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Osteoarthritis (OA) is the most common orthopedic condition in dogs, characterized as

the chronic, painful end-point of a synovial joint with limited therapeutic options other

than palliative pain control or surgical salvage. Since the 1970s, radiography has been the

standard-of-care for the imaging diagnosis of OA, despite its known limitations. As newer

technologies have been developed, the limits of detection have lowered, allowing for the

identification of earlier stages of OA. Identification of OA at a stage where it is potentially

reversible still remains elusive, however, yet there is hope that newer technologies may

be able to close this gap. In this article, we review the changes in the imaging of canine

OA over the past 50 years and give a speculative view on future innovations which may

provide for earlier identification, with the ultimate goal of repositioning the limit of detection

to cross the threshold of this potentially reversible disease.
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INTRODUCTION

Osteoarthritis (OA) is themost common orthopedic condition observed in dogs (1), with estimated
clinical prevalence of∼2.5% (2, 3) that increases to 20%when evaluated post-mortem (4, 5). OA has
major impacts on dog welfare due to its severity, long duration and requirement for chronic pain
management (3). The impact is similar in humans, with the 2016 Osteoarthritis Research Society
International (OARSI) white paper identifying OA as the cause of 2.4% of all years lived with a
disability in humans, in which global prevalence of knee and hip OA approaches 5% (6).

Frustratingly, the earliest OA changes to the joint organ are currently undetectable, whereas
the clinically recognizable OA syndrome causing pain and disability only develops toward the
culmination of OA pathology, when there are limited to absent therapeutic options available.
Currently treatments mainly involve palliative pain control or surgical salvage to remove the
diseased joint entirely. Common diagnostic imaging approaches, and principally the use of
radiography, have a critical role in OA diagnosis, however, earlier disease intervention is limited by
the sensitivity of radiographic imaging and by its failure to achieve correlation between the types
of OA changes identifiable and clinical joint function. There remains a need to identify changes
earlier in the disease process, which has led to the utilization of newer imaging technologies such
as magnetic resonance imaging (MRI) and computed tomography (CT) in both humans and dogs
to try and close the gap between the onset of pathology and the limit of imaging detection.
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Identifying and developing the correct diagnostic modality
requires full awareness of OA aetiopathogenesis and trajectory
within the context of distinct OA sub-divisions. OA is no
longer considered to be only a simple failure of the articular
cartilage but is characterized as a demise of the “joint organ”
where there is increasing focus on the osteochondral unit (7)
and its temporospatial changes during OA progression (7–
9). One current view of the temporal sub-divisions of OA
is that the composition of cartilage changes early in disease
progression (10), which makes the cartilage more susceptible
to load-induced damage leading to fibrillation of its surface.
In response, the chondrocytes attempt to repair the cartilage
by upregulating their activity with production of several pro-
inflammatory mediators as well as matrix degradation products
which promote extra-cellular matrix turnover (11). This increase
in matrix turn-over becomes imbalanced favoring catabolic
degradation, while the pro-inflammatory state stimulates a
proliferative response in the synovium further potentiating the
pro-inflammatory environment (12). In parallel to the cartilage
changes, the subchondral bone responds with increased bone
turnover which in the early stages leads to a more porous
and thinned subchondral plate (13), with increased vascular
invasion and the formation of bone-marrow lesions (BMLs) (14).
As OA progresses to the later stages, the cartilage continues
to be degraded with deeper lesions occurring. Within the
cartilage, chondrocytes undergo either hypertrophy and clonal
expansion or apoptosis (7). The subchondral bone continues
to remodel with the subchondral bone plate becoming thicker
and the trabecular bone becoming more sclerotic (15). Further
bone remodeling occurs with the development of subchondral
bone cysts as well as periarticular osteophytes (7). This view
of the aetiopathogenesis of OA is summarized in Figure 1,
accompanied by the current limits of detection of each imaging
modality for OA.

This review will consider the past and current steps in
the advancement of diagnostic imaging in canine OA, where
the evolving development of technologies have progressively
allowed the observer to identify earlier and earlier biomarkers
of OA disease. Finally, this review will provide a speculative
view of future innovations which may provide for identification
of an earlier disease state, with the ultimate goal of the
limit of detection crossing over the threshold of pathologically
reversible disease.

