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Background: Type 2 diabetes (T2D) is a complex common disease that disproportionately impacts minority
ethnic groups in the United Kingdom (UK). Socioeconomic deprivation (SED) is widely considered as a poten-
tial explanation for T2D ethnic disparities in the UK, whereas the effect of genetic ancestry (GA) on such dis-
parities has yet to be studied.
Methods: We leveraged data from the UK Biobank prospective cohort study, with participants enrolled
between 2006 and 2010, to model the relationship between SED (Townsend index), GA (clustering principal
components of whole genome genotype data), and T2D status (ICD-10 codes) across the three largest ethnic
groups in the UK — Asian, Black, and White — using multivariable logistic regression.
Findings: The Asian group shows the highest T2D prevalence (17-9%), followed by the Black (11-7%) and
White (5-5%) ethnic groups. We find that both SED (OR: 1-11, 95% CI: 1-10—1-11) and non-European GA (OR
South Asian versus European: 4.37, 95% CI: 4.10—4-66; OR African versus European: 2-52, 95% Cl: 2-23-2-85)
are significantly associated with the observed T2D disparities. GA and SED show significant interaction
effects on T2D, with SED being a relatively greater risk factor for T2D for individuals with South Asian and
African ancestry, compared to those with European ancestry.
Interpretation: The significant interactions between SED and GA underscore how the effects of environmental
risk factors can differ among ancestry groups, suggesting the need for group-specific interventions.
Funding: This work was supported by the National Institutes of Health (NIH) Distinguished Scholars Program
(DSP) to LMR and the Division of Intramural Research (DIR) of the National Institute on Minority Health and
Health Disparities (NIMHD) at NIH.
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1. Introduction

Diabetes is rapidly becoming a global pandemic, largely due to
increasing rates of obesity [1]. It is estimated that by 2030, diabetes
will impact ~5-5 million individuals in the United Kingdom (UK),
with type 2 diabetes (T2D) accounting for ~90% of all cases [2]. T2D is
a health disparity that disproportionately impacts minority ethnic
groups [3]. Asian and Black ethnic groups in the UK have approxi-
mately two to four times the T2D prevalence compared to White and
other ethnic groups [2]. Efforts to mitigate health disparities of this
kind are both a social imperative and a pressing scientific challenge.
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It should be noted that studies of health disparities in the UK often
rely on the ethnicity categories used by the National Health Service
(NHS) [4]. NHS ethnic categories include six ethnic groups — Asian,
Black, Chinese, Mixed, White, and Other — and a distinct ethnic back-
ground within each group. UK ethnic group classifications make no dis-
tinction between the related concepts of race and ethnicity [5].
Accordingly, the ethnic group labels used in the UK may correspond to
racial group labels used in other countries, such as the United States.

T2D is a complex common disease caused by a multifactorial
interplay between social, environmental, and genetic factors, all of
which contribute to T2D health disparities [6,7]. Accordingly, efforts
to elucidate the risk factors associated with T2D ethnic disparities
require an integrated approach that considers social, environmental,
and genetic components together. An integrated approach of this
kind is further distinguished by its potential to characterize how
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Research in context

Evidence before this study

Type 2 diabetes (T2D) is known to disparately impact minority
ethnic groups in the United Kingdom (UK). Diabetes UK reports
that the prevalence of T2D is two to four times as high in Asian
and Black ethnic groups compared to the White ethnic group.
Socioeconomic deprivation (SED) is considered to contribute to
T2D ethnic disparities in the UK. Higher deprivation has been
associated with higher T2D prevalence in Asian and Black ethnic
groups. A role for genetic ancestry (GA) in T2D ethnic disparities
is more contentious. Studies in the US and Latin America have
suggested that African and Native American ancestry are risk fac-
tors for T2D among Black and Hispanic populations, but these
effects are often attenuated when SED is controlled for. To our
knowledge, there have been no studies on the effect of genetic
ancestry (GA) on T2D health disparities in the UK.

