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Abstract

A hybrid model integrating chaos theory, support vector machine (SVM) and the difference

evolution grey wolf optimization (DEGWO) algorithm is developed to analyze and predict

dam deformation. Firstly, the chaotic characteristics of the dam deformation time series will

be identified, mainly using the Lyapunov exponent method, the correlation dimension

method and the kolmogorov entropy method. Secondly, the hybrid model is established for

dam deformation forecasting. Taking SVM as the core, the deformation time series is recon-

structed in phase space to determine the input variables of SVM, and the GWO algorithm is

improved to realize the optimization of SVM parameters. Prior to this, the effectiveness of

DEGWO algorithm based on the fusion of the difference evolution (DE) and GWO algorithm

has been verified by 15 sets of test functions in CEC 2005. Finally, take the actual monitor-

ing displacement of Jinping I super-high arch dam as examples. The engineering application

examples show that the PSR-SVM-DEGWO model established performs better in terms of

fitting and prediction accuracy compared with existing models.

1. Introduction

Dam is one of the most important engineering measures to regulate the spatio-temporal distri-

bution of water resources and rationally allocate water resources, and it is also the key compo-

nent of flood control engineering system [1, 2]. The safety status of dam engineering not only

directly affects the full utilization of the benefits of the hydropower station, but also affects the

life and property safety of the downstream people, even the ecological environment and social

stability [3].

As a comprehensive response to dam behavior, deformation is an important indicator to

evaluate dams’ safety [4]. By analyzing the measured data of dam displacement in time, and

then establishing the corresponding prediction model, the deformation behavior and develop-

ment trend of the dam can be accurately identified, and most hidden dangers can be further

discovered to avoid the occurrence of catastrophic accidents.
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According to different construction methods, conventional dam deformation prediction

models are mainly divided into statistical models, deterministic models and hybrid models [5].

However, conventional models are difficult to adapt to the complex nonlinear relationship

between multi-factors and effect sizes, and the accuracy of model predictions is hard to guar-

antee. With the development of machine learning (ML) technology, ML-based models are

widely used to explain the structural behavior of dams [6]. Moreover, the existing prediction

models only consider the main influencing factors, such as water pressure, temperature and

aging, but do not consider the chaotic components that may be included in the deformed time

series, which further limits the improvement of fitting accuracy [7].

Chaos is an irregular random behavior with initial sensitivity and ergodicity. Some studies

[8, 9] have shown that there is chaos in the measured displacement data of dams. The efficient

extraction of the chaotic component contained in the observation data is of great practical sig-

nificance for improving the accuracy of prediction models. Zhang [9] proposed a new method

based on empirical mode decomposition and phase space reconstruction theory to analyze the

time-varying characteristics of dams. Su [10] combined SVM with phase space reconstruction,

wavelet analysis, particle swarm optimization and other methods to establish a dam deforma-

tion prediction model. Gu [11] reconstructed the phase plane of the trend effect component of

the dam service performance change through chaos technology. Wei [12] considered the cha-

otic effect of the residual sequence and proposed a new dam deformation prediction model.

Obviously, when the phase space reconstruction method is used to design the input variable,

the machine learning algorithm shows high applicability in improving the prediction accuracy.

However, models based on machine learning algorithms are highly dependent on the adjust-

ment of parameters, which can easily affect the stability of the prediction results. Therefore,

using different heuristic search algorithms in the training process has become a popular

method.

SVM are widely used in dam behavior prediction because of their obvious advantages in

solving low-sample high-dimensional nonlinear problems [13]. Ren [14] used SVM modeling

to effectively capture the complex relationships in deformation prediction. Hu [15] established

a deformation prediction model for high arch dams during the initial operation period based

on a least square support vector machine. The SVM can transform the original nonlinear prob-

lem into a high-latitude linear problem through the kernel parameters, so it is well adapted to

the nonlinear deformation prediction. However, the selection of the kernel parameters and

penalty factors of SVM will directly affect its performance in dealing with nonlinear problems.

Grey Wolf Optimizer (GWO) is a new intelligent optimization algorithm proposed by Mir-

jalili with reference to the social hierarchy and hunting behavior of grey wolves [16]. The algo-

rithm realizes intelligent optimization through the process of tracking, encircling, hunting,

and attacking the grey wolf population [17]. Studies have shown that the GWO algorithm is

better than the other evolutionary algorithm in terms of quality, speed and stability of the final

solution [17–19]. However, the possibility of premature convergence reduces the probability

of the algorithm finding the global optimum. The initial population is an important factor

influencing the optimization performance of an intelligent algorithm, but it is difficult to guar-

antee the diversity of the initial population with conventional GWO algorithms. To solve this

problem, a hybrid GWO algorithm (HGWO) is proposed. It uses a differential evolution (DE)

algorithm to generate a richer initial population. Use the proposed DEGWO algorithm to opti-

mize the optimal kernel parameters and penalty factors of SVMs.

Based on the identification of the chaotic characteristics of the dam deformation observa-

tion data, this study combines SVMs and other methods to establish a dam deformation pre-

diction model. The structure of this article is as follows. Section 2 introduces a variety of

methods to identify chaotic characteristics of time series. In Section 3, a new dam deformation
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prediction model is proposed on the basis of phase space reconstruction. An hybrid GWO

algorithm based on the fusion of the DE and GWO algorithm is introduced to optimize the

parameter settings of SVM. The performance of the DEGWO algorithm is tested through 6

sets of test functions in CEC2005. In Section 4, taking the measured displacement data of Jinp-

ing I super high arch dam as an example, the method proposed in this paper and other com-

mon methods are used to establish the deformation prediction models. The prediction

accuracy of models are compared and analyzed. Section 5 summarizes the main conclusions

reached here.

2. Identification of chaotic characteristics

Chaotic systems are deterministic and sensitive to initial conditions [8]. It is worth noting that

it is neither random nor disordered. At present, the identification of chaotic characteristics of

time series is mainly based on phase space reconstruction, which can obtain more hidden

information by recovering the chaotic attractor in the so-called high-dimensional phase space.

The Lyapunov exponent, Correlation dimension and Kolmogorov entropy of the singular

attractor are calculated to correctly distinguish the chaotic system from the random system

[20]. When the correlation dimension D2 exists at a certain value, the maximum Lyapunov

exponent λmax is greater than 0 and the Kolmogorov entropy K2 is a finite positive value, it can

be judged that the time series has chaotic characteristics.