THE PAST AND PRESENT; RADIOGRAPHY

Prior to the 1970s, the diagnosis of dog OA was based solely
on clinical evaluation. Clinicians made the provisional diagnosis
based on the presence of joint pain, joint effusion, soft tissue

Abbreviations: AI, Artificial intelligence; BMD, Bone mineral density; BML,
Bone marrow lesion; CCL, Cranial cruciate ligament; CT, Computed tomography;
CTA, Competed tomography arthrography; FDA, US Food and Drug Agency;
FDG, Fluoro-2-deoxy-D-glucose; GAG, Glycosaminoglycans; HDMPs, High
density mineralised protrusions; KL, Kellgren-Lawrence; JSN, Joint space
narrowing; MRI, Magnetic resonance imaging; OA, Osteoarthritis; PET, Positron
emission tomography; Tc, Technetium; uCT, Micro-computed tomography; UTE,
Ultrashort echo time enhanced.

thickening, and crepitus, without use of diagnostic imaging.
Although this approach is most closely aligned with the patient,
understanding of the pathology was limited to post-mortem
specimens only, and a definitive diagnosis in the live patient
was elusive. However, with the integration of radiography into
veterinary practice in the 1970s, there was now a means to
definitively diagnose OA before some of the more end-stage
clinically appreciable changes appeared.

One of the first publications depicting the changes seen
with spontaneous clinical OA in the dog, was published
in the Journal of Small Animal Practice by J. P. Morgan
in 1969 (16), although the radiographic changes had been
described in textbooks and experimental canine models prior
to this date. Morgan compared radiographs of the stifle joint
in 12 young, clinically normal dogs, to those in 12 older,
clinically lame dogs, in both a non-weight bearing and weight
bearing position. The OA joints demonstrated radiographically
identifiable periarticular osteophytes, subchondral sclerosis, joint
space collapse, subluxation and rotation; some of these changes
are shown in Figure 2.

Soon after Morgan’s landmark publication, similar findings
were described in other joints; first in a short case-series in 1970
assessing the changes in the stifle at post-mortem examination
(17), then in larger cadaveric surveys of radiographic and
pathological aspects of OA in the shoulder (18, 19), elbow
(19, 20) and stifle (4). As radiography became more accessible
in general practice, the Journal of Small Animal Practice
published a series of articles titled ‘Radiological refreshers’,
including the radiological examination of stifle OA, in which
the locations for osteophyte assessment were highlighted (21).
Periarticular osteophytosis, subchondral sclerosis, joint swelling
and effusion, joint remodeling, and to a lesser extent joint
space narrowing (JSN) have since remained the key radiographic
hallmarks in the diagnosis of OA in the dog (Figure 3).
These radiographic markers have been used to produce various
scoring systems (22–28), both in experimental canine models for
human OA and in prospective spontaneous clinical veterinary
studies. However, in comparison to human medicine, no single
scoring system has been accepted as the standard-of-care in
the diagnosis of canine OA with radiography. In comparison,
despite its accepted shortcomings (29), the Kellgren-Lawrence
(KL) scoring system has been the accepted standard-of-care
for radiographic diagnosis for human OA since 1958, with
grading based on descriptive definitions (Figure 4) (30, 31).
Other systems have been developed, including the OARSI atlas
assessment, first published in 1996 (32), then revised in 2007
(33), to attempt to address some of the shortcomings of the
KL system. The main difference with the atlas assessment,
is that radiographs are compared to a database of images
to assess for ‘best-fit’, as opposed to descriptive grades, in
an attempt to reduce inter-observer variability. Although the
acceptance of OA grading in human medicine is not without
issue, it is clear however that the adoption of a standardized
radiographic scoring of canine OA could have a positive impact
on both diagnosis and monitoring. Furthermore, these systems
could also improve the standardization and then subsequent
reliability in prospective trials with disease modifying therapies
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FIGURE 1 | Schematic progression of OA and the current detection limits with diagnostic imaging.

for OA, for both veterinary clinical and potential one medicine
orientated studies.

Despite its lack of sensitivity to early stages of OA detection,
radiography remains the standard-of-care for OA diagnosis in
dogs and humans being cheap, widely available, well established
and safe. However, a further issue is that the severity of
radiographic changes do not necessarily accurately correlate
to clinical disease. This was noted by Olsson in 1971 in his
comment that the diagnosis of OA should not be made on
the presence of osteophytes alone, and secondly, that clinical
signs are often unrelated to radiographic severity (34). This view
was not new as it had been the subject of discussions in the
human field, where similar disparities in radiographic and clinical
severity were indeed frustrating clinicians (35). This disparity has
been explored through force-plate analysis which highlighted a
poor correlation between radiographic OA and limb function
(36, 37), as well as clinician- and owner-reported pain severity,
which again were not associated with radiographic severity (38).
Moreover, radiographic changes have been shown to be a poor
predictor of cartilage damage when compared to arthroscopy
(39). This poor correlation could be explained by the fact that
radiography can only detect bony changes of osteophytosis and
sclerosis, which only relate to a component of the joint organ
disease and perhaps are not so well linked with drivers of clinical
OA symptoms.