Added value of this study

Since ethnic groups are socially defined based on shared heri-
tage and culture, they are thought to be imprecise proxies for
biological factors that impact health outcomes, including
genetic diversity. Genetic ancestry (GA) better captures the
genetic diversity among population groups. Accordingly, a
focus on GA can be used to disentangle the socioenvironmental
and genetic dimensions of T2D health disparities. A focus on
interactions between GA and socioenvironmental factors has
been prioritized as a means to elucidate group-specific risk fac-
tors and thereby promote health equity.

Implications of all the available evidence

Results of this study suggest that both SED and GA are impor-
tant risk factors for T2D diabetes, consistent with a multifacto-
rial genetic and environmental etiology. Non-European GA and
SED interact to effect the risk of T2D. SED is a relatively greater
risk factor for T2D for individuals with South Asian and African
ancestry, compared to those with European ancestry. The
observed interaction suggests the need for targeted interven-
tions that recognize the distinct implications of SED for T2D
risk across ethnic groups in the UK.

interactions between genetic and environmental factors contribute to
disparate health outcomes. Indeed, gene-by-environment interac-
tions have been prioritized for health disparities research [8,9].

Socioeconomic deprivation (SED) is widely considered an impor-
tant risk factor for T2D ethnic health disparities [10—12]. Lifestyle
conditions associated with higher SED — psychosocial stress,
restricted autonomy, and limited access to healthy food, exercise
facilities, and health services — have been shown to modify risk for
T2D [13—15]. In the UK, SED has been associated with a greater T2D
prevalence among minority Asian and Black populations than among
those identifying as White [16,17]. Genetic differences between eth-
nic groups, owing to their different ancestral origins, have also been
associated with T2D disparities [11] .In the US and Latin America,
both African and Native American genetic ancestry (GA) have been
associated with T2D disparities in Black and Hispanic populations
[18—22]. However, the inclusion of SED has been shown to attenuate
the effect of GA on T2D status in these populations [11,20,22]. To our
knowledge, there have been no studies that simultaneously consider
the impact of GA and SED on T2D ethnic disparities in the UK.

GA provides a number of advantages for health disparities research.
Ethnic groups are socially constructed and co-vary with both

socioenvironmental and genetic factors. GA inference can be used to
stratify populations based on evolutionary genetic diversity alone. A
focus on GA can thereby allow for the disambiguation of the genetic and
socioenvironmental dimensions of ethnic health disparities. Joint consid-
eration of GA, SED, and their interactions can be used to tailor popula-
tion-level interventions aimed at mitigating health disparities [8,9].

The objective of this study was to investigate the joint effects of SED
and GA on T2D ethnic disparities in the UK. Leveraging the UK Biobank,
a large prospective cohort study with genetic and environmental data
from more than 500,000 participants, we modeled the relationship
between SED, GA and T2D across the three largest ethnic groups in the
UK — Asian, Black, and White — using multivariable logistic regression
[23]. GA groups were delineated by clustering genetic principal compo-
nents analysis data, yielding discrete and coherent groups that capture
the genetic diversity of the study cohort, thereby isolating genetic from
socioenvironmental effects on T2D.

2. Methods
2.1. Study cohort

The cohort for this study was obtained from the UK Biobank, a pro-
spective cohort study set up to investigate the lifestyle, environmental,
and genetic determinants of a range of important diseases of adulthood
for participants aged between 40 and 70 years collected between 2006
and 2010 [23]. The UK Biobank database contains phenotypic and
genotypic information on more than 500,000 participants over multiple
waves of collection. Participants provided information in the form of
completed questionnaires, nurse-led interviews, medical assessments,
and biological samples. Participant DNA was extracted from 850 uL
buffy coat aliquots, derived from 10 ml of whole blood, and participant
whole genome genotypes were characterized using the UK Biobank
Axiom Array or UK BiLEVE Axiom Array as previously described [24].
The study adheres to RECORD reporting guidelines.

