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Humans evolved a symbiotic relationship with their gut microbiome, a complex

microbial community composed of bacteria, archaea, protists, and viruses, including

bacteriophages. The enteric nervous system (ENS) is a gateway for the bidirectional

communication between the brain and the gut, mostly through the vagus nerve (VN).

Environmental exposure plays a pivotal role in both the composition and functionality

of the gut microbiome and may contribute to susceptibility to neurodegenerative

disorders, such as Parkinson’s disease (PD). The neuropathological hallmark of PD is the

widespread appearance of alpha-synuclein aggregates in both the central and peripheral

nervous systems, including the ENS. Many studies suggest that gut toxins can induce the

formation of α-syn aggregates in the ENS, which may then be transmitted in a prion-like

manner to the CNS through the VN. PD is strongly associated with aging and its negative

effects on homeostatic mechanisms protecting from inflammation, oxidative stress, and

protein malfunction. In this mini-review, we revisit some landmark discoveries in the field

of Parkinson’s research and focus on the gut-brain axis. In the process, we highlight

evidence showing gut-associated dysbiosis and related microbial-derived components

as important players and risk factors for PD. Therefore, the gut microbiome emerges as

a potential target for protective measures aiming to prevent PD onset.
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INTRODUCTION

Parkinson’s Disease (PD) is a common neurodegenerative disorder typically associated with the
progressive loss of dopaminergic neurons located in the midbrain nucleus substantia nigra pars
compacta (SNpc) (1). Although the cardinal symptoms of PD are motor impairments attributed
to the depletion of the neurotransmitter dopamine in the striatum, a major target of the SNpc
(2), it has been long recognized [for review, see (3)] that other non-motor symptoms, including
olfactory (4–6) and gastrointestinal (GI) dysfunction (4), appear during the so-called premotor
phase of the disease.

The neuropathological hallmark of PD is the presence of cytoplasmic inclusions, called Lewy
bodies (LB) or Lewy neurites (7–9), in SNpc neurons (10). LBs are composed mostly of α-synuclein
(α-syn) aggregates (11–13), whose aberrant soluble oligomeric conformations are thought to
mediate its toxic effects (14). Alpha-syn is an intrinsically disordered protein (IDP), which
lacks a stable 3D structure under physiological conditions and is characterized by exacerbated
structural plasticity and conformational adaptability (15). As other IDPs possessing amyloidogenic
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regions (16), α-syn can turn into a promiscuous binder leading
to abnormal interactions and the development of PD (17). Tuttle
et al. (18) provided a detailed 3D structure of functional α-
syn fibrils (see Figure 1), using solid-state NMR spectroscopy.
The study may serve as the basis for a better understanding
of molecular mechanisms involved in α-syn fibril nucleation
and propagation. In addition, such structural information may
provide useful insights on possible interactions of α-synuclein
with other proteins and small molecules and allow the emergence
of new tools with potential to facilitate both the diagnosis and
treatment of PD (e.g., imaging agents and therapeutic drugs).

Aggregates of α-syn fibrils are also found in neural tissue
located outside the central nervous system (CNS) of PD patients,
in both the autonomic and enteric nervous system (ENS), an
outcome whichmay be associated with the non-motor symptoms
of the disease [for review, see (3)]. These findings led Braak
et al. (4) to propose a staging system for the progression of
the disease following a specific pattern of α-syn aggregates
spreading from peripheral toward more centralized locations
in the brain. The triggering event would be the invasion of
vulnerable neural structures such as the olfactory epithelium and
the ENS, which interface directly with the external environment
(5, 22), by a neurotoxicant (“neurotropic virus”) (23). While both
structures (24, 25) possess immunological and physical barriers
protecting them against environmental insults, these barriers
steadily deteriorate with aging [for review, see (26, 27)], which
is the biggest risk factor for idiopathic PD (28).

Animal studies have supported the claim that α-syn aggregates
propagate in a prion-like manner [(29); for review, see (30)] via
microtubule-associated transport along axons (31). In summary,
the prion hypothesis of PD proposes that amyloidogenic α-
syn would induce a conformational change in the endogenous
protein through permissive templating, convert it into a likeness
of itself (32, 33) and propagate retrogradely through the vagus
nerve or the olfactory tract from the ENS or the olfactory
bulb, respectively. Even though definitive proof for this prion
hypothesis is still missing (30) and there is the controversial
possibility that intestinal α-syn aggregates have a brain origin
(34, 35), it has been shown that vagotomy is associated with a
decreased risk for PD in humans (36, 37). Also, grafted neurons
in PD patients develop α-syn aggregate pathology (38–40) and
α-syn from PD patients can cause nigrostriatal degeneration in
mice and non-human primates (41). Remarkably, exogenous α-
syn fibrils, either PD patient-derived or produced in E. coli, were
able to seed the formation of LB-like inclusions which spread
from the GI tract to the brain through the vagus nerve in rats (31).