2.1. Phase space reconstruction

The reconstruction of the phase space is the basis for the quantitative analysis of chaotic time

series, in which the embedding dimension and the delay coordinate are the two most critical

parameters [21]. The time delay method is currently the most commonly used method. For

univariate chaotic time series {xi,i = 1,2,� � �,n}.

yi ¼ ðxi; xiþt; � � � ; xiþðm� 1ÞtÞ; i ¼ 1; 2; � � � ; n � ðm � 1Þt ð1Þ

According to Takens Theorem, the appropriate choice of the embedding dimension m and

the delay time τ can restore the dynamics properties of the original state space in the sense of

topological equivalence.

2.1.1. Delay time. The mutual information method [22] is introduced to determine the

delay time τ of the measured displacement sequence of the dam, as shown below.

IðtÞ ¼
X

xi ;xiþt

Pðxi; xiþtÞlog2

Pðxi; xiþtÞ
PðxiÞðxiþtÞ

� �

ð2Þ

where P(xi) is the normalized distribution of xi, P(xi+τ) is the normalized distribution of xi+τ,
P(xi,xi+τ) is the joint distribution of xi and xi+τ. The time at which the first minimum point

appears in the τ~I(τ) curve is often selected as optimal the delay time.

2.1.2. Embedding dimension. The embedding dimension m is determined by the Cao

method [23]. The distance a(t,m) between the phase point and the nearest neighbor point is

shown below.

aðt;mÞ ¼
kymþ1

t � ymþ1
f k

kymt � ymf k
ð3Þ

Where ytm+1 is the tth vector in the reconstructed phase space with the embedding dimen-

sion m+1, and yfm+1 is the nearest neighbor to ytm+1. yfm is the nearest neighbor to ytm in the

reconstructed phase space with the embedding dimension m.
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The average value E(m) of a(t,m) is calculated as follows.

EðmÞ ¼
1

n � mt

Xn� mt

t¼1

aðt;mÞ ð4Þ

Then, the change of E(m) is as follows.

E1ðmÞ ¼
Eðmþ 1Þ

EðmÞ
ð5Þ

When m>m0, if E1(m) no longer changes, m0 represents the minimum embedding dimen-

sion. In order to avoid the situation that the change of E1(m) is difficult to judge, the Cao

method adds another definition.

E�ðmÞ ¼
1

n � mt

Xn� mt

t¼1

jymþ1

t � ymþ1

f j ð6Þ

E2ðmÞ ¼
E�ðmþ 1Þ

E�ðmÞ
ð7Þ

For chaotic time series, there will always be some value of m, so that E2(m)6¼1. By observing

whether E1(m) tends to be stable and whether the value of m can achieve E2(m)6¼1 to deter-

mine the minimum m of the reconstructed phase space.

2.2. Lyapunov exponent method

The maximum Lyapunov exponent (λmax) is usually regarded as an indicator of chaotic

motion [24]. λmax > 0 indicates that the system is in a chaotic state. The specific process of cal-

culating λmax by the wolf method is as follows.

For the initial point Y(t0) in the phase space, the distance between it and the nearest neigh-

bor Y0(t0) is L(t0). As time evolves, when the distance between two points exceeds the specified

value ε, that is

L�ðt1Þ ¼ jYðt1Þ � Y0ðt1Þj > ε; ε > 0 ð8Þ

Keep the point Y(t1), and find a point Y1(t1) near Y(t1) to ensure that ensure that the follow-

ing conditions are met, that is

Lðt1Þ ¼ jYðt1Þ � Y1ðt1Þj < ε; ε > 0 ð9Þ

And the angle between L’(t1) and L(t1) is as small as possible.

Record the total number of iterations M when Y(t) reaches the end of the time series, and

the maximum Lyapunov exponent λmax is calculated as follows.

lmax ¼
1

tM � t0

XM

k¼1

ln
L�ðtkÞ
Lðtk� 1Þ

ð10Þ

2.3. Correlation dimension method

The correlation dimension D2 is mainly determined by the Grassberger Procaccia algorithm

[25]. Suppose r is the radius of the sphere centered on yi and yj, then the correlation integral C
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(r) is given by:

CðrÞ ¼ lim
n!1

2

nðn � 1Þ

Xn

i;j¼1

y½r � kyi � yjk� ð11Þ

Where θ(�) is the Heaviside function:

yðuÞ ¼

(
0; u � 0

1; u > 0

lim
r!0

CðrÞ1rDðr ! 0Þ

ð12Þ

8
>>><

>>>:

Where D2 is the correlation dimension

D2 ¼ logCnðrÞ=logr ð13Þ

Thus, draw logCn(r)/logr curve, and then the value of D2 can be determined according to

the slope of the curve. As the embedding dimension m gradually increases, the slope of the

curve converges, and the limit of convergence is the correlation dimension D2. The slope of

the curve of a stochastic system will continue to increase with the increase of d, and there will

be no convergence phenomenon.

2.4. Kolmogorov entropy method

Kolmogorov entropy [26] describes the generation rate of chaotic orbital information over

time. Kolmogorov entropy reflects the chaos level of nonlinear dynamic systems, and the K2

entropy proposed by Grassberger and Procaccia is most commonly used as its estimate. K2 > 0

is a sufficient condition for the nonlinear system to be a chaotic system, and the K2 entropy

can be estimated by the correlation integral method.

K2 ¼ � lim
r!0

lim
d!1

1

Dmt
log

2

CmðrÞ
CmþDmðrÞ

ð14Þ

When the embedding dimension m is continuously increasing at intervals of Δm, the stable

estimation of Kolmogorov entropy can be obtained through the equal slope regression of Eq

(12). It should be noted that the minimum value of m must be an integer greater than D2.

In a phase space with embedding dimension i, there is

xij ¼ ½log2
ðrÞ�ij ð15Þ

yij ¼ ½log2
ðCðrÞÞ�ij ð16Þ

Where:

yij ¼ axij þ b ð17Þ

Let a = D2, and for the embedding dimensions i and i +Δm, there is

K2 ¼ lim
i!1

Dbi
Dmt

ð18Þ

Where Δb = bi-bi+m.

The Kolmogorov entropy estimate K2 can be used to judge the motion properties of the

nonlinear system: K2 = 0 means the nonlinear system performs regular motion, K2 > 0 means
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the nonlinear system performs chaotic motion, and K2 < 0 means the nonlinear system per-

forms random motion.

3. Chaotic time series prediction

For the dam deformation time series xi(i = 1,2,. . .,n), when the delay time τ and the embedding

dimension m have been determined, the phase space reconstruction results of the series xi are

as follows.

X ¼

x1 x1þt x1þ2t � � � x1þðm� 1Þt

x2 x2þt x2þ2t � � � x2þðm� 1Þt

x3 x3þt x3þ2t � � � x3þðm� 1Þt

..

. ..
. ..

. ..
.

xn� ðm� 1Þt xn� ðm� 1Þtþt xn� ðm� 1Þtþ2t � � � xn

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

;Y ¼

x2þðm� 1Þt

x3þðm� 1Þt

..