Radiography has restricted contrast resolution, with only five
contrasts of opacity (air (gas), fat, water (soft tissue), bone
(mineral) and metal). Radiopacity is determined by a tissue’s
inherent x-ray beam absorption and its thickness. The x-ray

absorption of soft tissues is very similar to water, limiting
the ability to differentiate between cartilage, synovial fluid and
the soft tissue structures of the joint with plain radiography
(40). The fidelity of radiography in OA diagnosis has been
improved through the use of contrast arthrography to allow
better visualization of structures, including articular cartilage, by
temporarily changing the radiopacity of the surrounding joint
fluid. In dogs, arthrography has been attempted particularly in
the shoulder, and to a lesser extent the stifle, but with limited
diagnostic value (41–43). So called advanced imaging modalities
(CT and MRI) have made this approach somewhat redundant in
plain film radiography, although ‘anesthetic arthrography’, where
contrast material is diluted with local anesthetic to identify both
the source and cause of lameness has been used by some (44).

Despite its weaknesses, radiography remains the standard
imaging modality for clinical diagnosis of OA in both humans
and dogs (25, 45). While human and veterinary radiographic
imaging of OA changes mostly align, there are some key
differences with regard to subchondral bone cysts and joint
space narrowing. Despite being described by Morgan (16) and
being included in an extensive canine OA scoring system (46),
subchondral bone cysts have not been as widely evaluated
in dogs as in humans, where they are currently assessed as
a key radiographic feature of OA (33, 47). Perhaps more
striking is the discrepancy in the use of JSN; this is an
indirect measure of human knee articular cartilage thickness
in radiographs taken in a weight-bearing position (48). The
importance of JSN in human medicine is highlighted through
its selection as the recommended imaging end-point by the US
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FIGURE 2 | Lateral radiograph of an older clinically-lame dog in the

non-weight bearing position, presented by Morgan in 1969. The radiograph

shows evidence of periarticular osteophytosis, subchondral sclerosis and joint

space narrowing. Morgan JP. Radiological Pathology and Diagnosis of

Degenerative Joint Disease in the Stifle Joint of the Dog. J Small Anim Pract.

1969; 10:541–4. Reprinted with permission.

Food and Drug Agency (FDA) in phase III clinical trials (31),
although this currently being reviewed as shown by a recently
published updated draft guidance (49). The application of JSN in
veterinary medicine is, in contrast, very limited. Notwithstanding
the need for horizontal beam radiography, which introduces
additional radiation safety considerations, this raises questions
about whether JSN assessment should be more widely used in
veterinary medicine to improve the fidelity of this commonly
available imaging modality.

Despite its limitations, radiography was a great leap forward
in OA diagnosis in veterinary medicine during the 1970–late
1990s, allowing for internal appraisal of bone remodeling and
some aspects of soft-tissue changes in OA, leading to earlier
diagnosis of later stage OA pathology. However, the challenges
of 2D superimposition, inability to assess cartilage directly and
the insensitivity of radiography to different types of soft-tissue
or fluid changes which may be present at earlier stages of OA
were limiting.

FIGURE 3 | Ventrodorsal extended limb radiographs highlighting hip

osteoarthritis (OA). (A) Radiograph of an adult dog with radiographically

normal hips. (B) Radiograph of a middle-aged, male, large-breed dog with

severe OA secondary to hip dysplasia. This radiograph shows evidence of

advanced new bone formation (osteophytosis, black arrow head), sclerosis

and remodeling of the acetabulum (black arrow).

THE PRESENT AND FUTURE: COMPUTED
TOMOGRAPHY (CT)

The development of 3D X-ray imaging allowing planar
segmental, and then multiplanar, and eventually 3D image
reconstruction, was intimately linked to the development of
computer micro processing power in the second half of the
twentieth century. In 1971, a paradigm shift in medical and
research imaging came with the first commercial CT scanner
at the Atkinson Morley Hospital, London (50). The limitations
of conspicuousness and subject contrast associated with 2D
plain film radiography (51) and the potential solution to
this had long been speculated with Radon describing the
mathematical principles of tomography in 1917; sufficient
computer power was not however available for a further 60
years. CT imaging uses mathematical algorithms to construct
cross sectional images, based on a 2D matrix of pixels with
their gray scale relating to different attenuation of x-rays
through different tissues. These cross-sectional images are then
reconstructed over the z-axis, providing the third dimension of
the object (51, 52), thus removing the superimposition problem
encountered with plain radiography. This gray scale of pixels
can be converted into Hounsfield units (a quantitative scale
for describing radiodensity), which using different processing
algorithms can provide greater interrogation of various soft
tissues for greater differentiation.

