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Abstract

Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the
movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x,
y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use.
Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We
present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D
home ranges based on location data. We use case studies of three wildlife species – giant panda, dugong, and California
condor – to demonstrate the ecological insights and conservation management benefits provided by 3D home range
estimation and visualization for terrestrial, aquatic, and avian wildlife research.
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Introduction

Biologists have sought to understand the patterns of space use of

individual animals for decades.

Burt [1] provided a basic definition of a home range as ‘‘that

area traversed by an individual in its normal activities of food

gathering, mating, and caring for young.’’ His widely accepted

description became a conceptual underpinning for the develop-

ment of empirical home range estimators used to model animal

spatial behaviors and, more recently, an animal’s cognitive map of

its environment [2,3]. Furthermore, home range size is related to

vulnerability to extinction [4,5]. The increasing sophistication and

miniaturization of biotelemetry devices (biologgers) with global

positioning system (GPS) capability are enabling data of unprec-

edented detail to be collected on the spatial behaviors of a

widening diversity of animals. Home range estimators continue to

be refined to capitalize on the increasing size, accuracy, and

deployment lengths of animal tracking data sets, bringing

inferences on animal space use closer to biological reality and to

Burt’s original definition of a home range (see reviews by [6–9]).

These advances are enhancing our understanding of animal spatial

behaviors and ecology, including resource use, dispersal, and

population dynamics [2]. However, progress has been limited by

the inability of existing modeling techniques to take advantage of

the three-dimensional (3D) data sets, constraining estimates of

animal space use to an often biologically unrealistic 2D ‘‘Flatland’’

[10]. Here, we present the next evolution of home range

estimators for analyzing biotelemetry data and visualizing animal

space use in 3D and demonstrate their considerable advantages

over traditional 2D approaches.

Animal space use can be characterized by the (x, y) spatial

dimensions as well as a third z-dimension representing altitude,

elevation, or depth for flying, terrestrial, or aquatic species,

respectively ([11]; Figure 1). There are currently more than a

dozen manufacturers offering wildlife biologgers that record 3D

location data. Remote sensing technologies, such as light detection

and ranging (LiDAR) sensors, can also be used to acquire 3D

representations of animal habitats [12–14]. Yet, analyses of animal

space and habitat use have typically been 2D, with the z-

dimension examined separately or simply ignored [15–17].

Disregarding the z-dimension limits our understanding of spatial

behaviors in relation to environmental heterogeneity [11] and may

misrepresent the space use of animals that occupy habitats with a

strong vertical component, such as mountains or undersea canyons

[18]. Biologists are only beginning to recognize the theoretical and

applied value of incorporating the vertical aspect into analyses of

animal space use [18,19].

We present a novel 3D movement-based kernel density

estimator (MKDE) of animal home ranges and demonstrate the

application and value of these estimators using biotelemetry data

acquired from endangered animals that occupy aerial, terrestrial,

and aquatic spatial domains. We also present a novel MKDE-

based approach for calculating the spatio-temporal interaction

between two individuals. We show that analyses and visualization

using 3D MKDEs can be more informative and yield greater

ecological insights than traditional 2D estimators in representing
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the space use of animals that have a substantive vertical

component (Figure 1).

Methods

A utilization distribution (UD) describes the probability of an

animal location at an arbitrary time during which the animal was

observed [20]. The kernel density estimator (KDE; [21]), which

uses a weighted sum of kernels placed over observed animal

locations [22], has become a standard technique for estimating

home ranges. More recently, a Brownian bridge movement-based

approach [23] provides an alternative KDE that integrates kernels

over time along a movement path interpolated between observed

locations. Benhamou [24] distinguished Worton’s location-based

kernel density estimators (LKDE) from movement-based kernel

density estimators (MKDE), which includes Brownian bridge and

biased random walk models [23,24].

LKDEs are criticized for excluding areas that have been used by

animals with large data sets (type I errors, [25]) while including

areas that have not been used due to over-smoothing with small

data sets (type II errors). Biotelemetry data sets with relatively

short time intervals between locations often need to be subsampled

to induce independence. In contrast, MKDEs account for time

between consecutively observations in the estimator, do not

require independent samples from the UD, and thus more

realistically represent the space used by an animal. Therefore,

our development of 3D methods is movement based [23].

Biotelemetry Data
We use animal location data in which each observation includes

an x-coordinate, a y-coordinate, a z-coordinate, and time. Let

m = 0, …, n index observations (xm, ym, zm, tm) where xm, ym, and zm

are the spatial coordinates and tm is the time of the observation

such that tm-1 , tm , tm+1 for any m. Further, we assume that the

observed locations are subject to observation error and are normal

random variables described by Xm*N xm,d2
m

� �
, Ym*N ym,d2

m

� �
,

and Zm*N zm,"2
m

� �
. The observation error variances d2

m and "2
m

are either provided by the manufacturers of the telemetry

equipment or estimated from field trials. The mth move step is

defined by two consecutive observations m and m+1. We only use

move steps that satisfy the conditions that Dtm~tmz1{tmƒDtmax

and xmz1,ymz1,zmz1ð ÞT= xm,ym,zmð ÞT . The first condition

ensures that the time interval between locations is consistent with

the study design and the second condition ensures that it is

probable that the animal moved between observations. We check

the second condition by assuming that xmz1,ymz1,zmz1ð ÞT
�

{ xm,ym,zmð ÞT Þ*N 0,Smð Þ where diag Smð Þ~ d2
m,d2

m,"2
m

� �T
and

all off-diagonal elements are 0. If W Dxmz1{xmD,0,d2
m

� �
,

W Dymz1{ymD,0,d2
m

� �
, or W Dzmz1{zmD,0,"2

m

� �
. 0.975, where

W .ð Þ is the normal cumulative distribution function, we conclude

that the animal moved during the time interval tm to tm+1. In other

words, if the displacement in any spatial dimension is sufficiently

improbable based on a random draw from the observation error

distribution, we conclude that the animal actually moved. For 3D

analyses, we impose the additional requirement that zm is within

the range the animal is allowed to occupy. For birds as an

example, zm must usually be at or above ground level, but in some

cases this may not occur if the GPS receiver fails to obtain a 3D

fix. We use I(m) as an indicator function that yields a value of 1

when the mth move step meets these conditions and 0 otherwise.