2.2. Population attributes and data filtering

We extracted the following information for UK Biobank partici-
pants: (1) age (Field 21,003: Age when attended assessment center)
[25], (2) sex (Field 31: Sex) [26], (3) Townsend deprivation index
(Field 189: Townsend deprivation index at recruitment) [27], (4) eth-
nic group and background (Field 21,000: Ethnic background) [28], (5)
ICD-10 codes (Fields 41,270: Diagnoses — ICD10) [29], and (6) genetic
principal components (Field 22,009: Genetic principal components)
[30]. As not all of these data fields were available for all participants,
the final analysis cohort was constructed by merging these datasets
(Supplementary Figure 1). SDN was responsible for accessing, analy-
sing, and curating the datasets involved in the study.

UK Biobank participants self-identified as belonging to one of six
ethnic groups (Asian, Black, Chinese, Mixed, White, or Other), and a dis-
tinct ethnic background within each group, at the time of enrollment.
We consider the three largest ethnic groups for analysis: Asian, Black,
and White. The corresponding ethnic backgrounds for the ethnic
groups considered for our analyses were: Asian (Indian, Pakistani, Ban-
gladeshi, Any other Asian background), Black (Caribbean, African, Any
other Black background), and White (British, Irish, Any other white
background).

To study levels of SED, we use the Townsend index of deprivation, a
widely used measure of SED that is known to be associated with worse
health outcomes [31]. The Townsend index is a composite metric that
incorporates (1) unemployment, (2) non-car ownership, (3) non-home
ownership, and (4) household overcrowding in a given area [32].
Higher (positive) values of the index indicate high material deprivation,
whereas lower (negative) values indicate relative affluence. The cutoff
values for the SED quintiles were —3.95, —2.80, —1-37, and 1-23, while
those for the SED terciles were —3-17 and —0-68.
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2.3. Type 2 diabetes prevalence

UK Biobank participants’ case or control status for type 2 diabetes
(T2D) was determined using ICD-10 diagnosis codes curated follow-
ing the phecode scheme defined by the PheWAS consortium [33].
The phecode scheme provides disease-specific inclusion and exclu-
sion criteria ICD-10 codes for generating case/control cohorts from
electronic health records. This approach allows investigators to
define clearly distinct case and control cohorts that can be compared
confidently. For example, when studying participants with T2D, par-
ticipants with type 1 diabetes are removed from the control cohort to
avoid any overlapping environmental/genetic signals that might be
common to both. This improves power to detect any signals for a con-
dition of interest. The phecode scheme to define case and control
cohorts using ICD-10 codes was validated by investigating phenotype
reproducibility with the gold standard ICD-9-CM phecode map and
by conducting a PheWAS to replicate older, well-known results [33].
Here, inclusion ICD-10 codes were first used to generate the T2D case
cohort, and exclusion codes were subsequently used to remove indi-
viduals with related conditions from the remaining control cohort.
The T2D phecode (250-2) inclusion and exclusion ICD-10 codes can
be found at https://phewascatalog.org/phecodes_icd10. Participants
T2D case and control status were used to calculate crude T2D preva-
lence values for ethnic groups and backgrounds as the percent of
cases in each group. Crude prevalence values were used owing to the
fact that age and sex were included as covariates in all T2D models.

2.4. Genetic ancestry inference

UK Biobank participants self-identify as belonging to ethnic
groups based on shared culture and heritage. In other words, ethnic
groups are socially constructed and thus may not serve as reliable
proxies for genetic diversity [34]. Patterns of genetic diversity among
UK Biobank participants were characterized by principal components
analysis (PCA) of whole genome genotypes as previously described
[23]. Genetic ancestry groups were defined by clustering the first
three principal component values from the genetic PCA data. Two dif-
ferent clustering approaches were used to generate (1) continuous
genetic ancestry groups and (2) coherent genetic ancestry groups.
Continuous genetic ancestry groups were characterized using the k-
means clustering algorithm, implemented in the function ‘kmeans" in
R v3.6.1 ([35], using k = 3. The value of k was set to three (k = 3) to
identify three clusters in the PCA data to match the three self-identi-
fied ethnic groups under consideration. The resulting groups
included all individuals (and are therefore dubbed ‘continuous
genetic ancestry groups'’). Coherent genetic ancestry groups were
characterized using the density-based clustering algorithm HDBSCAN
[36] implemented in the python module ‘hdbscan’. The clustering
function was run with a minimum cluster size (‘min_cluster_size")
set to 1000 individuals to extract large, coherent clusters from the
data. Density-based clustering only categorizes a subset of partici-
pants into ancestry clusters, while marking the rest as uncategorized.
In excluding participants that are not tightly clustered, we were able
to obtain coherent and highly distinct genetic ancestry clusters. The
resulting GA groups are distinguished by systematic (correlated)
allele frequency differences arising from ancestral source populations
with distinct biogeographical origins.