The capacity of CT imaging to differentiate superimposing
structures has aided the ability to diagnose the bony changes
picked up by plain film radiographs at an earlier stage, as complex
joints can be interrogated in each plane. As scanner technology
improved, this allowed for identification and quantitative
assessment of even a single osteophyte and a degree of assessment
of subchondral bone changes which would have not been visible
in 2D plain radiography. Notably, although there are huge gains
in spatial and intra-structural analysis, the actual resolution
of a CT image remains lower than both digital and analogue
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FIGURE 4 | Kellgren Lawrence Scoring system, published in 1957. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;

16(4):494–502.

FIGURE 5 | Radiograph and multiplanar reconstruction of a computer tomography (CT) of a canine elbow showing osteophytes are more easily identified on CT

compared to radiography. (A) Mediolateral elbow radiograph from a skeletally mature dog showing minimal radiographic change of osteoarthritis. (B) Multiplanar CT

reconstruction of the same elbow, demonstrates an occult 2mm diameter osteophyte on the medial humeral condyle (white arrows).

radiography (53). Not surprisingly, the same hallmarks of OA are
identified in CT as with radiography, as both techniques utilize x-
ray radiation, although the Hounsfield scale allows for improved
soft-tissue differentiation.

The majority of the literature relating to musculoskeletal CT
in dogs has focused on the elbow joint. The complex anatomy
and the significant issue of superimposition at this site has
led to CT being widely adopted by vets for assessment of the
canine elbow with its superiority over conventional radiography
being well-documented (54–56). It has also been recognized in
human diagnostic imaging that CT is superior in detecting small
osteophytes which are inconspicuous in plain 2D radiographs
(57), and it can be assumed this applies to veterinary imaging
(Figure 5). CT therefore allows earlier identification of the
later secondary bony change while also allowing more accurate
quantification of these measures. For example, osteophyte size
can be measured by CT and has showed to be associated with
articular cartilage changes confirmed arthroscopically within the
elbow (58), with individual osteophyte size in CT imaging being

the basis of most CT-based OA scoring systems in dogs (59).
However, despite this increased sensitivity for bone remodeling,
the articular cartilage remains invisible to CT without contrast-
enhancement and the earlier, potentially reversible, OA changes
still remain elusive.

Similar to radiography, the usefulness of contrast imaging
with CT, CT arthrography (CTA), has been investigated in
dogs (60–68), with CTA being able to delineate articular
cartilage thickness indirectly as the measured structure between
the subchondral bone and the contrasted enhanced synovial
fluid, albeit prone to overestimated measurements (63). When
compared, CTA can outperform CT in the assessment of
cartilage shoulder joint lesions (64), however, CTA has
not been widely adopted clinically for OA imaging, in
part due to its perceived limited added value over CT
and radiography.

Other signs of OA have been identified in dogs using
CT, including intraarticular gas (vacuum phantoms) (69),
subchondral bone cysts in the elbow (55, 58, 59) and in
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FIGURE 6 | Micro-CT 3D reconstructions (A,B,D,E) and tonograms (C,F) of two canine femoral heads. Images (A–C) are taken from normal femoral head, while

images (D–F) are taken from a diseased femoral head harvested during a total joint replacement. Peripheral osteophytes are visible in D-F (white arrows), as well as

thickening in the subchondral bone plate (arrow head).

FIGURE 7 | MRI T1 weighted sagittal image of a canine stifle identifying both

bone and soft tissue anatomy.

degenerative sacroiliac joints (70). The search for predictive
biomarkers of OA with CT has described several 2D and
3D measurements capable of identifying “at risk” dogs (71,
72), however, the identification of a significantly early imaging
biomarker remains elusive. One potential area of interest
however, is the assessment and quantification of subchondral
OA bone changes, such as sclerosis, with CT. This sclerotic
bone and its altered bone mineral density (BMD) has been

assessed by CT in dogs (56, 73–75), with an increased BMD
being explored as a quantifiable change associated with OA,
in particular in the femoral head (76). Increased BMD was
identified in both subchondral and non-subchondral bone in
dogs with confirmed OA at post-mortem examination. This
has been explored as a way to predict OA risk using young
dogs as a model for human developmental hip dysplasia (77),
although further research is required. Subchondral bone changes
are promising, but CT probably does not have the resolution
to interrogate these changes fully. However, the required level
of resolution is commonplace in bone and joint research
with extensive use of micro-CT (uCT) (78–84). Unlike clinical
CT scanners which are commonly limited to 1–0.5mm slices
thickness, uCT allows assessment of bone at the microscopic
level giving detailed assessment of OA associated bone changes
at the trabecular structural unit level, with slices as thin as 5 µm
(Figure 6).