Prior to Braak’s hypothesis, however, there was already strong
evidence pointing to the role played by exogenous toxins in
the etiology of sporadic PD. For instance, postencephalitic
parkinsonism (von Economo’s disease), which has an
autoimmune basis caused by a viral illness (42), is associated
with degeneration of the basal ganglia (43). Additionally, the
discovery of parkinsonism induced by 1-methyl-4-phenyl-
1,2,4,5-tetrahydropyridine (MPTP) through self-administration,
in 1982 (44) brought to light a new class of xenobiotic substances
that may cause PD-like symptoms by environmental contact.
MPTP is a lipophilic compound which readily passes into the

brain where it is converted by monoamine oxidase B (MAO-B)
to 1-methyl-4-phenylpyridinium (MPP+) (45) which is taken
up by dopaminergic cells and impairs mitochondria respiration
by poisoning complex 1 (46). There are many heterocyclic
molecules that structurally resemble MPTP and are found in
the brain from both endogenous and exogenous sources, such
as tetrahydroisoquinolines (TIQ) and β-carbolines (β-C). For
instance, a TIQ derivative, salsolinol, which is produced by
enterobacteria (47) and has been found in the urine of PD
patients, may have a double-faced, dose-dependent effect on the
nigrostriatal pathway as either a harmful or protective agent (48).

The evidence for the role played by toxins in inducing
parkinsonism and the relative scarcity of familial cases (about
10%) (49) underscore the importance of environmental and
lifestyle factors over genetic ones in the etiology of the disease
(50–52). Some chronic diseases have been associated with a
phenomenon called evolutionary mismatch when ancestral traits
are no longer adaptive in modern contexts (53, 54). For instance,
α-syn is involved with normal synaptic function by regulating,
among other things, the size of presynaptic vesicles (55) and
the assembly of SNARE proteins involved with the docking
of synaptic vesicles to presynaptic membranes (56). However,
as old age became common in humans after the early upper
Paleolithic (57), the steady increase in longevity seen in modern
times may have had a collateral effect on the protein homeostasis
(proteostasis) network, which coordinates protein synthesis,
folding, trafficking, disaggregation, and degradation (58, 59). The
breakdown of proteostasis, which is a common feature of many
neurodegenerative diseases (60), means that misfolded proteins
may accumulate due to lack of clearance or failure to refold into
their native structures (61). In the case of prion-like proteins, this
may cause further protein misfolding (template effect) leading to
protein aggregation and ultimately cell death (62).

THE GUT-BRAIN AXIS AND
PARKINSON’S DISEASE

The gut-brain axis is mediated by intense bidirectional
communication between the CNS and the ENS (63). Through
the ENS, the gut microbiota influences the development and
function of all divisions of the nervous system (64) and this
association was established very early during the evolution of
multicellular organisms. The first nervous system appeared more
than 500 million years ago before the divergence of cnidarians
and bilaterians, the two metazoan sister groups (65). That
primitive brain had a simple structure, organized as a diffuse
nerve net which controlled a restricted set of basic behaviors and
was the template for the subsequent evolution of the mammalian
ENS (66–68), which retained many of its basic structural
characteristics, such as a network of nervous ganglia distributed
in the myenteric and submucous plexuses (69). Higher
vertebrates went to evolve an additional set of neural structures
in the central nervous system (CNS), tasked with the control of
more sophisticated behaviors (70). However, the ENS and the
CNS maintain intense crosstalk through reciprocal connections
mediated by the VN (Figure 1) and pelvic nerve in mammals
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FIGURE 1 | The gut epithelium is a multifunctional interface. The bidirectional interplay between the brain and the gut is mediated by neural, such as the vagus nerve