.

xnþ1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð19Þ

After determining the input variables and output variables of the model, a novel model

based on phase space reconstruction for dam deformation predicting is proposed.

To clarify the influence of the reconstructed phase space as an input variable on the predic-

tion performance of the model, a conventional model with dam deformation influence factors

as input variables should be established. Early studies [3, 27, 28] have shown that water level,

temperature and aging are the main factors affecting dam deformation, as shown below.

H � H0; ðH � H0Þ
2
; ðH � H0Þ

3
; ðH � H0Þ

4
; sin

2pit
365
� sin

2pit0
365

; cos
2pit
365
� cos

2pit0
365

;

sin
4pit
365
� sin

4pit0
365

; cos
4pit
365
� cos

4pit0
365

; y � y0; lny � lny0

8
>><

>>:

9
>>=

>>;

ð20Þ

In order to match the consistency of the model and avoid the larger data information over-

whelming the smaller data information, the input data of SVM is normalized. After completing

the SVM training process, the output data of the SVM needs to be denormalized.

Normalization equation is as follows.

x�i ¼
xi � xmin

xmax � xmin
ð21Þ

Anti-normalization equation is as follows.

xi ¼ x�iðxmax � xminÞ þ xmin ð22Þ

Where, xi is a sample data; xmin and xmax respectively represent the minimum and maxi-

mum sample data; xi’ is the normalized data.

The mean square error (MSE), mean absolute percentage error (MAPE) and square correla-

tion coefficient (R2) are used to evaluate the performance of predictive models, as shown

below [10].

MSE ¼
1

N

XN

i¼1

ðyDðiÞ � yðiÞÞ
2

ð23Þ

MAPE ¼
1

N

XN

i¼1

j
yDðiÞ � yðiÞ

yðiÞ
j ð24Þ

PLOS ONE Dam deformation forecasting using SVM-DEGWO al-gorithm based on phase space reconstruction

PLOS ONE | https://doi.org/10.1371/journal.pone.0267434 June 1, 2022 6 / 39

https://doi.org/10.1371/journal.pone.0267434


R2 ¼

XN

i¼1

ðyDðiÞ � �yDÞðyðiÞ � �yÞ

 !2

XN

i¼1

ðyDðiÞ � �yDÞ
2
XN

i¼1

ðyðiÞ � �yÞ2
ð25Þ

Where, yD and �yD represent predicted values and predicted average values, y and �y repre-

sent measured values and measured average values, and N represents the number of observed

samples. The closer the R2 is to 1, the smaller the MSE and the MAPE, the better the prediction

effect of the model.

3.1. Support vector machine

SVM [10] usually needs to establish a suitable function f(x) to describe the nonlinear relation-

ship between the characteristic value xi and the target value yi, as shown below.

f ðxiÞ ¼ w � φðxiÞ þ b ð26Þ

Where, w is the coefficient vector, φ(xi) is the transformation function, w and b represent

the weight and bias respectively. w and b are estimated by minimizing the regularized hazard

function, as shown below

RðwÞ ¼
1

2
kwk2

þ C
Xn

i¼1

Lεðyi; f ðxiÞÞ ð27Þ

Where:

Lεðyi; f ðxiÞÞ ¼ maxf0; jyi � f ðxiÞj � εg ð28Þ

Where, 1

2
kwk2

is the regularization term, C is the penalty coefficient, and Lε(yi,f(xi)) is the

ε-insensitive loss function.

The optimization object can be deducted as follows:

minf w; x� ; xþð Þ ¼
1

2
kwk2

þ C
Xn

i¼1

ðx
�
; x
þ
Þ ð29Þ

Subject to

yi � ½w � φðxiÞ� � b � εþ x� ; x� � 0

½w � φðxiÞ� þ b � yi � εþ xþ; xþ � 0
ð30Þ

(

Where, ξ+ and ξ− represent slack variables.

The key is to establish the Lagrangian function.

maxH @ �i ; @
þ
i

� �
¼ �

1

2

Xn

i¼1

Xn

j¼1

ð@ �i � @
þ

i Þð@
�

j � @
þ

j ÞKðxi; xjÞ

þ
Xn

i¼1

yið@
�

i � @
þ

i Þ � ε
Xn

i¼1

yið@
�

i þ @
þ

i Þ

ð31Þ
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Subject to

Xn

i¼1

ð@ �i � @
þ

i Þ ¼ 0; @ �i ; @
þ

i 2 ½0;C� ð32Þ

Therefore

f ðxÞ ¼
Xn

i¼1

ð@ �i � @
þ

i ÞKðxi; xjÞ þ b ð33Þ

Where K(xi,xj) represents kernel function, including polynomial, radial basis function and

sigmoid etc.

3.2. Hybrid Grey Wolf Optimizer (HGWO, DEGWO)

Grey Wolf Optimizer (GWO) is a new intelligent optimization algorithm proposed by Mirjalili

with reference to the social hierarchy and hunting behavior of gray wolves [29]. The GWO

algorithm realizes the optimization of the intelligent algorithm through the process of tracking,

encircling, hunting, and attacking the grey wolf population. The algorithm is characterized by

simple principle, few adjustment parameters, easy implementation, and strong global search

capability.

Many scholars have improved and applied research on the GWO algorithm from a specific

perspective for specific problems. These improvements are mainly concentrated in the follow-

ing aspects: (1) Improve the initial population for addressing the problem that the random

generation method cannot guarantee the initial population diversity [30]. (2) Improve the

search mechanism to keep the GWO algorithm away from the local optimum [31, 32]. (3)

Adjust the way of parameter changes to balance the algorithm’s global and local search capabil-

ities [33–35]. (4) Hybrid algorithm, which combines the advantages of multiple algorithms to

improve the algorithm’s performance.

A hybrid GWO (DEGWO) algorithm is proposed, which uses a differential evolution (DE)

algorithm to generate a richer initial population. The performance of the DEGWO algorithm

is tested using 15 CEC2005 benchmark functions. The test results show that compared with

the whale optimization algorithm (WOA), particle swarm optimization (PSO) algorithm and

the original GWO algorithm, the DEGWO algorithm has higher execution efficiency.

3.2.1. Grey Wolf Optimizer. Grey wolves [36, 37] have a very strict social dominance

hierarchy, which is mainly divided into four parts: α,β,δ and ω. α is the best solution, followed

by β and δ, and the remaining solutions belong to ω. The top three best wolves that are closest

to their prey are α, β and δ, and they guide ω to search for prey in promising search areas. Dur-

ing the hunting process, the wolf will update its position around α, β and δ, as shown below.