Figure 1. Example avian, terrestrial, and aquatic animal biotelemetry data sets and their spatial domains. Left: California condor with a
GPS biologger attached to its patagium. Center: A giant panda telemetered with a GPS collar. Right: A dugong fitted with a tail mounted GPS
biologger.
doi:10.1371/journal.pone.0101205.g001
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2.5D Movement-Based Kernel Density Estimator
Projecting a terrestrial animal’s UD onto a 2D plane

systematically underestimates the area used if the terrain is not a

level, flat surface. As the curvature of the terrain increases, the

underestimation becomes more severe. Thus, we demonstrate a

2.5D approach for computing home range area that essentially

uses a 2D MKDE draped over a 2D elevation raster [26]. We

correct the bias by calculating and summing the surface area of

each cell of the elevation raster that falls within a desired

probability contour of the 2D MKDE. We used the tessellation

algorithm developed by Jenness [26] to compute the surface area

of each raster cell. This method uses the cell center coordinates

and elevations of the focal cell and its eight neighboring cells to

construct eight triangular facets within the focal cell. We modified

Jenness’s approach to use bilinear interpolation to compute the

elevation at the eight vertices (at the four corners and midpoint of

each side) of each focal cell. The area of each facet is calculated

using Heron’s formula and then summed to obtain the surface

area for the focal cell. Finally, we incorporate the area calculation

into the probability of use of each cell by multiplying the

probability density at the center of the cell by the computed cell

surface area, and then normalize by dividing this product in each

cell by the sum of the density-area products over all cells.

3D Movement-Based Kernel Density Estimator
3D Kernel. We estimate the 3D MKDE using a trivariate

normal kernel integrated over time for each observed move step.

The kernel describing the probability density at time t and location

(x,y,z) is

fXYZ x,y,zDm tð Þ,S tð Þð Þ

where the vector of means is m tð Þ~a tð Þ xmz1,ymz1,zmz1ð ÞT
h

{ xm,ym,zmð ÞT �z xm,ym,zmð ÞT = mx tð Þ,my tð Þ,mz tð Þ
� �T

. Thus, we

approximate the true movement path by linearly interpolating

between consecutive observed locations. The covariance matrix is

assumed to be

X
tð Þ~

s2
xy tð Þ 0 0

0 s2
xy tð Þ 0

0 0 s2
z tð Þ

2
64

3
75,

where the time-dependent variance in the x-dimension and y-

dimension is s2
xy~Dtma tð Þ 1{a tð Þ½ �g2z 1{a tð Þ½ �2d2

mza2 tð Þd2
mz1

and the time-dependent variance in the z-dimension is

s2
z~Dtma tð Þ 1{a tð Þ½ �c2z 1{a tð Þ½ �2"2

mza2 tð Þ"2
mz1. The length

of the time interval associated with the time step is

Dt~tmz1{tm, the proportion of the time interval between tm
and tm+1 at time t is a tð Þ~ tztmð Þ=Dtm, and t implies m by

argmax
m

tmƒtð Þ. Notice that the contribution of the move variance

parameters g2 and c2 to the time-dependent kernel variance is

small when t is close to tm or tm+1, and increases as time is further

away from the observation times. These move variance param-

eters are diffusion coefficients [27] expressed in units of

(distance2)/time. Thus, when preparing the data, we express time

in smaller time units such as minutes, which reduces the

magnitude of the parameter and helps avoid numerical issues.

The move variance parameters g2 and c2 are estimated from the

data using a likelihood-based approach by numerically maximiz-

ing the log-likelihood function using alternating observed locations

as described by Horne et al. [23].

Because we assume that the off-diagonal elements of the

covariance matrix are zero and that the variances in the x-

dimension and y-dimension are equal, our kernel is the product of

univariate distributions in each dimension given by

fXYZ x,y,zDm tð Þ,S tð Þð Þ~fx xDm1 tð Þ,s2
xy tð Þ

� �

fy yDm2 tð Þ,s2
xy tð Þ

� �
fz zDm3 tð Þ,s2

z tð Þ
� �

:

This assumption can be exploited to increase the computational

efficiency of the 2D or 3D MKDE calculations.

Utilization Distribution. The density for the Brownian

bridge for the mth move step is obtained by integrating a normal

kernel over time:

gm x,y,zð Þ~ 1

Wm

ðtmz1

tm

fXYZ x,y,zDm tð Þ,S tð Þð Þdt [23].

We normalize the density for the single move step by dividing

the integral by

Wm~Dtm~

ðtmz1

tm

ð?

{?

ð?

{?

ð?

{?

fXYZ x,y,zDm tð ÞS tð Þð Þdxdydzdt:

To compute the full UD, we sum over all move steps and

normalize the result by

D x,y,zð Þ~ 1

W

Xn{1

m~0

Wmg x,y,zð ÞD mð Þ,

where the normalization constant is W~
Pn{1

m~0

WmD mð Þ. However,

if we restrict the space available for use by an animal, we must take

this reduced domain into account when normalizing the utilization

distribution.

Bounding in the z-dimension. Often, an animal’s move-

ment is limited in the z-dimension. For example, avian species are

generally bounded below by the earth’s surface, whereas marine

animals are bounded below by the sea floor and above by the

water’s surface. We can bound the density in the z-dimension by

a(x,y) and b(x,y) with a constant, a 2D raster, or a function.

However, if we bound the density in the z-dimension by a(x,y) and

b(x,y), the limits of integration in the z-dimension must be modified

when computing the normalization constant for each move step:

Wm~

ðtmz1

tm

ðb x,yð Þ

a x,yð Þ

ð?

{?

ð?