Compared to simply looking at subchondral sclerosis
or periarticular osteophytosis, a detailed assessment of
subchondral bone structural change is expected to reveal
earlier imaging biomarkers of OA development. Research is
currently underway to better understand the interplay between
cartilage and bone, and their respective changes as OA starts
and progresses. It is envisioned that better quantification of
microscopic level subchondral bone remodeling changes at
different stages of cartilage degeneration, will translate into
much earlier imaging biomarkers of disease. The current
issue is the scalability as scanners cannot accommodate
whole large animals and the radiation dose would be
problematic. However, if the spatial relationships between
cartilage degeneration and the underlying subchondral
bone reported in humans (15) are seen in dogs, then
identification of indicators of those uCT changes with
clinical scanning technology may not only be possible, but
may revolutionize OA diagnosis with earlier detection of
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FIGURE 8 | Two dorsal stifle MRI images of a dog 13 months after a CCL transection showing a bone marrow lesion (BML) within the dorsal tibia. (A) is a short tau

inversion recovery sequence (STIR) which shows the BML as a heterogeneous hyperintensity in the dorsal tibia (arrow heads), while (B) is a T1-weighted sequence

where the BML appears as a hypointense lesion (arrows). MRI – Magnetic resonance imaging; CCL – cranial cruciate ligament. Martig S et al. MRI characteristics and

histology of bone marrow lesions in dogs with experimentally induced osteoarthritis. Vet Radiol Ultrasound. 2007; 48(2):105–12. Reprinted with permission.

previously unrecognized changes and thus setting an earlier limit
of detection.

Access to CT imaging is improving in veterinary practice
but remains limited, in part due to the high capital cost
of the systems. Furthermore, its impact in OA imaging is
limited by its insensitivity in detecting cartilage lesions and
ultimately that it does not currently allow for significantly
earlier detection of OA. Moreover, the increased radiation
dose compared to radiography should be considered, especially
where repeated imaging is being performed. With all of
this combined, the search for earlier detection of OA, while
it is still potentially reversible, has expanded beyond X-ray
based technology.

THE PRESENT AND FUTURE: MAGNETIC
RESONANCE IMAGING

A second paradigm shift in OA imaging occurred with the
invention of MRI, which for the first time allowed detailed
imaging of soft-tissues and bone, giving holistic interrogation
of the whole joint organ. MRI exploits the electromagnetic
properties of hydrogen ions in H2O and lipids, which are
abundantly present in tissues throughout the body, by application
of intense magnetic fields to the tissues and then measuring
their differential response as radiofrequency emissions (85).
Depending on the sequences involved, different aspects of the
joint organ can be highlighted in any particular scan by utilizing
the specific T1 relaxation (the time taken for the spinning
protons to align themselves to the external magnet) and T2
relaxation (the time taken for the transverse magnetization
vector to decay due to dephasing of the spinning protons)
times of each tissue within the joint. Relaxation time refers
to the time taken for an excited molecule to return to its

equilibrium state. The common sequences currently used in
musculoskeletalMRI include T1-weighted and T2-weighted echo
sequences, fat suppression sequences (86), as well as short
tau inversion recovery (STIR) and proton density sequences
among others (87). MRI has become the gold standard for
joint imaging in humans as it allows multiplanar imaging of
the whole joint organ, with excellent soft tissue and good
bone definition.

In dogs, MRI has been widely adopted for neurological
assessment, but not for OA. One of the first publications
referencing the use of MRI to assess canine experimental
OA was nevertheless published as far back as 1987 (88), in
which changes of the stifle in a cranial cruciate ligament
(CCL) transection model were evaluated. The authors showed
that MRI changes correlated to gross pathology and that the
changes linked to OA were seen on MRI earlier than with
radiography. In this study, osteophytes were visible on MRI
4 weeks after CCL transection while they were not visible on
radiography until 12 weeks post transection (88). The lack of
uptake of MRI in veterinary clinical practice for joint assessment
is in large part due to it having to compete with modalities
such as plain radiographs and CT that are well established
and give high detail of bony change in OA at a fraction of
the cost. MRI has several drawbacks for a perceived limited
gain, including limited access to sufficiently powered scanners,
long sequence acquisition times compared to other imaging
modalities, especially as general anesthesia is required to reduce
movement artifact. Of all the imaging modalities discussed, this
is where the greatest difference between the imaging of OA in
veterinary medicine and human medicine lies. The majority of
MRI reports in the dog have focused on experimental canine
models of human knee OA, which have been used since the
1970’s (89). Clinically, the use of MRI in dogs has focused
mainly on the shoulder, as it allows excellent assessment of
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FIGURE 9 | MRI, PET and PET/MRI co-registered transverse views of a canine stifle using Na18F before (baseline), 3 weeks and 12 weeks following CCL transection.

