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Abstract

The affordability of next generation sequencing (NGS) is transforming the field of mutation analysis in bacteria. The genetic
basis for phenotype alteration can be identified directly by sequencing the entire genome of the mutant and comparing it
to the wild-type (WT) genome, thus identifying acquired mutations. A major limitation for this approach is the need for an a-
priori sequenced reference genome for the WT organism, as the short reads of most current NGS approaches usually
prohibit de-novo genome assembly. To overcome this limitation we propose a general framework that utilizes the genome
of relative organisms as mediators for comparing WT and mutant bacteria. Under this framework, both mutant and WT
genomes are sequenced with NGS, and the short sequencing reads are mapped to the mediator genome. Variations
between the mutant and the mediator that recur in the WT are ignored, thus pinpointing the differences between the
mutant and the WT. To validate this approach we sequenced the genome of Bdellovibrio bacteriovorus 109J, an obligatory
bacterial predator, and its prey-independent mutant, and compared both to the mediator species Bdellovibrio bacteriovorus
HD100. Although the mutant and the mediator sequences differed in more than 28,000 nucleotide positions, our approach
enabled pinpointing the single causative mutation. Experimental validation in 53 additional mutants further established the
implicated gene. Our approach extends the applicability of NGS-based mutant analyses beyond the domain of available
reference genomes.
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Introduction

Next-generation sequencing (NGS) technologies have revolu-

tionized the field of microbial genomics and genetics [1]. It is now

affordable to sequence an entire prokaryotic genome in order to

identify acquired mutations [2]. For this, the millions of short

reads produced by NGS are mapped to an a-priori sequenced

reference genome of the wild-type (WT) [3] and mutations are

inferred from the differences between the WT reference and the

sequenced mutant [4].

Several studies have utilized NGS for identifying mutations. For

example, isolates of the ethanol producing yeast Pichia stipitis were

sequenced to detect mutations that facilitated efficient fermenta-

tion [5]. In another study, the geographical transmission of

methicillin-resistant Staphylococcus aureus (MRSA) was traced, across

a timescale of years, by genome-wide profiling of mutations in

multiple isolates [6]. Evolution of bacterial symbionts [7] and

pathogenic strains in the laboratory [8] were also studied by whole

genome NGS.

A major barrier for identifying mutations through sequencing is

the inherent dependence on a high-quality reference genome, and

while, so far, over 1,200 genomes were fully sequenced, most

isolated organisms lack a reference genome [9]. Since NGS data is

characterized by short sequencing reads, usually 25-100 base pairs

(bp), constructing de novo assemblies from the reads is not trivial

[10], and as illustrated by Butler et al., assembling a full genome

from unpaired short-sequencing-reads is often theoretically

impossible [11].

Here, we present a general framework for identifying mutations

using NGS without requiring an a-priori reference genome of the

WT organism. This method utilizes a related genome, denoted the

‘mediator’, to which NGS data of both the WT and the mutant

are mapped. We applied our method on the organism Bdellovibrio

bacteriovorus 109J (henceforth 109J), for which no reference genome

exists. Bdellovibrio is an aerobic d-proteobacteria that presents an

obligatory parasitic lifecycle, in which it feeds on gram-negative

bacteria [12]. While WT Bdellovibrio is an obligatory predator,

facultative host-independent mutants (HI) that can grow without

the need for bacterial prey can be readily isolated in the laboratory

[13]. A single gene implicated in the HI phenotype, the hit locus,

has previously been characterized, and mutations in this gene were

shown to be associated with the HI phenotype [12,14]. We set out

to characterize genomic alterations in HI mutants using the

mediator-based re-sequencing approach.
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Results

A mediator-based approach for mutations detection
Our approach utilizes a mediator genome to pinpoint

differences between mutant and WT isolates (Figure 1). Within

this framework, genomic DNA of mutant and WT isolates are

subject to whole-genome sequencing, and the resulting sequences

of both isolates are separately mapped to the genome of the

mediator organism. The high sequence coverage generated by

NGS for bacterial genomes allows detection of local base

differences without the need for whole genome assembly; positions

that are consistently different between the mapped reads and the

mediator genome are marked as genetic changes (Figure 1). This

process resolves the differences between the genome of each of the

sequenced isolates and the mediator genome, and produces a list

of genomic differences both for the WT and the mutant strains.