{?

fXYZ(x,y,zDm(t),
X

(t))dxdydzdt,

Applying a kernel density estimator to a bounded region, as noted

by Silverman [21], tends to produce an underestimate of the

density near the boundaries. This is because there are no points

across the boundary outside the interval [a(x,y), b(x,y)] to

contribute to the density estimate. One common approach to

reduce the bias is to augment the data with additional observations

by reflecting the data about the boundaries [21]. In the MKDE

approach, this amounts to reflecting the interpolated move path

for each move step about the boundaries. Since we are bounding
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space in the z-dimension, we augment the data with

m
(a)
Z (t)~2a(x,y){mZ(t) and m

(b)
Z (t)~2b(x,y){mZ(t). In practice,

we need only reflect the move paths about the boundary a(x,y)
when mZ(t){a(x,y)v4sZ(t) and about b(x,y) when

b(x,y){mZ(t)v4sZ(t) [21]. We apply this technique in our 3D

MKDE approach.

Probability Estimation on a Regular Grid. An MKDE

can be integrated to compute the probability for any area in 2D

space or volume in 3D space, but to visualize the 3D MKDEs

across space we compute the probability for every voxel (3D cell)

on a regular grid in R3 or every cell on a regular grid in R2. It is

important that the 3D regular grid covers the non-negligible parts

of the UD. Thus, we set the minimum size of the grid based on the

range of the observed locations buffered by 4.265 standard

deviations (or some other quantile of the standard normal

distribution), where the standard deviation is determined by the

maximum kernel variance 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtmaxg2z2| max (d2

m)

q
in the (x,y)-

dimensions and 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtmaxc2z2| max ("2

m)
p

in the z-dimension.

We index rows as i = 0,…,I-1, columns as j = 0,…,J-1, and levels

as k = 0,…,K-1 where I, J, and K are the number of rows, columns,

and levels, respectively. Rows, columns, and levels correspond to

the y-, x-, and z-dimensions, respectively. Half the lengths of the

sides of a voxel in each dimension are hx, hy, and hz. For simplicity,

we index voxels by v = i+j6I+k6I6J. Let the random variable V

be the voxel in which the individual is found at some random time

during the move steps used to compute the 3D MKDE.

The probability of an individual being in voxel v during move

step m as a function of time t is

Pm(V~v)~

1

Wm

ðtmz1

tm

ðxjzhx

xj{hx

ðyizhy

yi{hy

ðzkzhz

zk{hz

fXYZ(x,y,z,m(t),
X

(t))dzdydxdt

and the probability that an animal will be in voxel v over all move

steps is

P(V~v)~
1

W

Xn{1

m{0

WmPm(V~v)=(m)

We can similarly compute the probabilities for cells in a 2D

MKDE. It is this probability that we compute in the case studies

that follow. We interpret these probabilities as the proportions of

time spent in each voxel (or cell for the 2D case) during the time

intervals between observed locations used to compute the MKDE.

In practice, when we set a lower or upper bound on the 3D

MKDE in the z-dimension, we use either a constant or a 2D raster

with the same origin, number of rows, number of columns,

number of levels, and cell or voxel sizes as the MKDE.

Furthermore, we assume that a(x,y) and b(x,y) fall on the boundaries

of the voxels in the z-dimension so that each voxel is either entirely

within or outside the boundary. As a result, a(x,y) and b(x,y) are

constant within a given voxel.

Spatio-temporal Interaction between Two

Individuals. Describing the interaction between two individuals

is often of interest to ecologists because it relates to social

interaction, transmission of infectious disease, and other individ-

ual-level ecological processes. Various approaches have been

developed for describing interactions between individuals based on

movement data and UDs in 2D space [28,29]. Here we present a

novel approach that uses the temporally-explicit nature of 2D and

3D MKDEs to quantify the interaction between two individuals,

labeled A and B, in both space and time. Let VA and VB be random

variables for the voxel in which animal A and B, respectively, are

found at some given time t. Following Bhattacharyya’s coefficient

[30], we compute the square root of the product of the kernels for

both animals at an arbitrary location (x,y,z) and time t during move

step m by

BCm(x,y,zDt)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wm,A|Wm,B

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fXYZ(x,y,xDmA(t),

X
A

(t))|fXYZ(x,y,xDmB(t),
X

B

(t))
r

:

We can then, as described above for a single individual, integrate

this function over the area of each cell or volume of each voxel and

time within move steps and sum across move steps to obtain a local

(cell or voxel) measure of spatial-temporal similarity between the

individuals that increases at the increase of similarity between the

kernels of the two animals over the time interval of each move

step. When we sum this value over all cells or voxels, we obtain a

global measure of spatio-temporal similarity that ranges from 0 (no

similarity) to 1 (perfect spatio-temporal overlap).

Computational Considerations. All calculations are per-

formed using code written by the authors in R and C++, and use

the raster, Rcpp, and ggplot2 packages in R [31–33]. When

computing the probability of an individual occurring in a given

voxel, we exploit the independence assumptions that allow us to

express the join density in R3 as the product of the univariate

densities in each spatial dimension. Output is written as tabular

data in CSV format as ASCII VTK (Visualization Toolkit, [34])

files. Results are visualized using ParaView [35] and the R

package ggplot2.

We determined the voxel or cell probabilities corresponding to

contours delineating the minimum volume or area containing a

user-specified proportion (e.g., 0.99) of the total UD as follows.

First, vectorize the 3D or 2D array containing the voxel or cell

probabilities (so that it becomes a 1D array). Second, sort the

resulting 1D array in ascending order using a fast sorting

algorithm such as quicksort. Third, create a 1D array of the same

length containing a cumulative sum of the sorted values in step 2.

Fourth, find the index of the entry in the array created in step 3

that most closely matches one minus the user-specified proportion.

Fifth, return the voxel or cell probability at that index in the sorted

array created in step 2. Every voxel or cell with a probability

greater-than-or-equal to this value is included within the contour

and excluded otherwise.