(VN-gateway), and humoral pathways, such as the lymphatic tissue and the bloodstream (Non-VN gateways). A monolayer of epithelial cells separates the intestinal

lumen and the complex gut microbiome from the underlying lymphoid and enteric nervous tissues. The structure of alpha-synuclein amyloid fibrils (PDB 2N0A) is

based on atomic-resolution molecular data from NGL Viewer (19). Members of the gut microbiome and their extracellular compounds may trigger responses in the VN

through enteroendocrine cells, which are contacted by vagus nerve terminals through specialized structures called neuropods (NP) (20). Microbial antigens can cross

the gut epithelium through microfold cells, playing a central role in localized inflammatory responses [adapted from Bohórquez et al. (21)]. Toll-like receptors are

microbe-sensing proteins, present in intestinal epithelial cells, mediating recognition of commensal bacteria from the harmful/inflammatory ones. ENS, enteric nervous

system; M, microfold cells; NP, neuropods; PP, Peyer’s patches; TLR4, Toll-like receptor 4; VN, vagus nerve.

(71, 72). As the main substrate for this information exchange,
the vagus nerve is an attractive target of neurostimulation
therapies for the treatment of psychiatric and gastrointestinal
disorders (73, 74).

The GI tract harbors a complex microbial ecosystem
(Figure 1), consisting of bacteria, archaea, protists, and
eukaryotic and prokaryotic viruses, also known as bacteriophages
(75–77). The human microbiome has coevolved with its host
(78), which keeps a tight leash on the intrinsic competitive nature
of the microorganisms that comprise the microbiome, through
both the nervous (71, 79, 80) and the immune systems (81, 82).
This arrangement maximizes the benefits the host gains from the
symbiotic relationship, including protection against pathogens,
improved nutrition, and mental health (81). A sub-type of
intestinal epithelial cells called enteroendocrine cells, provide a
signaling pathway through which the microbiome interacts with
the CNS via the vagus nerve (20, 83). Enteroendocrine cells have
diverse phenotypes and express a variety of peptides/hormones
that can act as signaling molecules on distinct targets, both
local and distant, and some are chemoreceptors responding
to a variety of luminal stimuli (84, 85). As other intestinal
epithelial cells, enteroendocrine cells express toll-like receptors
(86), allowing them to detect bacterial products, and activate
vagal afferents through basal processes called neuropods
(see Figure 1) (20, 87).

THE GUT MICROBIOME AND
BRAIN FUNCTION

There is increasing evidence of the association between
microbiome dysfunction and CNS-related co-morbidities, such
as anxiety, depression, autism spectrum disorders, Alzheimer’s
disease and PD (88–92). This association probably arose as a
by-product of natural selection forces acting on microorganisms
to adapt to the host and vice-versa (93). The effect of the
microbiota on the CNS can lead to behavior modifications
(93–95) and even to host manipulation (96) associated with
increasing fitness of its bacterial populations. For instance, the
microbiome can influence social interactions by acting on the
nutritional behavior of individual animals, particularly those
from social species where individuals share microbes and interact
around foods (97). The proximate neuro-endocrinological
and inflammatory mechanisms underlying this type of host
manipulation are largely shared by the microbiome and the
host (98, 99). For instance, levels of many neurotransmitters
that are important for the expression of social behavior,
such as serotonin (5-HT), dopamine, norepinephrine (NE), γ-
aminobutyric acid (GABA), and glutamate are either expressed
or regulated by bacteria (100–102). Particularly, most of the
body’s serotonin (5-HT) (5-hydroxytryptamine) is produced in
the gut by enterochromaffin cells (EC) under the influence
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of the microbiome (103). The activation of 5-HT4 receptors
induces the maturation of the ENS and regulates its adult
function (104). In the gut, there are three major metabolic
pathways leading from the essential amino acid tryptophan (Trp)
to 5-HT, kynurenine (Kyn), and indole derivatives, which are
under the direct or indirect control of the microbiota (105).
During inflammatory states, most tryptophan is diverted to
the production of Kyn and its metabolites kynurenine acid
(KYNA) and quinolinic acid (QUIN) (106). While KYNA
is considered neuroprotective, QUIN can cause excitotoxicity
as an agonist of N-methyl-d-aspartate (NMDA) receptor
and contribute to the neuropathogenesis of PD [for review,
see (107)].