D!¼ C
!
� X!pðtÞ � X!ðtÞ ð34Þ

X!ðt þ 1Þ ¼ X!pðtÞ � A
!
� D! ð35Þ

Where t is the current iteration number, X!pðtÞ is the current position of the prey, X!ðtÞ is

the current position of the wolf, and D! is the distance between the wolf and the prey.

The coefficient vectors A
!

and C
!

are as follows.

A
!
¼ 2 a!� r!1 � a! ð36Þ
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C
!
¼ 2 r!2 ð37Þ

Where r!1 and r!2 are two vectors randomly generated between [0, 1], and the convergence

factor a! linearly decreases from 2 to 0 in the iterative process.

Update the position of grey wolves.

D!a ¼ C
!

1 � X
!

a � X!

D!b ¼ C
!

2 � X
!

b � X!

D!d ¼ C
!

3 � X
!

d � X!
ð38Þ

8
>>><

>>>:

X!1 ¼ X!a � A1 � ðD
!

aÞ

X!2 ¼ X!b � A2 � ðD
!

bÞ

X!3 ¼ X!d � A3 � ðD
!

dÞ

ð39Þ

8
>>><

>>>:

X!ðt þ 1Þ ¼
X!1 þ X!2 þ X!3

3
ð40Þ

Where X!a, X
!

b, X!d represent the position of α,β,δ respectively, X! represents the location

of the current solution, C
!

1, C
!

2, and C
!

3 represent randomly generated vectors, and D!a, D
!

b,

and D!d represent the distances of α, β and δ from other grey wolves, respectively. A
!

1, A
!

2 and

A
!

3 are random vectors, X!ðt þ 1Þ is the final position of ω.

3.2.2. Differential evolution. Differential Evolution Algorithm (DE) is an efficient group-

based heuristic search algorithm [38]. It mainly obtains the optimal solution through three

operations of mutation, crossover and selection. The population size is N, D represents the

dimensionality in the solution space, xi = (x1,i, x2,i,. . ., xD,L) is the individual vector, and

G = 0,1,. . .,Gmax is the iteration time. xGi ¼ ðx
G
1;i; x

G
2;i; � � � ; x

G
D;iÞ is the i-th individual in the G-th

generation. xL ¼ ðx1;L; x2;L; � � � ; xD;LÞ and xU ¼ ðx1;U ; x2;U ; � � � ; xD;UÞ record the lower and upper

limit of search space.

The initial population P0 is mainly randomly generated within the upper and lower limit

(xL,xU), the j-th index of the i-th individual is obtained by Eq (39).

x0

j;i ¼ xj;L þ randð0; 1Þ � ðx1;U � xj;LÞ ð41Þ

The mutation operation generates a new mutation vector vGi , as shown below.

vGi ¼ xGr1 þ Fðx
G
r2
� xGr3Þ ð42Þ

Where r1; r2; r3 2 f1; 2; � � � ;Ng are randomly generated integers, and F is the magnification

ratio of the control difference vector, which is a real number with a varying range between

[0, 2].

The crossover operation is as follows:

uGi ¼
vGj;i; if ðrandj;i � CR or j ¼ jrandÞ

xGj;i; otherwise
ð43Þ

(
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Where CR is the cross probability, which takes a value between [0, 1].

Finally, the selection operation is performed. For specific problems, all mutation crossover

individuals are evaluated. For specific problems, all mutation crossover individuals are evalu-

ated. If the fitness of the current individual exceeds the previous generation, it means that the

mutation crossover operation is successful, and the current individual is retained; if the current

individual’s fitness is not as good as the previous generation, the better individual is retained.

The individual with the optimal fitness will become the optimal value of this generation of

individuals. When the termination condition is met, the evolution will stop, otherwise the next

round will continue.

3.2.3. Hybrid grey wolf optimization algorithm (HGWO, DEGWO). The conventional

GWO algorithm randomly generates the initial population, which may fall into the dilemma

of local optimization [39]. The DE algorithm generates group intelligence through mutual

cooperation and competition between individuals. Based on the respective advantages and dis-

advantages of the GWO and DE algorithms, a more efficient hybrid algorithm (DE-GWO,

HGWO) is proposed. The pseudo -code of the prosed DEGWO algorithm is shown in Fig 1.

Specific steps are as follows.

1. Set the relevant parameters of the DEGWO algorithm, such as the population size N, the

maximum number of iterations tmax, the upper and lower limits of the search range ub and

lb, etc.

2. Initialize the parameters a, A and C. Generate intermediates (variant populations) through

evolutionary mutation operations, and then generate initial population individuals through

competitive selection operations, and set the iteration time t = 1.

Fig 1. The pseudo code of DEGWO.

https://doi.org/10.1371/journal.pone.0267434.g001
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3. Calculate the objective function value of a single grey wolf individual and determine the

best three individuals as Xα, Xβ and Xδ respectively.

4. Calculate the distance between other grey wolf individuals and the optimal Xα, Xβ and Xδ

according to Eq (38), and update the position of each grey wolf according to Eq (39).

5. Update the values of a, A and C. Crossover and competition operations are applied to retain

better individual positions and generate new individuals respectively.

6. Update the position of the first three grey wolves Xα, Xβ and Xδ.

7. Determine whether the maximum number of iterations tmax has been reached. If yes, exit

and output the current objective function value of Xα; otherwise, t = t + 1, and move to the

third step to continue.

Input: the population size N, the maximum number of iterations tmax,
the upper and lower limits of the search range ub and lb, etc.
Output: The global optimum
Begin

Initialize the parent population and offspring population
Calculate the fitness of each agent by support vector machine (SVM)
Xα = the best search agent
Xβ = the second search agent
Xγ = the third best search agent
While (t< tmax)

For each search agent
Update the parent individual position of the current search

agent by GWO algorithm
end for

Update a, A and C
Produce mutant by Mutation of Differential evolution (DE)
Cross mutant and produce an offspring population by Crossover of

the DE algorithm
Produce a new search agent
Selection the better fitness
Update the Xα, Xβ, Xγ of the parent individual
t = t+1
End while

Return the global optimum

3.2.4. Simulation experiment test. In this section, we use 12 sets of test functions in CEC

2005 [40] to prove the effectiveness of the DEGWO algorithm 5 groups of unimodal bench-

mark functions, 3 groups of multimodal benchmark functions and 4 groups of Fixed-dimen-

sion benchmark functions, as shown in Table 1 and Figs 2–13. The parameters of all intelligent

algorithms are set as follows: population size N = 30, particle dimension D = 10, and maximum

number of iterations T = 50. Note that the algorithm is run 20 times on each benchmark

function.