Terrestrial Example: Giant Panda
We applied 2.5D MKDE to data for a free-ranging giant panda

(Ailuropoda melanoleuca). The giant panda is listed as an endangered

species by the International Union for Conservation of Nature

(IUCN) and a Class 1 Protected Animal by the Chinese

Government [36]. The panda population has decreased to ,

2,500 individuals due to anthropogenic degradation and loss of

bamboo habitat [36]. In a biotelemetry study in the Qinling

Mountains of southwest China (33u 329 – 33u 459 N, 107u 40 –

107u 559 E), veterinarians and field biologists at the Chinese

Academy of Science tracked the pandas in the wild during the

winter months between November and March, darted them using

a compressed air gun delivering approximately 5 mg ketamine/kg

body weight, and then fitted the pandas with a GPS collar. The

GPS collars also recorded the animal’s elevation above sea level

Estimation of Wildlife Space Use in 3D
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(Lotek, GPS 4400M; [37]). Giant panda research methods were

approved by the San Diego Zoo IACUC animal welfare

committee (Project ID# 221), the National Natural Science

Foundation of China (30830020, 30970392), and the Chinese

Academy of Sciences (KSCX2-EW-Z-4). In this example, we used

data from a 3.5 year-old adult male panda that was tracked for

473 days between February 2007 and January 2009. A total of

1,916 GPS locations were collected. We used a published equation

for mean error for the same model of GPS telemetry unit as a

function of percent forest canopy cover [38], assuming 50 percent

cover, and the relation s~
2m

p
for a Rayleigh distribution to obtain

an approximate measurement error variance (d̂d2) of 158.96 m2.

Terrain surface area was computed using a 32625 km, 30-meter

resolution digital elevation model (DEM) with elevation ranging

from 875 to 3,035 meters in the z-dimension [39,40].

We compared home range areas estimated by the 2D MKDE

versus our 2.5D MKDE that incorporates this rugged topography.

We performed this comparison using all panda locations, locations

in the summer at higher elevation, and locations in the winter at

lower elevation. We allowed a maximum time between locations

(Dtmax) of 190 minutes and used a 0.5 minute time step for

numerical integration. The 2D MKDE had the same 30 m

resolution as the DEM.

Avian Examples: California Condor
We applied the 3D MKDE to study free-ranging California

condors (Gymnogyps californianus). Populations of this large vulture

declined precipitously due to intentional shooting, lead poisoning

from ingestion of spent ammunition in carcasses, egg collecting,

and poisoning [41,42]. Following an intensive captive breeding

program, San Diego Zoo Global and its partner organizations

successfully reintroduced condors to their former range in the

Sierra San Pedro de Martir ranges of Northern Baja California,

Mexico (Lat = 31u 29 16.290 N; Long = 115u 359 1.560 W).

Before each condor was transported to Mexico for release, it was

fitted with a patagial-mounted 50 g solar Argos PTT/GPS-

transmitter (PTT-100, Microwave Telemetry Inc.) and ID tag in a

captive environment by San Diego Zoo veterinarian staff [43].

Using manufacturer-provided data [44], we fit a normal distribu-

tion, taking both tails into account, to obtain a measurement error

variance of d̂d2 = 79.39 m2 and a Rayleigh distribution to obtain a

vertical measurement error variance of "̂"2 = 308.00 m2. The units

are programmed with an hourly fix rate between 6:00am and

8:00pm and transmit location data via the Argos network.

Research on California condors was approved by the United

States Fish and Wildlife Service, the San Diego Zoo IACUC

animal welfare committee (Project ID#11-014) and the Instituto

Nacional de Ecologı́a, México.

We present several examples using data from California condors

reintroduced to Baja, Mexico. In all examples, a 2.5-minute

integration time step was used. The avian MKDE was bounded

below by elevation based on a DEM raster [39] that was 280 km

by 445 km in the (x, y) dimensions and ranged from 0 m to 3,065

meters in the z-dimension with a cell resolution of 27.07 meters

[40]. However, we aggregated these cells (by averaging) to coarser

resolutions depending on the spatial extent covered by each

MKDE. We used a maximum time between locations (Dtmax) of

70 minutes.

First, we illustrate the process of constructing a 3D MKDE. In

this example, we used 2,760 GPS location fixes from a 5-year-old

adult female California condor collected over 214 days from

December 2009 to July 2010 to compute a 3D MKDE at a 216.55

meter resolution. In a second example, we compared 3D MKDEs

for an adult female and adult male condor that formed a breeding

pair following reintroduction. These condors were tracked during

10 January – 9 March 2011, with locations being collected at the

same times at one-hour intervals. In all, 1,132 temporally-matched

locations were available for analysis. We used these data to

compute 3D MKDEs at 108.28 meter resolution for each

individual separately and also the probability of both members

of the pair occurring in the same voxel at the same time using the

spatio-temporal interaction 3D MKDE. We also use the data from

the female of this pair to compare results from the 2D MKDE and

3D MKDE approaches. We compare contours of the 3D MKDE

projected onto the 2D plane to contours of a corresponding 2D

MKDE. Next, motivated by a 2D MKDE approach by Lewis et

al. [45], we show how the 3D MKDE approach can be used to

evaluate risk to wildlife using a proposed wind farm in Baja,

Mexico as a case study. In April 2007, we tracked a subadult

female condor making a directed long-distance flight 230 km from

the reintroduction site in Baja California, Mexico north towards

Southern California, USA. When this bird was 5 km south of the

USA/Mexico international border we recorded two consecutive

hourly fixes from its GPS transmitter that were spaced 16 km

apart with a path step, that if interpolated linearly, traversed the

planned Phase-1 turbine locations of the 156 MW Energı́a Sierra

Juárez Wind Energy Project being developed by IENova/Sempra

U.S. Gas and Power [46]. This linear step also spatially coincided

with areas of the Sierra ranges previously modeled to have the

highest consistent mean wind speeds in the Baja border region of

8.5–9.0 meters/second at heights ,80 meters [47]. The project

proposes the installation of Vestas V112-3.3 wind turbines with a

tower height of 84 meters and a rotor radius of 56 meters (total

height of approximately 140 meters). We computed 2D and 3D

MKDEs for the single move step through using 54.14 meter cells

and 54.14 meter voxels, respectively. At each turbine location, we

extracted the 2D MKDE probability for the cell in which the base

of the tower falls and summed the probabilities of the three voxels

(162.42 meters) above ground level to estimate the probability that

the condor would have collided with each turbine. Finally, we

illustrated how to relate 3D MKDEs to 3D covariate data. We

used 433 observations from an adult female condor collected

during November, 2009 to develop a 3D MKDE. We matched the

MKDE voxels to predicted mean wind speed for November 2009

generated using a custom wind speed climate model by Regional

Earth System Predictability Research Inc. [48]. The RESPR

model used proprietary atmospheric simulation technology and

meteorology data sets produced by the National Centers for

Environmental Prediction North American Model as input to a

high-resolution (1-km) simulation of wind speed at the condor

reintroduction site for November 2009. Wind speed was modeled

from 14–150 m above the ground. Over the study area, predicted

mean wind speeds ranged from 1.835 to 6.38 meters/second. We

interpolated these predictions on a regular grid with voxel

dimensions of 2506250610 meters in x, y, and z, respectively.