2.5. Statistical analyses

All statistical analyses were performed using the R statistical lan-
guage v3.-6-1 [35]. T2D odds of prevalence were modeled using multi-
variable logistic regression computed using the ‘glm’ function in R.
Age was standard normalized when included in logistic models. Two
logistic regression models were used for analysis — Model 1: T2D ~
GA + SED + Age + Sex + GA*SED and Model 2: T2D ~ GA-

SED + Age + Sex. It should be noted that Model 1 includes SED as a
continuous variable and its interaction with GA, while Model 2
includes a categorical variable whose levels are given by the combi-
nation of GA categories and SED tercile categories, yielding a total of
9 categories with European Low SED as the reference. Odds ratios
(ORs) and 95% confidence intervals were calculated for each term in
the models by exponentiating the estimated coefficients. Forest plots
were generated using the forestmodel R package [37]. The impor-
tance of predictors in the multivariable logistic regression was deter-
mined using dominance analysis [38] implemented in the R
‘dominanceanalysis’ v2.0-0 package. Dominance analysis estimates
R? values for all possible values of predictors and is used to measure
the relative importance of predictors by running pairwise compari-
sons of all predictors in the model as they relate to the outcome vari-
able. Linear regression equations and plots were generated using the
R ‘ggplot’ v3.3.3 library. Slopes of linear regression models were com-
pared by calculating a z statistic as described here [39].

2.6. Ethics approval

Ethics approval for the UK Biobank was obtained from the North
West Multi-center Research Ethics Committee (MREC) for the United
Kingdom, the Patient Information Advisory Group (PIAG) for England
and Wales, and the Community Health Index Advisory Group
(CHIAG) for Scotland (see https://www.ukbiobank.ac.uk/learn-more-
about-uk-biobank/about-us/ethics).

2.7. Role of funding source

The funding sources did not have any role in study design, in writ-
ing of the report, or in the decision to submit the paper for publica-
tion.

3. Results
3.1. Type 2 diabetes ethnic disparities and socioeconomic deprivation

We generated type 2 diabetes (T2D) case/control cohorts from the
UK Biobank using participants’ ICD-10 diagnosis codes, with the phe-
code scheme inclusion and exclusion criteria [33]. Our final analysis
cohort had 27,748 T2D cases and 446,436 controls (Table 1). Partici-
pant case/control status was used to calculate T2D prevalence for the
three largest ethnic groups in the UK — Asian, Black, and White — and
for different levels of socioeconomic deprivation (SED). SED is mea-
sured using the Townsend index of deprivation, where lower values
indicate less deprivation and higher values indicate more depriva-
tion. It can be seen that T2D prevalence varies greatly among differ-
ent ethnic groups and backgrounds in the UK (Fig. 1A). The Asian
group shows the highest prevalence (17-86%) followed by the Black
(11-71%) and White (5-51%) groups, respectively. The Asian group
also shows the greatest variance of T2 D prevalence among constitu-
ent ethnic backgrounds. Within the Asian group, the Bangladeshi eth-
nic background shows the highest T2 D prevalence by far (31-65%),
with the Indian (16-51%) and Other (14-04%) backgrounds showing
prevalence values approximately half as high. Along with the ethnic
disparity in the prevalence of T2 D, we also see a marked disparity in
SED among the three groups under consideration (Fig. 1B). The Black
group shows the highest level of median SED (2.93) followed by the
Asian (0-25) and White (—2-27) groups, respectively. Consistent with
what is known about the relationship between SED and T2 D, we also
find that T2 D prevalence increases monotonically with an increase
in social deprivation (Fig. 1C) [40,41].