Genomic differences common to both isolates represent the

evolutionary distance between the WT and the mediator and are

therefore discarded, while changes unique to the mutant are

further investigated, as they may be causative.

Applying mediator-based sequencing to Bdellovibrio
host-independent mutants

To identify the mutation(s) that led to the host-independent (HI)

phenotype in Bdellovibrio bacteriovorus 109J, we sequenced a single HI

isolate using the Illumina Genome Analyzer platform. The

sequencing produced .12 million reads of 33 bp, which could

not be assembled into a reasonable number of contigs using widely

used de-novo assemblers (Methods S1; Table S1; Figure S1). Since no

reference genome is available for the 109J, the reads were mapped

Figure 1. Workflow for mediator based resequencing. WT and mutant isolates are separately sequenced by NGS. The resulting short
sequencing reads are projected onto the mediator genome. The mapped reads allow inferring variations between each of the isolates and the
mediator genome (blue asterisks, mutations common to both the WT and mutant bacteria; green asterisk, mutation unique to mutant isolate).
Mutations common to both isolates are discarded, leaving those that are unique to the mutant isolate. Finally, unique mutations to the mutant
isolate are experimentally validated.
doi:10.1371/journal.pone.0015628.g001
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to the ‘mediator’ genome of Bdellovibrio bacteriovorus HD100

(HD100), the only available genome of the Bdellovibrio genus. Over

one third of the reads were aligned to the mediator genome with 1

or more mismatches (Methods), reflecting the phylogenetic distance

between the sequenced HI mutant and the mediator. Indeed, we

were able to identify 28,386 single nucleotide differences between

the HD100 genome and the sequenced HI mutant (Methods,

Figure 2), with most of the detected changes (80.2%) being

synonymous. In addition, 150,223 bases (4% of the genome) were

not covered by any sequencing read, possibly reflecting DNA

fragments that were deleted from the 109J isolate, or that became

too variable to allow mapping of the 33 bp reads.

Obviously, this large amount of genetic variation does not allow

identification of the specific causative mutations that lead to the

phenotypic change. We therefore used the Illumina Genome

Analyzer to sequence an isolate of WT 109J and mapped the

resulting reads to the same mediator genome (Methods, Table S1,

Figure S2). This revealed 28,379 single nucleotide differences

between the mediator and the 109J WT, very close to the number

identified in the HI mutant. Of these mutations, 28,367 (99.9%)

were identical between the WT and the mutant, and thus most

probably reflect the evolutionary changes since the separation of

the mediator (HD100) and the WT (109J) strains. Discarding the

common mutations revealed only 19 mutations unique to the HI

mutant, a number small enough for downstream experimental

validation (Table 1). This process also identified 12 mutations

unique to the WT (Table S2). No large deletion was found to be

unique to the HI mutant (Methods), pointing to one or more of the

19 identified single base changes and/or small insertion as the

possibly causative mutations.

Experimental validation of identified mutations
All non-synonymous mutations in the HI stain were tested and

verified using directed PCR followed by Sanger sequencing.

Figure 2. Genetic variation between Bdellovibrio bacteriovorus 109J and HD100. Shown is a genomic comparison between the sequenced
strain 109J and the reference (mediator) HD100. Outer circles (blue) represent genes on the plus and minus strands of the 3,782,950 bp genome of
HD100 (NC_005363). Middle circles represent the 28,379 genetic changes between WT 109J and WT HD100; green ticks, synonymous or intergenetic
changes (85.7%); red ticks, non-synonymous changes (14.3%). Large deletions common to the WT 109J and HI 109J are in purple. The inner-most
circle represents mutations unique to the HI or WT 109J clones; variations unique to HI are red, and those unique to the WT are green. (figure
produced using CGView [15]).
doi:10.1371/journal.pone.0015628.g002
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Interestingly, one of the detected mutations, a 2 bp insertion

leading to a frameshift, occurred at the hit locus that was previously

implicated as essential for host dependence in Bdellovibrio [14]

(Figure 3). This insertion in the hit locus was therefore suspected as

the mutation associated with the HI phenotype, based on the

estimates that HI phenotype appearance is usually the result of a

single mutational event [14].