Aquatic Example: Dugong
We applied our 3D MKDE to study a free-ranging dugong

(Dugong dugon), which are marine mammals in the order Sirenia,

along with manatees. Dugongs inhabit an aquatic environment

and are seagrass community specialists, and are listed by the

IUCN as being vulnerable to extinction. Dugongs, like manatees,

face numerous anthropogenic threats, including boat-strike,
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incidental capture in fishing nets, and habitat degradation [49–

51]. In a study in Hervey Bay, Queensland, Australia (25u 11.49 S,

152u 36.69 E), wild dugongs $2 m long without an attendant calf

were captured during winter (June – July) using the method of [52]

and [53]. Total time to capture, tag, and release a dugong was

typically 10–12 minutes. When operating in deep (.2 m) or turbid

water, we used a spotter plane to locate dugongs. We also used the

spotter plane to monitor the behavior and well-being of captured

dugongs for 15–20 minutes post-release. Research on dugongs was

approved by the James Cook University Animal Ethics Sub-

Committee (Ethics Approval No.: A56900), the Permitting

Committee of the Department of Environment and Water

Resources under Section 266A of the Environment Protection

and Biodiversity Conservation Act 1999, the Queensland Envi-

ronmental Protection Agency (permits W4/002726/02/SAA and

MP2002/005), and the Great Barrier Reef Marine Park Authority

(permit G01/304). In this example, we used data for a 3 m long

adult male dugong that was captured and tracked in Hervey Bay

in July 2004. The dugong was fitted with an Argos PTT/GPS

satellite tag (Telonics Inc.) and tracked for 41 days within its

23.8 km2 core seagrass habitat [53,54]. The GPS tag had a 20-

minute fix cycle every 24 hours and provided 839 GPS locations

with a fix success rate of 85%. Fitting a Rayleigh distribution to

published data for the same model of GPS unit (Deutsch,

Edwards, and Barlas. 2006) we estimated a measurement error

variance in the (x, y)-dimension (d̂d2) of approximately 25.0 m2. An

Mk9 timed-depth recorder (TDR, Wildlife Computers) was fitted

to the satellite tag harness at the base of the dugong’s tail to record

its dive profile (z-dimension). The TDR measures the depth of the

dugong’s tailstock, which can be at a maximum possible difference

of approximately 2 m from the dugong’s head depending on its

orientation [55], although this maximum distance is typically

observed only when dugongs are swimming at higher speeds (JS,

pers. obs). Therefore, this potential variability is likely negligible if

the dugong is in very shallow ,2 m or deep water .5 m, but may

introduce noise if the animal is in moderately shallow water 2–

5 m. The TDR had a 25 cm depth resolution ("̂"2 = 0.0625 m2)

and an accuracy of 61% and a continuous 1-second sampling

interval. The dugong MKDE was bounded below by a

4.366.8 km, 10 m resolution bathymetric surface of the core

seagrass habitat in depth below the mean sea level, which ranged

from 6.1 m to -1.2 m [56]. We used voxel dimensions of

1061060.5 meters (x, y, and z, respectively) to compute the 3D

MKDE probabilities.

To examine dugong space use patterns in relation to tidal

height, the data set was divided into locations that occurred in five

tidal height ranges of 0.5–1.0 m, 1.0–1.5 m, 1.5–2.0 m, 2.0–

2.5 m, and 2.5–3.0 m. For each tidal height range, the dugong 3D

MKDE was bounded below by the raster describing bathymetry

and above by a constant water level above low tide based on the

upper limit of the tidal height range. Thus, in this example, we

accounted for the temporally dynamic space that dugongs inhabit.

We allowed a maximum time between locations (Dtmax) of 25

minutes and computed the 3D MKDE using a 1-minute time step

for numerical integration. The 3D MKDE raster had a resolution

of 10 m in the (x, y)-dimensions (the same resolution as the

bathymetry raster) and 0.5 m in the z-dimension. Using the 3D

MKDEs for each tidal range, we estimated the probability that the

dugong would have occurred at various depths, and related these

probabilities to dugong availability 1.5-meter and 2.5-meter

detection zones often used for aerial surveys [57].

Results

Giant Panda
When using all locations, 650 of the 1,916 total observed

locations satisfied the conditions for use in the 2D MKDE and 678

were removed because we concluded that the following location

did not represent a large enough displacement to be considered a

move step. Based on the 650 move steps, we estimated ĝg2 =

328.59 m2/min. For locations in the winter range, 167 of the 479

total observed locations satisfied the conditions for use in the 2D

MKDE and 177 were removed. Based on the 167 move steps, we

estimated ĝg2 = 34.51 m2/min. For locations in the summer range,

479 of the 1425 total observed locations satisfied the conditions for

use in the 2D MKDE and 500 were removed. Based on the 479

move steps, we estimated ĝg2 = 425.80 m2/min. Twelve locations

were not used because they represented migratory movements

between the winter and summer ranges.

Figure 2 illustrates the giant panda 2.5D MKDE and cell

surface areas. Surface areas based on 2.5D MKDE ranged from

900.0 to 1998.6 m2 (mean = 1024.9 m2, sd = 158.8 m2) and

showed a 12.09% to 16.82% relative increase over the estimates

based on 2D MKDE (Table 1). Larger surface areas occurred in

more uneven terrain, such as ridgelines or channels, and more in

the winter range (Figure 2) than the summer range (Figure 2).

Indeed, the relative percent increase in estimated surface area

from 2.5D MKDE was greater for winter (14.96% to 16.82%)

versus the summer range (12.09% to 12.48%; Table 1) when

compared with 2D MKDE.

