weight to higher diabetes risks.[3, 4, 47] Given birth weight is difficult to change, such findings

suggest that muscle building might reduce diabetes risk due to lower birth weight. Such a

mechanism, might also help explain a higher risk of diabetes in Asia with low prevalence of

obesity, lower birth weight, and lower muscle mass than in western settings.[48–52] Asians

have more than double the risk of developing diabetes than Europeans at the same BMI.[48]

However, it is possible that the observed associations do not extend to the extremes of the

birth weight distribution, where birth weight may be a symptom of specific pathology. Given

this is likely to be rare, we do not have sufficient sample size to assess this possibility. These

findings are consistent with the idea of evolutionary public health, i.e., that the trade-off of
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growth and reproduction against longevity may inform understanding of chronic diseases and

the identification of interventions.

Conclusion

Higher birth weight might increase fat-free mass and fat mass. Our study provides some indi-

cations that low fat-free mass may explain why lower birth weight increases diabetes risk and

suggests muscle building as an attractive target of intervention.
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