To further assess whether a mutation at the hit locus is indeed

associated with host independent phenotype, we sequenced the

entire hit locus in 53 additional HI isolates. Most of these clones

(89%) were indeed found to harbor point mutations, small

deletions and insertions leading to frameshifts, or larger deletions,

at the hit locus (Table 2). Five of these mutations were identical to

the 2 bp insertion we identified in the first HI clone (Figure 3B).

These data imply that in the majority of cases the HI phenotype is

caused by a mutation at the hit locus; however, mutations

occurring in other loci at lower frequencies (11% of the cases)

may also result in host independence.

Interestingly, the most common mutation in hit was a 42 bp

deletion, occurring in 46% of the HI isolates (Figure 3C; Table 2).

We found that this deletion is flanked from both sides by a 10 bp

direct repeat. Possibly, repeat-mediated recombination [16] is the

driver of this deletion, and this might explain the exceptionally

high frequency (1022, [17]) of host-independence appearance.

To further examine whether one of more of the 18 remaining

genomic changes observed in the HI mutant (except for the hit

locus) are linked to the HI phenotype, we randomly selected one of

the 6 isolates in which no hit mutation was found. In this new HI

mutant we sequenced the full genes that were mutated in the

original HI (or their surrounding regions, when they were placed

in intergenic regions). None of these 18 mutations were detected in

the new mutant, suggesting that these are not linked to the HI

phenotype. These results further pinpoint the mutation we

detected at the hit locus as the single mutation associated with

the HI phenotype in the HI mutant sequenced by NGS.

Discussion

NGS provides powerful, unbiased means for identifying all

mutations in an organism in a single sequencing run, but usually

requires an a-priori sequenced reference genome to allow template-

mediated assembly. Here, we presented a method that extends the

usage of NGS for organisms lacking a reference genome, by

comparing the genomes of a WT isolate and a mutant isolate through

a mediator organism. In the case of B. bacteriovorus, this strategy

allowed pinpointing a minimal set of candidate causative mutations

out of over 28,000 genetic differences between the tested organism

(strain 109J) and its closest sequenced relative (strain HD100).

While our approach can reliably identify point-mutations,

deletions, and small insertions, it is limited in its ability to identify

large insertions. Sequencing reads that originate from insertions of

genomic elements are unique to the sequenced clone, and will

therefore not align to the mediator genome. This limits the

comparison between the WT and the mutant to regions that exist

also in the mediator genome. However, the maximal size of

inserted sequences can be estimated by summing the lengths of the

unaligned reads and dividing by the average coverage. In the case

of Bdellovibrio, less than 10% of the reads did not align, indicating

that our method is likely to identify at least 90% of the mutations

in the109J HI genome.

Recent studies reported on successful de-novo assembly of

bacterial genomes from NGS data, without the need for reference

Table 1. Summary of detected mutations unique to the HI isolate.

Position on
HD100 Description of mutated gene Locus Codona Amino acid

WT Mutant WT Mutant

96981 hit locus ORF4 Bd0108 2 bp insertion, frame shift and a substitution from A to C (figure 3).