California Condor
In Figure 3, we illustrate the sequence of steps to compute a 3D

MKDE. First, observed locations were filtered to ensure the move

step from them occurred with the user specified time interval, that

the move step most likely represented a move (rather than the

differences in locations being strictly due to observation error), and

that the observed z-coordinates fell above the digital elevation

model. Of the 2,256 total observed locations, 1,253 satisfied the

conditions for use in the 3D MKDE and 610 were removed

because we concluded that the following location did not represent

a large enough displacement to consider it a move step. Move

paths were then approximated by linear interpolation (Figure 3A).

Next, the variance parameters were estimated. Based on the 1253

move steps, we estimated ĝg2 = 768993.91 m2/min and ĉc2 =

1612.94 m2/min. The kernel was then integrated over time and

over each voxel to estimate the utilization probability (Figure 3B).

Figure 3B shows 99%, 95%, 75%, and 50% contours along with

the observed data and the interpolated move paths. Figure 3C

shows an enlarged visualization of the 3D MKDE contours. Most

of the condor UD (based on the 50% and 75% contours) was

focused on the mountain range where it was reintroduced. Lower

density use occurred in the adjacent low-lying areas.

Next, we considered the breeding pair of condors. Of the 1,132

total observed locations for the female condor, 501 satisfied the

conditions for use in the 3D MKDE. Based on the 501 move steps,

we estimated ĝg2 = 465862.25 m2/min and ĉc2 = 1212.08 m2/min.

Of the 1132 total observed locations for the male condor, 550

satisfied the conditions for use in the 3D MKDE. Based on the 550

move steps, we estimated ĝg2 = 702010.65 m2/min and ĉc2 =

1562.60 m2/min. Comparing the side-view of the 3D MKDEs for

each condor shows that the female tended to be at lower altitudes

when the pair moved into the lower-elevation areas to the east and

west of the mountain range where they were most active

(Figure 4A). However, there was a substantial overlap of the 3D
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MKDEs (Figure 4B). We also applied the MKDE-based estimate

of spatio-temporal similarity to the data for the condor pair.

Contours around the minimum volume encompassing 75% of the

voxels with the highest spatio-temporal association identified two

areas. The first is the nesting site for the breeding pair (Figure 4C).

The second was the release site and the area where reintroduced

condors were provisioned with food. This area was also identified

by the 50% contour. Without this a priori knowledge, we could

have identified these areas using the MKDE-based spatio-

temporal interaction method. When we consider the 95% and

99% interaction contours (Figure 4D), other areas where the pair

interacts most often were identified, and may warrant further

investigation. The global measure of similarity between the two

condors was 0.6013, which indicates considerable spatio-temporal

overlap in their utilization distributions.

Next, we consider the interaction between historical movements

of a subadult female condor and placement of a proposed wind

farm. Of the 333 total observed locations, 134 satisfied the

conditions for use in the 3D MKDE and 74 were removed because

we concluded that the following location did not represent a large

enough displacement to consider it a move step. Based on the 134

move steps, we estimated ĝg2 = 833361.81 m2/min and ĉc2 =

2538.53 m2/min. The 3D MKDE in relation to the proposed

wind farm project area is shown in Figure 5A. Linearly

i-

Figure 2. An example of a 2.5D MKDE for a giant panda in rugged terrain. In A, giant panda GPS locations in its summer (red points) and
winter (blue points) ranges are shown in relation to a digital elevation model (DEM). Using the DEM, the surface area of each raster cell is calculated
(B). The surface area increases as the color gradient changes from green to red. In C, the observed summer range locations and interpolated move
paths (red points and lines) are shown against 2D MKDE contours draped over the DEM. In D, the observed winter range locations and interpolated
move paths (blue points and lines) are shown against 2D MKDE contours draped over the DEM. 2D MKDE 99%, 95%, 75%, 50% contours are shown
with colors ranging from light to dark green.
doi:10.1371/journal.pone.0101205.g002
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nterpolating the move path between observed locations suggests

that the condor would have passed though the wind farm and that

there would have been a risk of collision with the turbines.

We estimated the 2D and 3D MKDEs using the single move

step through site (Figure 5B). Variance parameters for this MKDE

were estimated from 23 locations acquired during the exploratory

Table 1. Estimates of giant panda space use based on 2D and 2.5D MKDEs.

Area km2

Season MKDE 99% 95% 75% 50% n

2D 8.159 5.030 1.940 0.821 650

All 2.5D 9.285 5.746 2.214 0.940

Change 13.80 14.23 14.17 14.57

2D 1.173 0.810 0.347 0.159 167

Winter 2.5D 1.370 0.944 0.402 0.183

Change 16.82 16.55 15.67 14.96

2D 5.592 3.405 1.352 0.572 479

Summer 2.5D 6.289 3.826 1.515 0.642

Change 12.48 12.38 12.09 12.25

For area, percentages correspond to percentages of the total MDKE for which the area was estimated.
Twelve locations between the summer and winter ranges were observed and not used in the seasonal MKDEs. Percent change was calculated as 1006([2.5D MKDE area]
– [2D MKDE area])/[2D MKDE area].
doi:10.1371/journal.pone.0101205.t001

Figure 3. An illustration of the steps in generating a 3D MKDE for a California condor. The 3D MKDE is constructed from observed 3D
locations and a digital elevation model that sets the lower bound on the MKDE. The expected location (gray points) at each unobserved time is
determined by linear interpolation (white lines) between the observations (A). The 3D MKDE is then constructed by integrating a trivariate normal
distribution, possibly constrained above or below in the z-dimension, over time along the interpolated movement path (B). The variance of the kernel
increases as it moves further from the times of the observed locations. The contours of the final 3D MKDE is shown in C. In B and C, the 99%, 95%, and
50% 3D MKDE volumes are shown in transparent white, orange, and red, respectively.
doi:10.1371/journal.pone.0101205.g003