The MRI images used a proton density weighted sequence and depict the detailed anatomy of the stifle. The Na18F PET imaging shows an increase of positron

emissions compared to baseline at both 3 weeks and then again at 12 weeks post CCL transection, indicating an increase bone uptake of Na18F in response to

increase bone metabolism following joint destabilization. Both images are co-registered allowing direct assessment of both the anatomic and metabolic changes, with

a manually drawn 6mm 3D region of interest present on the lateral femoral condyle (yellow circle). MRI – Magnetic resonance imaging; PET – positron emission

tomography; CCL – cranial cruciate ligament. Menendez M et al. Feasibility of Na18F PET/CT and MRI for Noninvasive In vivo Quantification of Knee

Pathophysiological Bone Metabolism in a Canine Model of Post-traumatic Osteoarthritis. Mol Imaging. 2017: 16 (1–8); doi: 10.1177/1536012117714575. Reprinted

under creative common license.

both intra- and extra-articular structures, and in particular
the musculotendinous structures commonly causing shoulder
lameness in the dog (87), and has not been explicitly explored
for shoulder OA.

Unlike radiography and CT, MRI was the first imaging
modality to be able to directly image cartilage and to have a good
level of resolution for soft as well has hard joint tissues (Figure 7).
Experimentally, it has been demonstrated to be a more sensitive
imaging modality in identifying the onset and progression of
OA in dogs, in particular with osteophytosis (90). However, the
direct assessment of articular cartilage is quite unique. This is
possible due to the significant water content of cartilage (∼80%).
Several MRI studies using experimental dog OA models have
shown that it is not only possible tomeasure thickness of articular
cartilage, but also to assess lesion progression in-vivo (91–93).
Interestingly, being able to follow dogs with CCL transection
over an extended period documented that cartilage hypertrophy
in response to joint destabilization can persist for up to 3 years,
before the cartilage shows evidence of thinning (91, 93). However,
the visualization of cartilage is dependent on the MRI equipment
and protocols applied, as when larger slice thicknesses are used
(such as 1 cm) and a low field system, the ability to detect cartilage

lesions is lost (88). This is in part related to the relative cartilage
thickness in canine joints being thinner than in human joints,
which necessitates the use of higher MRI field strength magnets
and thinner slice thicknesses. Nevertheless, MRI has opened the
door to allow direct assessment of cartilage, a key aspect of the
osteoarthritic joint previously not accessible non-invasively.

Promisingly, hitherto unknown and early changes associated
with OA were revealed when this approach was applied to OA
joints. So called BMLs were identified as hyperintense regions
on T2 weighted, fat suppressed sequences in human OA joints
(14). The underlying aetiopathogenesis of these lesions is not
well understood as histological assessment in human patients is
limited. Their presence within the epiphyseal trabecular bone
made them elusive to 2D imaging as they were effaced by
overlying structures, and their soft-tissue/fluid nature made them
invisible to X-ray beam differentiation. Canine experimental
models suggest these BMLs represent fat necrosis and/or fibrosis
within the bone (94, 95). These lesions have attracted attention
as both a possible early reversible biomarker and a source of pain
in OA (96). While most of the research into BMLs has focused on
humanOA, their presence in dogOA has been explored in canine
experimental models, with BMLs being identified in dogs as early
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FIGURE 10 | Compositional MRI of two human knees using UTE-T2* mapping. (A) UTE-T2* map of an un-injured human knee shows a lower signal (red) in the

deeper layers of the articular cartilage (arrows). (B) UTE-T2* map of a knee acutely following an ACL-injury, shows a higher more disorganized signal pattern in the

deeper layers of the articular cartilage. MRI – Magnetic resonance imaging; UTE – ultrasound time echo; ACL – anterior cruciate ligament. Chu C et al. Visualizing

Pre-osteoarthritis: Integrating MRI UTE-T2* with mechanics and biology to combat osteoarthritis—The 2019 Elizabeth Winston Lanier Kappa Delta Award. Journal of

Orthopedic Research. 2021; (1–11). Reprinted with permission.

as 4–6 weeks post stifle destabilization (95, 97–99) (Figure 8).
There are also reports of BMLs in dogs with spontaneous stifle
and elbow disease (100–102), and hence they may be a viable
earlier clinical indicator of OA pathology. The discovery of
BML with MRI nicely highlights that with the correct imaging
modality, earlier or previously unknown imaging biomarkers
may become identifiable in OA as new technologies develop.
This is further highlighted as other imaging biomarkers have also
been identified with the use of MRI, notably the identification of
high density mineralised protrusions (HDMPs) from the calcified
cartilage into the hyaline cartilage in both equine and human OA
(103, 104).