Table 2 shows the final calculation results of PSO, GWO, WOA and DEGWO on the

benchmark function. By comparing the average value (AVE) and standard deviation (STD), it

is found that whether it is a single-peak benchmark function, a multi-peak benchmark func-

tion or a fixed-dimensional test function, the AVE and STD calculated by the DEGWO algo-

rithm are in most cases smaller than those calculated by the other four algorithms. Figs 14–25

records the fitness curve changes of PSO, GWO, WOA and DEGWO algorithms in each test

function, from which we can see the specific situation of each algorithm’s convergence. It can

be seen from the downward trend of the curve in Figs 14–25 that the grey wolf individuals in

the DEGWO algorithm can better update their positions as the number of iterations increases,
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and cooperate to achieve the purpose of improving the optimization results. Results show that

compared with the other four algorithms, DEGWO has better convergence performance and

can obtain more excellent solutions.

3.3. Construction process of PSR-SVM-DEGWO model predicting dam

deformation

A hybrid model combining chaos theory and SVM is proposed, and the DEGWO algorithm is

used to select optimal parameters for concrete dam deformation analysis and prediction. Use

the method mentioned in Section 2 to identify the chaotic characteristics of the deformed time

series, and then determine the input variables of the support vector machine. According to the

DEGWO algorithm introduced in Section 3.2, SVM is optimized for parameters. By perform-

ing training operations, a PSR-SVM-DEGWO prediction model can be established. The spe-

cific process is shown in Fig 26.

Table 1. Benchmark functions.

Function Dim Range fmin

Unimodal
F1ðxÞ ¼

X30

i¼1

x2

i

30 [−100,100] 0

F2ðxÞ ¼
Xn

i¼1

jxij þ
Yn

i¼1

jxij
30 [−10,10] 0

F3ðxÞ ¼
Xn

i¼1

ð
Xi

j¼1

xjÞ
2 30 [−100,100] 0

F4ðxÞ ¼ maxifjxij; 1 � i � ng 30 [−100,100] 0

F5ðxÞ ¼
Xn

i¼1

ix4

i þ randomð0; 1Þ
30 [-1.28,1.28] 0

Multimodal
F6ðxÞ ¼

Xn

i¼1

½xi
2 � 10cosð2pxiÞ þ 10�

30 [−5.12,5.12] 0

F7ðxÞ ¼ 1

4000

X30

i¼1

xi
2 �

Y30

i¼1

cos
xiffiffi
i
p

� �

þ 1
30 [−600,600] 0

F8ðxÞ ¼

0:1fsin2ð3px1Þ þ
Xn

i¼1

ðxi � 1Þ
2
½1þ sin2ð3pxi þ 1Þ� þ ðxn � 1Þ

2
½1þ sin2ð2pxnÞ�g

þ
Xn

i¼1

uðxi; 5; 100; 4Þ

yi ¼ 1þ
xi þ 1

4

uðxi; a; k;mÞ ¼

kðxi � aÞ
m xi > a

0 � a < xi < a

kð� xi � aÞ
m xi < � a

8
>>>>><

>>>>>:

30 [−50,50] 0

Fixed-dimension
F9ðxÞ ¼

X11

i¼1

ai �
x1ðb2

i þ bix2Þ

b2
i þ bix3 þ x4

� �2 4 [−5,5] 0.00030

F10 xð Þ ¼ 4x2
1
� 2:1x4

1
þ 1

3
x6

1
þ x1x2 � 4x2

2
þ 4x4

2
2 [−5,5] −1.0316

F11ðxÞ ¼ ½1þ ðx1 þ x2 þ 1Þ
2
ð19 � 14x1 þ 3x2

1
� 14x2 þ 6x1x2 þ 3x2

2
Þ��

½30þ ð2x1 � 3x2Þ
2
� ð18 � 32x1 þ 12x2

1
þ 48x2 � 36x1x2 þ 27x2

2
Þ�

2 [−2,2] 3

F12ðxÞ ¼ �
X10

i¼1

½ðX � aiÞðX � aiÞ
T
þ ci�

� 1 4 [0,10] −10.5363

https://doi.org/10.1371/journal.pone.0267434.t001
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1. Reconstruct the phase space of the observed displacement time series. The mutual informa-

tion method and the Cao method are adopted to determine the optimal delay time τ and

the minimum embedding dimension m, and the phase space is reconstructed accordingly.

2. Identification of chaotic characteristics of the observed displacement time series. Estimate

the maximum Lyapunov exponent λmax, correlation dimension D2 and Kolmogorov entropy

K2. λmax > 0, K2 is a finite positive value and the saturation of the correlation dimension

indicating that the observed displacement time series has the chaotic characteristics.

3. Determine the input and output variables according to Eq (19).

4. Use the DEGWO algorithm to find the optimal SVM parameters based on the training sam-

ples, generate the optimal values of C and σ, and complete the SVM-DEGWO training

process.

5. According to the prediction samples, the trained SVM will be used for prediction, and the

three indicators of Eqs (23)–(25) are used to evaluate the prediction effect of the model.

4. Case study

4.1. Engineering overview

The Jinping I Dam [41] is a concrete arch dam located in Sichuan Province, China. It is the

highest arch dam in the world, and the maximum height of the dam is 305.0 m. The normal

water storage level is 1880.0 m, and the dead water level is 1800.0 m. The layout of the dam ver-

tical line monitoring system is shown in Fig 27.
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Fig 2. Three-dimensional graph of F1(x).
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The monitoring points PL13-2 and PL13-3 are taken as examples. From June 2014 to June

2017, the horizontal displacement and water level changes of the measuring point are shown

in Fig 28. Take the observation data from June 2014 to October 2017 as the training set, and

the rest as the prediction set. As shown in Fig 28, the symbol (-) indicates the displacement to

the downstream, and the symbol (+) indicates the displacement to the upstream. During the

study period, the water level change range is [1750m,1900m], and the displacement showed

obvious periodic changes with the water level change, and the change range is [-5mm,45mm].

4.2. Prediction model construction

The delay time τ of the observed displacement time series is estimated by the mutual informa-

tion method, as shown in Figs 29 and 30. According to the principle of mutual information,

the optimal delay times of the measuring points PL13-2 and PL13-3 are τ1 = 10 and τ2 = 11,

respectively.

According to the determined τ, the Cao method is adopted to calculate m. The change

curves of E1(m) and E2(m) as m increases are shown in Figs 31 and 32. When m is greater than

the minimum embedding dimension, the change of E1(m) starts to become smaller, and thus

the optimal embedding dimension is determined. As shown in Figs 31 and 32, the minimum

embedding dimension of the measuring points PL13-2, and PL13-3 are m1 = 4 and m2 = 5,

respectively. It can also be found that there are some values of m such that E2(m)6¼1, which

can prove that the observed displacement data series comes from a deterministic process.