Estimation of Wildlife Space Use in 3D

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e101205



movement bout, yielding estimates of ĝg2 = 1004416.46 m2/min

and ĉc2 = 1462.03 m2/min. From these MKDEs, we extracted the

probabilities associated with each wind turbine to assess the risk

the wind farm would have posed to the condor. Based on the 2D

MKDE, the turbine encounter probabilities ranged from 5.180e-

06 to 8.861e-06, with a mean of 7.988e-06 and standard deviation

of 7.141e-07 (Figure 5C). For the 3D MKDE (Figure 5D), turbine

encounter probabilities ranged from 1.946e-06 to 6.777e-06, with

a mean of 4.659e-06 and standard deviation of 1.106e-06

(figure 5E). The risk ratios, defined as the 2D encounter

probability divided by the 3D encounter probability, ranged from

1.182 to 4.276, with a mean of 1.845 and a standard deviation of

0.633. Thus, while the probabilities are correlated (r = 0.2314, p-

value = 0.01099), the 2D probabilities are higher. Furthermore,

the probabilities from the 3D MKDE are related to the

topography, the observed altitudes of the condor, and the possible

altitudes that the condor could have been at times it was not

observed, whereas those from the 2D MKDE are not (Figures 5C

and 5E).

In the final condor example, we relate MKDE probabilities to

predicted wind speed using 292 of 433 total locations that satisfied

the conditions for use in the 3D MKDE, where 118 move steps

were removed because we concluded that they were non-

movements. Based on the 292 move steps, we estimated ĝg2 =

23801.01 m2/min and ĉc2 = 84.72 m2/min. The resulting 3D

MKDE is illustrated in Figure 6A, and is shown with the wind

speed predictions in Figure 6B. When relating the voxel 3D

MKDE probabilities and predicted wind speed, a scatter plot

suggests that higher voxel probabilities may be associated with

intermediate predicted wind speeds (Figure 6C).

Figure 4. 3D MKDEs for a breeding pair of California condors. First we illustrate the 99% contours for the female (orange) and male (yellow),
shown as a profile view (A) and an overhead view (B). The MKDEs overlap considerably, but the male appears to spend more time at lower elevations
when the pair moves into lower elevation areas. The contours for the voxels that contribute 75% and 50% of the total spatio-temporal interaction of
the pair are shown in medium and deep purple (B, C). These areas correspond to the reintroduction site where condors were provisioned with
carcasses following reintroduction and the nesting site for the pair. When the 99% (white) and 95% (light purple) contours shown, several other areas
are included which may also be of ecological interest.
doi:10.1371/journal.pone.0101205.g004
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Dugong
Figure 7A illustrates 3D MKDEs for the dugong at tidal ranges

of 0.5–1.0, 1.0–1.5, 1.5–2.0, 2.0–2.5, and 2.5–3.0 meters.

Variance estimates and estimated volumes within several percent-

ages of the UD are given in Table 2. It is clear from Figure 7 that

for higher tides, the dugong spent more time closer to shore and in

shallower water. As the tide became lower, the dugong tended to

move further away from shore and use greater depths (after

adjusting for tidal height). This pattern is shown more clearly in

Figure 7B, which uses bar plots to illustrate the probability that the

dugong will be present in water depths divided into 0.5-meter bins

for each tidal height range. The probabilities were obtained by

summing the voxel probabilities within each water depth bin. For

tidal height ranges of 0.5–1.0, 1.0–1.5, 1.5–2.0, 2.0–2.5, and 2.5–

3.0 meters, the probability that the dugong was in the 1.5-meter

detection zone was 0.292, 0.655, 0.667, 0.715, 0.806, respectively

and the 2.5-meter detection zone was 0.595, 0.847, 0.939, 0.928,

0.960, respectively. This suggests, counterintuitively, that this

particular dugong would have had a higher detection probability

during high tides because it spent more time in shallow water near

shore. In contrast, during lower tides this dugong spent more time

foraging in deeper water, which would have decreased detectabil-

ity. For comparison, Pollock et al. [58] reported constant,

population-level probabilities of 0.47 and 0.67 for the 1.5-meter

and 2.5-meter detection zones, respectively.

Discussion

Our 3D home range estimators and visualizations offer

considerable theoretical benefits over traditional 2D techniques.

First, we were able to visually explore the 3D MKDE volumes of

each example species to more intuitively understand how they

spatially related to the environmental covariates and bounding

layers within their ranges, such as bathymetry or topography.

Second, by integrating the vertical component of animal

movements into home range estimates, 3D estimators are more

accurate and biologically realistic than their 2D counterparts. For

example, the giant panda 2D MKDE had a much lower estimate

of home range surface area than the 2.5D MKDE that took terrain

into account. Home range size is positively associated with

extinction risk [5,9], suggesting that extinction risk may be

systematically underestimated among species occupying rugged

terrain. Similarly, life-history comparisons across species [59,60]

will be inaccurate unless biases in home range are corrected for

species inhabiting mountains and other rugged terrain. Finally, 3D

MKDEs can be used to examine how individuals spatially interact

in 3D (Figure 4) and these interactions can be incorporated into

studies of resource and niche partitioning among ecologically-

similar species [11].

The 2.5D MKDEs allow more realistic inferences to be drawn

regarding giant panda habitat use. Pandas are known to make use

Figure 5. 3D MKDEs may help better identify threats to species. In 2007, a subadult female condor made an exploratory movement through
a proposed wind energy development (A). The proposed wind turbine locations are shown in yellow, and the 99% contour for the condor is shown in
red. When approximating the condor’s move path by linearly interpolating between observed locations (red lines, A–E), the path passes through the
proposed locations of the wind turbines (B). The 3D models of 120 wind turbines are shown (B) in their proposed locations and size (Vestas V112-3.3
turbines with a 84 meter hub height and a 56 meter rotor radius). Using 2D and 3D MKDEs, we estimated the probability that the condor would have
passed through cells (54 meters square, C) and voxels (54 meters cubed, D–E) intersecting each turbine. The 99%, 95%,75%,and 50% contours are
shown for the 2D MKDE, and the height of blue 3D bars at each turbine location indicate the probability that the condor passed through cells
intersected by the turbines (C). The 95%, 75%,and 50% contour volumes are shown for the 3D MKDE (D, the 99% contour was omitted because it
covered most of the topography). For comparison to (C), the 99%, 95%,75%,and 50% contours for the three levels of voxels closest to the ground (the
approximate height of the turbines) are shown, and red 3D bars at each turbine location indicate the probability that the condor passed through
voxels intersected by the turbines (E). The height of the bars in (C) and (E) are on the same relative scale. In general, the probabilities based on the 3D
MKDE are lower and more closely related to the observed altitudes of the condor, the possible altitudes it may be at when it is not observed, and the
terrain.
doi:10.1371/journal.pone.0101205.g005
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of seasonal food resources that vary with elevation [37] and to