752169 DNA polymerase I Bd0802 ATC ATt I I

807701 alkylphosphonate ABC transporter Bd0859 GGG tGG G W

1262908 histidine kinase Bd1335 GGG aGG G R

1322643 nucleic acid binding protein Bd1395 CGC tGC R C

1918689 Intergenic N/A A G N/A N/A

2110823 hypothetical protein Bd2212 TCT TtT S F

2117292 Na/Pi-cotransporter family protein Bd2221 GGA Gag G E

2309751 hypothetical protein Bd2403 GGG GaG G E

2309974 hypothetical protein ACG cCG T P

2383979 Intergenic N/A G A N/A N/A

2746436 two-component hybrid sensor Bd2838 TAT TgT Y C

2876741 30S ribosomal protein S12 Bd2981 AAG AgG K R

2891582 elongation factor Tu Bd2994 CAT CAa H Q

2897108 Intergenic N/A C A N/A N/A

3159141 Intergenic N/A C T N/A N/A

3373629 poly(A) polymerase Bd3464 GAC aAC D N

3621096 ATP-dependent protease LA Bd3749 ATG ATt M I

3781899 60 KD inner-membrane protein Bd3912 TCC TaC S Y

alower case letter represents mutated base.
doi:10.1371/journal.pone.0015628.t001
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genomes. However, these mostly utilized paired-end sequencing, a

combination of sequencing technologies, and very high sequence

coverage, to achieve proper assembly. While such approaches do

not necessitate reference or mediator genomes, at the current

levels of sequencing costs they are less affordable for routine use in

individual laboratories [10,12].

While resequencing studies usually utilize a specialized short

reads aligner (e.g. MAQ [18], SOAP [19], or ELAND (Illumina,

unpublished), in this study we used BLAST [20] to align the short

reads to the mediator reference genome. Although BLAST is

much more computationally demanding, it provides a higher

alignment flexibility that is crucial when the reference genome is

expected to contain many differences as compared to the

sequenced genome. Indeed, to reduce computational complexity

and increase performance speed, specialized aligners usually do

not map reads with more than 2–3 mismatches, and in some cases

lack the ability to detect insertions and deletions [2]. Since in

mediator-based resequencing a significant amount of mismatches

is anticipated, BLAST seems to be a preferable alignment tool, as

it poses almost no limitation on the number of mismatches (except

for a required seed of at least 4 bp), and also allows detection of

single-base insertions and deletions. We note, however, that in the

absence of a significant computational power, BLAST is currently

impractical for mediator-based resequencing of non-microbial

genomes.

Whole genome sequencing via NGS is becoming a standard

method for deciphering the genetic basis for phenotypic

alternations in bacteria. Our mediator-based approach expands

the spectrum of this method as a general, affordable solution for

many prokaryotic species for which no direct reference genome is

available. With future reduction of sequencing costs, this approach

could ultimately also be used with eukaryotic genomes of larger

sizes.

Figure 3. Mutations at the hit locus in 54 host independent mutants. (A) The genomic vicinity of the hit locus (locus tag Bd108). X-axis,
coordinates relative to the reference HD100 strain (Genbank accession: NC_005363) (B) A 2 bp insertion is observed in the Illumina-sequenced host
independent (HI) mutant but not in the WT. (C) A 42 bp deletion at the hit is observed in 46% of sequenced HI mutants. Shown is a 10 bp direct
repeat flanking the deletion, which presumably mediates recombination-based deletion.
doi:10.1371/journal.pone.0015628.g003

Table 2. Composition of hit locus ORF4 in 54 HI isolates.

Sequence of the hit locus
Number of clones (percent of
total)

Frame shift 19 (35%)

Deletion of 42 bp 25 (46%)

Stop codon 3 (6%)

Point mutation 1 (2%)

No mutation in hit 6 (11%)

Total clones 54

doi:10.1371/journal.pone.0015628.t002
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Materials and Methods

Bacterial strains and culture conditions
WT 109J was grown at 30uC in HEPES buffer (25 mM HEPES,

2 mM CaCl2.2H2O, 3 mM MgCl2.6H2O, pH 7.8) in two-member

cultures with Escherichia coli ML35 as a prey. The host-independent

(HI) isolate used for high-throughput sequencing is a spontaneous

mutant able to grow axenically in a rich medium such as PYE (1%

Bacto peptone, 0.3% yeast extract, 2 mM CaCl2.2H2O and 3 mM

MgCl2.6H2O, pH 7.6) [13]. Fresh attack phase (AP) cells from the

WT strain were obtained from overnight (O.N.) cultures by

inoculating 100 ml HEPES buffer with 2.109 colony forming units/

ml of E. coli ML35 prey and 107 predatory cells. WT AP cells were

filtrated twice through a 0.45 mm filter (Sartorius) for separation from

residual prey and debris. This procedure ensured that there were no

residual E. coli cells contaminating our samples, as confirmed by phase

contrast microscopy. HI was grown in PYE medium O.N. at 30uC.