According to the determined τ, the G-P method is adopted to calculate the correlation

dimension of the observed displacement data series. When the value of the embedding dimen-

sion d ranges from 1 to 10, the corresponding double logarithmic curve of lnC(r)~ln(r) is
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shown in Figs 33 and 34. As shown in Figs 33 and 34 that the correlation index is saturated to

a constant. According to the definition, it is concluded that the observed displacement data

series is a chaotic series. And the correlation dimension of the measuring points PL13-2, and

PL13-3 are D2-1 = 1.2043 and D2-2 = 1.1217, respectively.

The wolf method is adopted to calculate the maximum Lyapunov exponent λmax of the

observed displacement data series. And the maximum Lyapunov exponent λmax of the measur-

ing points PL13-2, and PL13-3 are λmax−2 = 0.0191 and λmax−3 = 0.0108, respectively. λmax > 0

indicates that the observed displacement data series has chaotic characteristics.

The correlation integral method is used to calculate the Kolmogorov entropy estimate K2 of

the observed displacement data series. According to the double logarithmic curve of lnC(r)~ln

(r), as shown in Figs 33 and 34, the double logarithmic curve of log2(r)~log2(C(r)) can be

derived, so that the Kolmogorov entropy estimate K2 of the measuring points PL13-2 and

PL13-3 can be obtained when the delay time is determined respectively, and K2-2 = 0.0043, K2-

3 = 0.0044. K2 takes a finite positive value, which indicates the chaotic characteristics of the

observed displacement data series.

Based on the above, it can be concluded that the observed displacement data series of the

measuring point PL13-2 and PL13-3 has chaotic characteristics, and a chaotic prediction

model of dam displacement can be established.

The DEGWO algorithm proposed is adopted to seek the optimal parameters of SVM. The

phase space of reconstructed observation displacement and the influencing factors of dam

deformation are used as input variables to evaluate the predicting performance of the

Table 2. Result of benchmark functions.

F Index PSO (1997) GWO (2014) WOA (2016) DEGWO

F1 AVE 0.01200382 6.1124E-28 5.5358E-75 2.5427E-32

STD 0.0376343 1.3289E-27 1.1575E-74 3.3545E-32

F2 AVE 3.13E+00 8.14E-17 1.22E-52 1.78E-19

STD 4.4692 6.79E-17 1.86E-52 1.39E-19

F3 AVE 1.69E-01 1.28E-05 44044.7127 2.37E-08

STD 0.236153 3.39E-05 12160.3861 2.10E-08

F4 AVE 4.11E-01 1.06E-06 41.7715 8.83E-08

STD 0.418127 1.20E-06 24.8266 7.53E-08

F5 AVE 1.2326 2.17E-03 0.003207 1.89E-03

STD 3.3498 1.59E-03 0.0038337 8.67E-04

F6 AVE 2.20E+02 -6177.811705 1.14E-14 -6284.556232

STD 43.5764 559.991385 3.60E-14 717.5891418

F7 AVE 4.2883 0.0062066 0 0.0011031

STD 2.0841 0.012158 0 0.0034883

F8 AVE 21.3245 0.72848 0.70863 0.38249

STD 8.3245 0.27441 0.36232 0.17188

F9 AVE 0.013392 0.0024287 0.0012047 0.0044496

STD 0.0099815 0.0063078 0.00058127 0.0083968

F10 AVE -1.0315 -1.0316 -1.0316 -1.0316

STD 0.00017899 4.10E-08 2.05E-10 2.88E-08

F11 AVE 3.0006 3 3 3

STD 0.00077526 5.25E-05 4.08E-05 2.47E-05

F12 AVE -10.5042 -10.5345 -8.369 -10.535

STD 0.03792 0.0010846 2.986 0.00054846

https://doi.org/10.1371/journal.pone.0267434.t002
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Fig 14. The convergence curves of F1(x).

https://doi.org/10.1371/journal.pone.0267434.g014

Fig 15. The convergence curves of F2(x).

https://doi.org/10.1371/journal.pone.0267434.g015
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Fig 16. The convergence curves of F3(x).

https://doi.org/10.1371/journal.pone.0267434.g016

Fig 17. The convergence curves of F4(x).

https://doi.org/10.1371/journal.pone.0267434.g017

PLOS ONE Dam deformation forecasting using SVM-DEGWO al-gorithm based on phase space reconstruction

PLOS ONE | https://doi.org/10.1371/journal.pone.0267434 June 1, 2022 22 / 39

https://doi.org/10.1371/journal.pone.0267434.g016
https://doi.org/10.1371/journal.pone.0267434.g017
https://doi.org/10.1371/journal.pone.0267434


Fig 18. The convergence curves of F5(x).

https://doi.org/10.1371/journal.pone.0267434.g018

Fig 19. The convergence curves of F6(x).

https://doi.org/10.1371/journal.pone.0267434.g019
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Fig 20. The convergence curves of F7(x).

https://doi.org/10.1371/journal.pone.0267434.g020

Fig 21. The convergence curves of F8(x).

https://doi.org/10.1371/journal.pone.0267434.g021
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Fig 22. The convergence curves of F9(x).

https://doi.org/10.1371/journal.pone.0267434.g022

Fig 23. The convergence curves of F10(x).

https://doi.org/10.1371/journal.pone.0267434.g023
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Fig 24. The convergence curves of F11(x).

https://doi.org/10.1371/journal.pone.0267434.g024

Fig 25. The convergence curves of F12(x).

https://doi.org/10.1371/journal.pone.0267434.g025
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DEGWO and GWO algorithms. The population size N = 20, the maximum number of itera-

tions tmax = 200, ε = 0.01, the penalty factor C2[0.01,100], and the kernel parameter γ2
[0.01,1000]. The calculation is terminated when the number of iterations reaches 200.

The fitness curves of the GWO and DEGWO algorithm are shown in Figs 35–38. For the

conventional model with dam deformation influencing factors as input variables, the optimal

Fig 26. Construction process of dam deformation prediction model based on PSR-SVM-DEGWO.

https://doi.org/10.1371/journal.pone.0267434.g026

Fig 27. Vertical arrangement of the dam body.

https://doi.org/10.1371/journal.pone.0267434.g027

PLOS ONE Dam deformation forecasting using SVM-DEGWO al-gorithm based on phase space reconstruction

PLOS ONE | https://doi.org/10.1371/journal.pone.0267434 June 1, 2022 27 / 39

https://doi.org/10.1371/journal.pone.0267434.g026
https://doi.org/10.1371/journal.pone.0267434.g027
https://doi.org/10.1371/journal.pone.0267434


parameters [C, γ] of SVM obtained by the DEGWO algorithm are [4.6616, 0.0100] (PL13-2)

and [4.5948, 24.2515] (PL13-3). For the chaotic model with the reconstructed observed defor-

mation phase space as the input variable, the optimal parameters [C, γ] of the SVM obtained

by the DEGWO algorithm are [6.0011, 0.0100] (PL13-2) and [24.2515, 24.2515] (PL13-3).