select microhabitats associated with topographic features that

support intraspecific chemical signaling [61]. Thus, incorporating

the vertical dimension in the analysis can improve understanding

of habitat use patterns that vary with topography. In addition,

2.5D MKDEs provide greater insight into seasonal variations in

panda migration paths and the degree of spatiotemporal overlap

among conspecifics. Finally, bamboo forage and the old growth

trees that pandas preferentially select as breeding dens are

increasingly under pressure from human disturbances, such as

logging and climate change [62]. Hence, strategies for panda

conservation should incorporate understanding of important

topographic and elevational determinants of habitat requirements.

Dugongs exhibit strong spatial association with seagrass patches

of relatively elevated nutritional quality and quantity [54]. Thus,

the improved accuracy of our 3D MKDE over traditional 2D

estimators will enable the space use of dugongs to be more closely

matched to the attributes of the seagrass pastures they inhabit.

Greater understanding of dugong interaction with food resources

will in turn enhance conservation management efforts to identify,

delineate, and protect important dugong seagrass habitat.

Furthermore, 3D models enable the proportion of dugong home

ranges within shallow and deep water zones to be defined,

providing better predictions of the risks posed to dugongs by

drowning in bottom-set fishing nets or injury by boat strikes.

Finally, 3D MKDE may increase the accuracy of aerial surveys of

dugong populations by incorporating volumetric home ranges into

probability estimates of detectability across the zones of water

depths dugongs inhabit (Figure 7, [58]). In future work, we will use

2D and 3D MKDEs to further explore how space use depends on

environmental covariates varying at short temporal scales, such as

tidal height.

Volumetric MKDE home ranges enable condor spatial

behaviors to be matched with the environmental covariates, such

as wind speed or other climatic conditions that modify flight

behaviors, in 3D (Figure 6). In addition, the risk of injury to

condors colliding with wind turbines that increasingly coincide

within their expanding ranges could be better predicted, as

volumetric condor ranges can be intersected with existing or

planned wind farms and the degree of spatial overlap quantified to

Figure 6. 3D MKDE Voxel Probabilities and 3D Covariates. Like 2D utilization distributions (UDs), 3D UDs can be related to 2D and 3D habitat
covariates. In A, we show the 99% and 95% contour volumes for an adult female condor during the month of November, 2009. In B, we show a
volume rendering for predicted mean wind speed (meters/second) for November 2009 in voxels 250 m by 250 m by 10 m (x, y, z, respectively) for 0
to 150 m above the ground. Wind speed increases as the color transitions from pale yellow to red. In C, we relate the probability of the condor being
in a voxel to the predicted voxel wind speed for each voxel within 150 meters of the Earth’s surface. Rug plots (in red) show the marginal distribution
of each variable.
doi:10.1371/journal.pone.0101205.g006
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Figure 7. Examples of a 3D MKDE for a dugong in a marine environment. Dugong 3D MKDE density is visualized in relation to bathymetry
(A). The 99% contour volumes for 3D MKDEs based on locations when tidal heights ranged from 0.5–1.0 (red), 1.0–1.5 (orange), 1.5–2.0 (yellow), 2.0–
2.5 (light green), and 2.5–3.0 (green) meters are shown. Based on the 3D MKDEs for each tidal height category, we computed the probability that the
dugong would have been at different water depths, grouped in 0.5 meter bins (B). The value on the y-axis is the upper depth value for each 0.5 meter
bin (i.e. 0 indicates 0.0–0.5 m depth).
doi:10.1371/journal.pone.0101205.g007
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provide more accurate estimates of collision probabilities (Figure 7).

When applying this approach to support real-world applications,

great care should be taken to compute the collision probability

over a volume that closely corresponds to that occupied by the

wind turbines. Use of 3D MKDE suggests a lower probability of

risk of turbine collision compared to the 2D MKDE, and provides

more specific guidance to mitigate bird injuries and mortalities

because it accounts for condor elevation and topography.

The benefits of 3D home range estimation can extend to other

circumstances where there is a vertical component to animal

movement. For example, understanding the role of vertical

stratification in resource partitioning in arboreal species is an

especially promising future application of this technique, and may

help explain the high biodiversity found in tropical forests [63].

The 3D MKDE also could be extended to model the home ranges

of fossorial species within a bounding, underground matrix, as well

as to incorporate temporally changing constraints on the space

available to an animal in the z-dimension. The 3D MKDE could

also be used to calculate resource selection functions in 3D to

determine the frequency at which habitats are used by animals

disproportionately to their availability across a landscape [64].

3D MKDEs can enhance the ecological basis of conservation

management strategies for mitigating anthropogenic impacts on

threatened populations of vagile wildlife. For example, analyzing

the 3D movements of avifauna in relation to the spatio-temporal

distribution of aircraft flight paths, power lines, or buildings will

provide more accurate estimates of collision risk than 2D models.

Improved understanding of the 3D spatial behaviors of the many

aquatic animals currently being tracked with biologgers, such as

marine turtles, would help managers to minimize their incidental

capture by fisheries. 3D MKDEs could also be incorporated into

predictive models of wildlife exposure to soil, air and water borne

contaminants, and used in simulations of the effects of changing

water temperatures, currents or acidification on threatened

populations. Although no home range estimator is uniformly

superior, our 3D MKDE is a significant step towards Burt’s

original 1943 concept of a home range and timely leap out of 2D

‘‘Flatland’’. Wildlife biologists and conservation managers may

now analyze their biotelemetry data sets in all three spatial

dimensions to visualize and estimate animal space use that can be

more realistic, accurate, and informative than those calculated

using 2D methods.
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