Additional HI isolates were obtained as follows: i) using a

traditional protocol in which fresh AP cells are filtered four times

through a 0.45 mm filter (Sartorius), plated on PYE plates and

incubated at 30uC until colonies appear (34 isolates), and; ii) using

a recently described procedure in which E. coli diaminopimelic

acid (DAP) auxotrophs are used as hosts. In this procedure, fresh

AP cells are grown on PYE plates without DAP, and therefore

neither the auxotroph E. coli nor the WT Bdellovibrio are able to

grow on these plates, thus omitting the filtration step (19 isolates)

[17]. The HI colonies isolated using the second procedure, were

kindly provided by Daniel E. Kadouri (University of Medicine and

Dentistry of New Jersey, NJ, USA).

Genomic DNA preparation
Genomic DNA of WT and HI isolates were prepared using

Wizard genomic DNA purification kit (Promega). The samples were

prepared according to the manufacturer’s protocol and submitted to

the High Throughput Sequencing Unit in the Weizmann Institute

of Science for sequencing with Illumina’s Genome analyzer.

Mapping of sequencing reads and identification of
mutations

The reference genome of Bdellovibrio bacteriovorus HD100

(NC_005363) was downloaded from NCBI and used for mapping

the reads produced from the 109J strain Illumina Genome Analyzer

runs. The sequencing reads for each run were mapped separately

using Blast (Blastall v2.2.20) with the following parameters [-p blastn

-e 0.0001 -b 20 -v 20 -m 0 –W 11 -F F], allowing up to 6 alignment

errors, and minimal alignment lengths of 27 and 30 bp for the 33

and 38 bp long sequencing reads, respectively. The shorter read

length (33 bp) in the case of the HI mutant was compensated for by

sequencing two Illumina lanes instead of one.

Detection of mutations was done by analyzing the alignments, and

genomic positions which were consistently (.60%, coverage of 5 or

more reads) different were marked as mutated. The relatively high

coverage (x51 - x86) allowed testing the reproducibility of the

alignment and thereby excluding alignment errors and sequencing

errors over real changes. A mismatch table of the 109J strain against

the HD100 strain was compiled separately for the HI and the WT

samples, and was compared to identify unique mutations.

Due to the shorter length of reads produced for the HI clone, some

regions, which exhibited high genetic variation, had little or no

alignments. The lower coverage at hyper-mutated regions led to an

initial identification of 23,502 mutations, with larger predicted

deletions. We computationally scanned the coverage in the WT 109J

data to identify hyper-mutated regions, which limited the alignment

of the short sequencing reads obtained for the HI clone. These

regions were inferred by locating extreme changes in coverage

(defined as one standard deviation below the average) combined with

clusters of mutations concentrated in small regions. Following

identification of these regions we repeated the process of genetic

variation discovery with relaxed thresholds for these specific regions.

Supporting Information

Figure S1 Distribution of contig lengths produced by de
novo Velvet assembly of short sequencing reads. Most

contigs generated in the assembly stage were less than 2,000 bp

long, with very few contigs spanning over 5,000 bp. The high

number of generated contigs, obtained by running Velvet 0.7.55

on our data, renders this approach impractical for identifying

genetic variation between the two almost identical clones.

(TIF)

Figure S2 Distribution of read coverage mapped to the
Bdellovibrio bacteriovorus HD100 genome. Coverage of the

genome largely deviates from the theoretical Poisson model. The vast

majority of the mediator genome was covered by multiple reads, with

only 4.12% of the genome not covered. Uncovered regions may

represent large deletions in the 109J or regions that differ extremely

between the sequenced and the mediator genomes. The less uniform

coverage in the HI stems from the shorter read length.

(TIF)

Table S1 Summary of sequencing results.
(DOC)

Methods S1 De novo assembly of Bdellovibrio bacter-
iovorus 109J sequencing data.
(DOC)
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