As a non-invasive modality which can directly assess bone and
soft-tissue joint components and in particular articular cartilage,
MRI is commonly used in human phase III clinical trials leading
to the development of several semi-quantitative scoring systems,
such as the Whole-Organ Magnetic Resonance Imaging Score
(WORMS) (86) among others (31). These scoring systems assess
the whole organ, unlike the radiographic systems, making them
well suited for both cross-sectional and longitudinal studies. It is
likely that the sum total of many very minor changes particularly
in the earlier disease stages may facilitate confident prediction
of later OA. Currently, there are no semi-quantitative scoring
systems available in dogs.

In human medicine clinical research MRI scanners of
increasing resolution combined with new protocols are starting
to allow interrogation of the composition of the joint, including
makers of glycosaminoglycan (GAG) content and articular
cartilage structure. Inevitably, this will reveal earlier OA disease
states, or new previously hidden aspects. In time this technology
will be shared with veterinary patients as well.

NUCLEAR MEDICINE AND OTHERS

The mainstream of imaging modalities in OA reveal structural
change, however some of the earliest stages of OA development
include metabolic rather than gross structural aberrations.
Currently only used in research or in select non-OA clinical
conditions, gamma scintigraphy, positron emission and

thermography could thus provide new strategies to look further
back to the earliest stages of OA.

Gamma scintigraphy is a form of nuclear medicine, which
utilizes the gamma radiation emitted from the administration
of radioactive isotopes, primarily Technetium-99m (99mTc),
which can be bound to specific tissue markers. Phosphate
bound 99mTc is preferentially absorbed by bone at locations
of greater osteoclast: osteoblast mediated (re)modeling, which
is identified as a ‘hot spot’ when scanned with a gamma-
camera (105). Intriguingly, it has been shown that there
is greater uptake of 99mTc-labeled markers specifically in
joints with OA (106, 107) with defined abnormal early and
late phase isotope patterns (108). These isotope patterns
are thought to represent different aspects of OA; the early
phase pattern identifying synovitis and the late phase pattern
identifying osteophyte formation. This approach, although
sensitive to early OA disease is currently hampered by poor
spatial resolution and poor specificity for the underlying
pathology, along with the inherent difficulties associated with
managing radiopharmaceuticals. In the veterinary clinic its
main application has been to identify a hitherto unidentifiable
source of lameness which can then be further interrogated with
more conventional investigations (109). Considering its targeting
mechanism is aligned to any particular tissues metabolites
being radioactively tagged, new targeted markers, such as
99mTc labeled chondroitin sulfate which is selectively taken
up in dogs with cartilage degeneration (110), may open up
further avenues for scintigraphy, especially with the improved
spatial resolution with single proton emission computed
tomography (SPECT/CT).

Positron emission tomography (PET) is another form of
nuclear medicine, which allows functional imaging of tissue
metabolism. Recent technological advancements have led to
combined PET/CT and PET/MRI machines, improving the
spatial resolution by allowing the combination (co-registration)
of both the metabolic and anatomic scans. Previously, patients
would need to be scanned in two machines and a complex
process of image registration (overlaying one image on top
of another) would be required. PET imaging utilizes positron
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FIGURE 11 | Photograph of a canine stifle at post mortem with the associated collagen tractography using Magic Angle Directional MRI. (A) Photography of canine

stifle at post mortem showing a defect in the cartilage (black arrow). (B) Coronal ParaView glyph vector visualization of the collagen fiber orientation following Magic

Angle Directional MRI of the femoral condyles showing a signal void (white arrow), consistent with the cartilage defect. (C) Fiber orientation map showing the

tractography of the collagen fibers from the same canine stifle, again identifying a signal void (black arrow). (D) Fiber orientation map focusing on the area of signal

void, identifying disorganized fiber orientation. Chappell K. Optimisation and visualization of collagen fiber orientation using Magic Angle Directional Imaging (MADI).

[PhD Thesis]. 2019. Imperial College London, UK. Reprinted with permission from Dr Karyn Chappell.

emitting radiopharmaceuticals such as Fluorine-18 (18F) instead
of gamma emitting compounds. Use in veterinary medicine
has primarily been based around oncology (111), although
it has been explored as an adjuvant for soft tissue lameness
investigation by using fluoro-2-deoxy-D-glucose (18F-FDG), a
glucose analogue (112). In relation to bone metabolism, sodium
fluoride-18F (18F-NaF) has also been shown to be a feasible
bone metabolic marker in an experimental canine OA model,
showing increased uptake in the operated limb at 3 weeks
and 12 weeks post-surgery, highlighting its potential as an
early OA biomarker (113) (Figure 9). The use of 18F-NaF in
the detection of early OA is being explored in human OA
imaging, with some early results suggesting it might even be
able to detect OA prior to visible early morphological changes
(114). While outside its use as an adjuvant imaging modality
for difficult-to-locate lameness or the research setting, it is
challenging to see this modality being integrated into routine
clinical practice. This is further compounded by the challenges
of sourcing, storage and using of radiopharmaceuticals in
veterinary practice.