It can be seen from Figs 35–38, whether it is a conventional model with dam deformation

influencing factors as input variables or a chaotic model with reconstructed observation

Fig 28. The observed horizontal displacement and water level of the measured points.

https://doi.org/10.1371/journal.pone.0267434.g028
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Fig 29. I(τ) ~ τ curve for the observed displacement data series of the PL13-2.

https://doi.org/10.1371/journal.pone.0267434.g029
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Fig 30. I(τ) ~ τ curve for the observed displacement data series of the PL13-3.
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https://doi.org/10.1371/journal.pone.0267434.g031

PLOS ONE Dam deformation forecasting using SVM-DEGWO al-gorithm based on phase space reconstruction

PLOS ONE | https://doi.org/10.1371/journal.pone.0267434 June 1, 2022 29 / 39

https://doi.org/10.1371/journal.pone.0267434.g030
https://doi.org/10.1371/journal.pone.0267434.g031
https://doi.org/10.1371/journal.pone.0267434


1 2 3 4 5 6 7 8 9

Embedding dimension m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E 1
 a

n
d
 E

2

E
1

E
2

PL13-3

The minimum embdding 
dimension m

2
=5

Fig 32. E1(m)~m and E2(m)~m curves for the observed displacement data series of the PL13-3.
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displacement data series phase space as the input variable, the DEGWO algorithm reduces the

number of iterations and can find the solution closest to the best goal faster. The main explana-

tion is that the DEGWO algorithm enriches the diversity of the initial population and
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Fig 34. Double logarithmic curve of correlation dimension of the PL13-3.

https://doi.org/10.1371/journal.pone.0267434.g034

Fig 35. The fitness curves of the GWO and DEGWO model (conventional) of the PL13-2.

https://doi.org/10.1371/journal.pone.0267434.g035
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improves the global search capability, thereby accelerating the convergence speed and conver-

gence accuracy.

4.3. Results

For the PSR-SVM-DEGWO-based dam observation displacement prediction model, the rele-

vant information is introduced as follows. The SVM is at the heart of this innovative

Fig 36. The fitness curves of the GWO and DEGWO model (chaotic) of the PL13-2.

https://doi.org/10.1371/journal.pone.0267434.g036

Fig 37. The fitness curves of the GWO and DEGWO model (conventional) of the PL13-3.

https://doi.org/10.1371/journal.pone.0267434.g037
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combination model. The input variable is the reconstructed phase space of the measured dis-

placement data sequence, and the DEGWO algorithm is used to realize the parameter optimi-

zation of SVM. In addition, the kernel function of SVM is a radial basis function.

In order to better analyze the predictive performance of the PSR-SVM-DEGWO model, the

PSR-SVM and PSR-SVM-GWO models that take the reconstructed phase space of the

observed displacement data sequence as input variables are established respectively. In addi-

tion, the SVM, SVM-GWO and SVM-DEGWO models with the factors affecting dam defor-

mation as input variables are established to explore the influence of different input variables

on the accuracy of model prediction. T-test is adopted to test whether there is a significant dif-

ference between the existing method and the proposed PSR-SVM-DEGWO method. The h
represents whether the hypothesis is accepted at the significance level. When h = 1, it means

that the two sets of data compared with each other have significant differences. At this time,

the comparison between the two algorithms is meaningful. The p represents the set standard

of significant difference, which is set to 0.05 here. When p is less than 0.05, the results have a

significant difference. ci represents the data interval with 95% confidence level.

For the measuring point PL13-2, the prediction performance of the SVM, SVM-GWO,

SVM-DEGWO, PSR-SVM, PSR-SVM-GWO and PSR-SVM-DEGWO models are shown in

Table 3 and Fig 39. From Table 3, we can see that when the influencing factors of dam defor-

mation are used as the input variables of the model, the square correlation coefficient (R2) is

ranked from large to small as SVM-DEGWO model> SVM-GWO model> SVM model,

mean absolute percentage error (MAPE) is ranked from small to large SVM-DEGWO model<

SVM model< SVM-GWO model, and mean square error (MSE) is ranked from small to large

SVM-DEGWO model< SVM-GWO model< SVM model. The SVM-DEGWO model has the

largest R2 of 0.9961, and the smallest MAPE and MSE are 0.3070 and 1.9001, respectively.

When the reconstructed phase space of the dam deformation time series is used as the input

variable of the model, R2 is sorted from large to small as PSR-SVM-DEGWO model>

PSR-SVM-GWO model> PSR-SVM model. The ranking of MAPE and MSE from small to

Fig 38. The fitness curves of the GWO and DEGWO model (chaotic) of the PL13-4.

https://doi.org/10.1371/journal.pone.0267434.g038
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large is PSR-SVM-DEGWO model <PSR-SVM-GWO model <PSR-SVM model. The

PSR-SVM-DEGWO model has the largest R2 of 0.9993, and the smallest MAPE and MSE are

0.2491 and 0.1399, respectively.

The t-test is used to test whether there are significant differences between the calculation

results of the other five algorithms and the results of the proposed PSR-SVM-DEGWO algo-

rithm. It can be seen from Table 3 that all the results meet the condition h = 1 and p<0.05,

which represents the existence of significant differences.

As shown in Fig 39, the deformation shows obvious periodic regular changes, but compared

to the conventional arch dam below 200m, the deformation fluctuation range of Jinping I

super high arch dam is much larger. SVM, SVM-GWO, SVM-DEGWO, PSR-SVM,

PSR-SVM-GWO and PSR-SVM-DEGWO models can effectively predict the trend of dam dis-

placement. And the PSR-SVM-DEGWO model has the highest prediction accuracy and the

smallest fluctuation range of the prediction error. For the conventional model, the deviation

between the predicted value of the model and the observed value is larger than the deviation of

the PSR models.

Table 3. Predictive performance of six models at PL13-2.