Although α-syn aggregates are also seen in the ENS of
normally aging subjects (108), especially in the appendix (109),
it is more prevalent in PD patients (110). Recent in vivo
models showed that accumulation of α-syn aggregates in the
ENS can be induced by alterations in the gut microbiome
(111). Interestingly, Sampson et al. (112) demonstrated in mice,
genetically modified to overexpress α-syn, that the presence of
gut microbiota is necessary to promote pathological alterations
and motor deficits similar to PD. They also demonstrated that
fecal transplants from PD patients impair motor function in the
same mouse strain, strongly suggesting that gut microbes may
play a pivotal role in the onset of synucleinopathies such as
PD (112). Underlying these findings is the fact that microbial
amyloids produced by some members of the gut microbiota
can be released in the extracellular space, where they can be
internalized by neighboring cells, including neurons, and seed
the formation of pathological aggregates of endogenous α-
syn through permissive templating (113, 114). The failure of
normal clearance mechanisms such as the ubiquitin-proteasome
system, characteristic of both familial and idiopathic PD
(115), to degrade the misfolded protein, may facilitate the
seeding process.

The concept of microbial dysbiosis also comprises
the bacteriophage components of the microbiome (116).
Bacteriophages (phages) are viral parasites of bacteria and are
important regulators of host-microbiome interactions through
horizontal gene transfer and antagonistic coevolution (117, 118).
Besides targeting bacteria, phages can impact human health
by playing a direct role on intestinal inflammatory processes
(119) and possibly causing α-syn misfolding (120). A recent
study showed significant differences in the gut phagobiota of PD
patients and healthy individuals and a depletion of Lactococcus
bacteria (121) in the former, which is associated with the
regulation of gut permeability (122) and dopamine production
(102), two factors linked with the early signs of PD in the gut
(123). Phage therapy has recently returned to the spotlight as an
alternative antimicrobial strategy (124, 125). Eventually, it may
also contribute to fighting PD through targeted approaches to
manipulate the microbiome (121).

Probiotic bacteria have been linked to improved GI symptoms
associated with PD (126). Probiotics affect the functionality of
the CNS through beneficial interactions with the commensal

gut microbiota and modulation of gut-derived inflammation
(127). Themicrobiota of PD patients exhibits a pro-inflammatory
profile (128, 129) due to increased intestinal permeability
to endotoxins (lipopolysaccharide) (130). Bacterial amyloids
may also favor a pro-inflammatory environment in the gut
(131). A common bacterial component, the Curli fimbriae,
share structural and biophysical properties with amyloids and
are produced by E. coli through coordinated biosynthetic
processes (132). Other components of the gut microbiome
are also known to produce functional extracellular amyloids
[e.g., Salmonella, Klebsiella, Citrobacter, and Bacillus species;
(133)]. Since probiotic treatment induces an anti-inflammatory
peripheral immune response in multiple sclerosis patients (134)
there is a possibility they may also be beneficial for PD patients,
although there are no reports corroborating this hypothesis. One
option is to take advantage of Lactobacilli’s ability to inhibit
the formation of biofilms by pathogenic bacteria (135, 136).
One caveat, however, is that the effects of probiotics are highly
variable, being person-specific, as shown in a recent study (137).
This limitation may be counteracted with the use of genetically-
modified probiotics able to deliver novel therapeutics efficiently
and with site specificity (138). Despite the increasing number
of probiotic products available to consumers and the aggressive
marketing proclaiming their efficacy, there have been few studies
addressing concerns about efficacy and, more importantly, the
safety of these products (139). There is an urgent need for
more studies about the therapeutic potential of specific bacterial
strains to help maintain oxidative and protein homeostasis in
the ENS.

CONCLUDING REMARKS

Aging is the main risk factor for the development of PD (140)
and delaying the aging process is neuroprotective to PD in animal
models (141). Aging is also associated with the accumulation of
neuroinflammatory sequelae and the breakdown of homeostatic
mechanisms that protect against protein misfolding, oxidative
stress, decreased mitochondrial function, etc. The gut, as
one of the main gateways to environmental exposure to the
brain, may contribute to increasing the susceptibility to these
factors. The microbiome has a protective effect mediating this
exposure, and dysbiosis seems to be a pivotal risk factor for
PD and other neurological disorders. Thus, the adoption of
preventive measures to ensure a healthy microbiome throughout
the lifetime can potentially decrease the risk of developing
PD and other neurodegenerative diseases. The widespread
use of antibiotics, for instance, which can kill gut bacteria
indiscriminately, can cause a shift of the microbiome to an
alternative stable state with unknown consequences in the long
term (142).
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