Another non-invasive diagnostic modality that has been
investigated is the use of thermography. It has been used
in dogs to help locate the site of OA by measuring body
surface temperature (115) and was found to be capable of
differentiating between normal and diseased joints (116, 117).
More recently, its use in OA identification within a working
dog population has been explored (118, 119). However, body
surface temperature can be affected by hair coat characteristics
(120) and by coat clipping (121), which can complicate the
interpretation of the thermograms. Moreover, similar to other
ancillary methods, it is limited by equipment cost and its
poor specificity, with further research in dogs required to
determine whether it identifies OA prior to radiographic
later changes.

THE FUTURE: WHAT COULD BE NEXT?

This review has demonstrated a clear relationship between the
development of technology from radiography in the 1960s,
CT in the 1970s, MRI in the 1980s, with the associated
expansion and development of computing power, and the
pushing-back of the limits of OA detection to progressively
earlier stages. It is therefore reasonable to speculate–and there
are promising signs–that this will progress to the point where
OA is detectable at stages when it is reversible. A hint of this
capacity is shown with compositional MRI which exceeds current
capabilities by facilitating assessment of cartilage topography
and hydration status. Compositional MRI techniques gives an
indication of the biochemical/compositional changes developing
in cartilage, potentially at the earliest stages of OA. Several
different techniques exist, which allow evaluation of different
aspects of cartilage; from the collagen network, its water content
or its GAG concentration. This is of particular interest, as GAG
content changes occur very early in the aetiopathogenesis of
OA (10, 78). These composition techniques have been used in
human research over the past two decades (31), with some of
them being translated into the dog. Preliminary studies have
been performed in dogs using delayed gadolinium-enhanced
MRI of cartilage (dGEMRIC) and T2mapping to identify normal
reference ranges in the canine elbow joints (122) and for the
normal stifle (123). Furthermore, there has been a comparison
between delayed intravenous (dGEMRIC) and intraarticular
(iGEMRIC) administration of gadolinium contrast mediums in
dogs (124). However, in a population of dogs with an induced
osteochondral defect, there was only a weak T1p imaging
correlation with cartilage change and no correlation with T2
mapping (84). Combined with quantitative MRI techniques, it
is conceivable that this could replace arthroscopy in certain
circumstances. Moreover, recent work in human medicine
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with a new compositional MRI sequence, ultrashort echo time
enhanced (UTE) T2∗ mapping, is driving a paradigm shift
toward identifying and mapping the “Pre-osteoarthritic” joint
(125) (Figure 10). The hope is that these “pre-OA” biomarkers
represent the ever-elusive biomarkers of early disease prior
to irreversible joint demise, and will fuel development of
interventions which are able to reverse OA progression. A further
emerging area withMRI imaging, is usingmagic angle directional
imaging to identify the dominant collagen fiber orientation (126).
This application of MRI allows mapping of collagen bundles
within soft-tissues which could provide other indicators of the
structural derangements occurring in the cartilage (Figure 11).

A SECOND LOOK?

It is also possible that rather than looking to new or
improved imaging modalities, the current ones may already
be able to detect the earlier changes in OA, but we simply
do not know what those subtle changes or combination of
changes are. This prospect could be realized through the
application of machine learning and deep learning, which have
already been shown to be able to aid imaging segmentation,
disease diagnosis and image reconstruction (127–129). Both
machine learning and deep learning are branches of artificial
intelligence (AI), which have expanded exponentially over the
past decade. One example of the application of deep learning
in medical imaging, is its ability to predict patients who
required total knee replacements due to OA via standard
radiographs (130). Machine and deep learning have already been
applied to some areas of veterinary medicine including thoracic
radiographs (131) and intracranial neoplasia differentiation
(132). It seems likely that these AI methods will have
the potential not only to improve OA imaging diagnosis

but to identify predictive biomarkers of which we were
hitherto unaware.

SUMMARY

Since Morgan’s publication in 1969 outlining the radiographic
changes in the dog, the imaging of OA in dogs has
advanced beyond recognition. Each advancement in imaging
technology and development of resolution has driven back
the point of identification of OA to an earlier stage of
gross structural disease. With the increasing access to high-
field MRI systems within veterinary practice, consideration
of collagen structure, metabolic changes and increased
fidelity of imaging modality and interpretation with AI,
it is likely that the biochemical changes which precede
structural markers will be identifiable through imaging.
There is clear promise to moving the limit of detection
of OA to the early and hopefully reversible metabolic
changes which could conceivably usher in a paradigm shift
in OA management.
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