Prediction model MSE MAPE R2 T-test

h p ci
SVM 10.6873 3.3850 0.9527 1 0.0038 [0.2580,1.3298]

SVM-GWO 2.4526 2.0059 0.9873 1 4.2714e-04 [0.2066,0.7158]

SVM-DEGWO 1.9001 0.3070 0.9961 1 1.6751e-31 [0.8649,1.1645]

PSR-SVM 4.4876 1.1782 0.9768 1 1.0303e-04 [0.3414,1.0226]

PSR-SVM-GWO 4.2542 0.7015 0.9971 1 1.1217e-64 [1.6242,1.9321]

PSR-SVM-DEGWO 0.1399 0.2491 0.9993 --- --- ---

https://doi.org/10.1371/journal.pone.0267434.t003

Fig 39. The predicted results of six models at PL13-2.

https://doi.org/10.1371/journal.pone.0267434.g039
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For the measuring point PL13-3, the prediction performance of the SVM, SVM-GWO,

SVM-DEGWO, PSR-SVM, PSR-SVM-GWO and PSR-SVM-DEGWO models are shown in

Table 4 and Fig 40. From Table 4, we can see that when the influencing factors of dam defor-

mation are used as the input variables of the model, the square correlation coefficient (R2) is

also ranked from large to small as SVM-DEGWO model> SVM-GWO model> SVM model,

mean absolute percentage error (MAPE) is ranked from small to large SVM model<

SVM-DEGWO model< SVM-GWO model, and mean square error (MSE) is ranked from

small to large SVM-DEGWO model< SVM-GWO model< SVM model. The SVM-DEGWO

model has the largest R2 of 0.9971, and the smallest MAPE and MSE are 0.1381 and 2.0937,

respectively. When the reconstructed phase space of the dam deformation time series is used

as the input variable of the model, R2 is sorted from large to small as PSR-SVM-DEGWO mod-

el> PSR-SVM-GWO model> PSR-SVM model. The ranking of MAPE and MSE from small

to large is PSR-SVM-DEGWO model <PSR-SVM-GWO model <PSR-SVM model. The

PSR-SVM-DEGWO model has the largest R2 of 0.9987, and the smallest MAPE and MSE are

0.0485 and 0.3347, respectively. The t-test is used to test whether there are significant differ-

ences between the calculation results of the other five algorithms and the results of the

Table 4. Predictive performance of six models at PL13-3.

Prediction model MSE MAPE R2 T-test

h p ci
SVM 5.0227 0.1101 0.9571 1 1.6905e-05 [-1.2225, -0.4646]

SVM-GWO 4.8053 0.1846 0.9741 1 2.6575e-07 [-1.3598, -0.6214]

SVM-DEGWO 2.0937 0.1381 0.9971 1 4.9553e-08 [0.3598,0.7483]

PSR-SVM 5.0054 0.2102 0.9765 1 4.2302e-05 [-1.3451, -0.4815]

PSR-SVM-GWO 3.9390 0.1054 0.9815 1 5.7399e-09 [-1.3464, -0.6829]

PSR-SVM-DEGWO 0.3347 0.0485 0.9987 --- --- ---

https://doi.org/10.1371/journal.pone.0267434.t004

Fig 40. The predicted results of six models at PL13-3.

https://doi.org/10.1371/journal.pone.0267434.g040
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proposed PSR-SVM-DEGWO algorithm. It can be seen from Table 4 that all the results meet

the condition h = 1 and p<0.05, which represents the existence of significant differences.

As shown in Fig 40, the deformation shows obvious periodic regular changes, but compared

to the conventional arch dam below 200m, the deformation fluctuation range of Jinping I

super high arch dam is much larger. SVM, SVM-GWO, SVM-DEGWO, PSR-SVM,

PSR-SVM-GWO and PSR-SVM-DEGWO models can effectively predict the trend of dam dis-

placement. And the PSR-SVM-DEGWO model has the highest prediction accuracy and the

smallest fluctuation range of the prediction error. For the conventional model, the deviation

between the predicted value of the model and the observed value is larger than the deviation of

the PSR models.

The calculation results show:①The applicability of the GWO optimized SVM algorithm in

dam deformation prediction;②The DEGWO algorithm proposed in this paper has more out-

standing optimization ability in optimizing SVM parameters than the conventional GWO;

③For ultra-high arch dams, the PSR model with the reconstructed phase space as the input

variable has higher prediction accuracy and smaller prediction error than its corresponding

conventional model with dam deformation influence factors as input variables.

In general, the SVM, SVM-GWO, and SVM-DEGWO models can better predict the change

trend of dam deformation. Regardless of whether it is a conventional model with the dam

deformation influence factors as input variables or the PSR model with the reconstructed

observation displacement data series phase space as the input variable, the prediction accuracy

of all the model can meet the engineering requirements, but the prediction accuracy of the

PSR model is higher. The calculation results also prove the applicability of the GWO algorithm

in the field of dam deformation prediction and the more prominent optimization ability of

DEGWO compared to GWO. The t-test results show that the calculation results of the other

five algorithms are significantly different from the results of the proposed PSR-SVM-DEGWO

algorithm. The result of t test also shows that the algorithm comparison is meaningful, no mat-

ter it is for the measuring point PL13-2 or PL13-3.

5. Conclusions

This research proposes an innovative model combining chaos theory, support vector machine,

difference algorithm and gray wolf algorithm, namely the PSR-SVM-DEGWO model, to pre-

dict dam deformation. And taking the measured displacement data of the Jinping I super high

arch dam as examples, the prediction effect of the PSR-SVM-DEGWO model is compared and

verified. The main conclusions are as follows.

1. As the correlation dimension of the deformation time series tends to be saturated (D2-2 =

1.2043, D2-3 = 1.1217), the largest Lyapunov exponent (λmax-2 = 0.0191, λmax-3 = 0.0108) is

greater than 0 and the Kolmogorov entropy estimate (K2-2 = 0.0043, K2-3 = 0.0044) is a finite

positive value, it can be seen that there is chaos in the deformation observation data of the

dam.

2. The optimization performance of the DEGWO algorithm is superior to that of the GWO

algorithm. Using the DE algorithm to ensure the initial population diversity can effectively

improve the grey wolf optimization algorithm’s ability to find high-quality solutions. Simu-

lation tests show that the convergence speed of the DEGWO algorithm is faster and the

convergence accuracy is higher.

3. It is verified by the example of Jinping I super high arch dam that SVM, SVM-GWO and

SVM-DEGWO models can effectively predict the dam deformation trend, but the
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SVM-DEGWO model has the best prediction performance, which is reflected in the higher

accuracy of the model prediction.

4. The predictive performance of the PSR-SVM, PSR-SVM-GWO and PSR-SVM-DEGWO

models with the reconstructed observation data sequence phase space as the input variable

is superior to that of the corresponding SVM, SVM-GWO and SVM-DEGWO conven-

tional models with deformation influence factors as input variables. When the conventional

model predicts the deformation of an ultra-high arch dam, although the accuracy meets the

requirements, the predicted value will gradually deviate from the measured value as time

goes by. On the contrary, it is difficult to observe such large deviations in models that adopt

the reconstructed phase space of the observation data sequence as the input variable.

Among all the models calculated in this paper, the PSR-SVM-DEGWO model has the best

prediction performance.
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