To further interrogate the relationship between SED and T2 D eth-
nic disparities, we compared the T2 D prevalence with the mean SED
for each ethnic group and background (Fig. 1D). We see that a strong
relationship does exist between group specific T2 D prevalence and
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Table 1
Characteristics of the T2 D analysis cohort.
Characteristic Full cohort Asian cohort Black cohort White cohort
(n=474,184) (n=9361) (n=7541) (n=457,282)
Age — no. (Cohort share%)
<45 47,697 (10-06) 1810(19-34) 1611(21-36) 44,276 (9-68)
45-54 133,102 (28-07) 3434 (36-68)  3359(44.54) 126,309 (27-62)
55-64 201,760 (42-55) 2920(31-19) 1807(23.96) 197,033 (43-09)
>65 91,625 (19-32) 1197 (12.79) 764(10-13) 89,664 (19-61)
Mean age — yr 56-62 53.32 51.90 56-77
Sex — no. (%)
Female 257,015 (54-20) 4306 (46-00) 4309 (57-14) 248,400 (54-32)
Male 217,169 (45-80) 5055(54-00) 3323(42.86) 208,882 (45-68)
Median SED -2:19 025 2.93 -2.27

T2 D cases — no. (%) 27-748 (6-22)

1.672(17-86)

883 (11.71)

25,193 (5.51)

¥ SED = Socioeconomic deprivation as measured with the Townsend index. Higher (positive) values of
the index indicate high material deprivation, whereas lower (negative) values indicate relative affluence.

SED, but the disparity is not completely explained by SED. Partici-
pants who identify as Black have higher average SED but a much
lower T2 D prevalence compared to participants who identify as
Asian, who have lower average SED compared to Black participants
but far higher T2 D prevalence. Furthermore, on plotting T2 D preva-
lence per ethnic group for each SED quintile, we find that the ethnic
disparities remain within each strata of SED, indicating that other fac-
tors also contribute to the T2 D ethnic disparities (Fig. 1E).
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3.2. Genetic ancestry groups

Principal components analysis (PCA) of participants’ whole
genome genotypes were used to generate discrete and coherent
genetic ancestry (GA) groups. Overall, participants’ self-identified
ethnicity co-varies with GA groups defined using PCA (Supplemen-
tary Figure 2). Nevertheless, there are numerous cases where partici-
pants’ self-identified ethnicity does not align with GA groups.
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Fig. 1. T2 D ethnic disparities and SED. (A) T2 D prevalence for ethnic groups and backgrounds. (B) SED distributions for ethnic groups. (C) T2 D for SED quintiles, 1-least depriva-
tion to 5-highest deprivation. (D) Relationship between T2 D prevalence (y-axis) and mean SED (x-axis) for ethnic groups and backgrounds. (E) T2 D ethnic prevalence disparities
across SED quintiles.
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Fig. 2. GA groups. Clustering of genetic PCA data was used to generate continuous and
coherent GA groups: African (blue), European (orange), and South Asian (red). Partici-
pants that fall into coherent ancestry groups are prominently colored, and participants
that fall into the continuous groups are shown as faded points. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.).

Accordingly, we rely on GA group analysis to more precisely measure
genetic differences that may be associated with T2 D ethnic dispar-
ities.

GA groups were delineated by performing density-based cluster-
ing of participant genetic PCA data, yielding three coherent groups:
African (n = 5176), European (n = 448,446), and South Asian
(n =6969) (Fig. 2). The ancestral origins for these groups are based on
the majority self-identification of member participants. These GA
groups represent non-overlapping, discrete, and genetically diverse
cohorts.

3.3. Genetic ancestry, socioeconomic deprivation, and type 2 diabetes

We modeled T2 D case/control status using GA and SED along
with the covariates age and sex using multivariable logistic regres-
sion (Model 1; Supplementary Table 1). Model 1 includes SED as a
continuous variable and its interaction with GA. This analysis shows
that being part of the South Asian GA group compared to being in the
European GA group had the highest impact on modifying T2 D risk
(OR: 437, 95% CI: 4-10 — 4-66), followed by being in the African GA
group (OR: 2.52,95% CI: 2.23 — 2.85). As would be expected, age (OR:
1.78,95% CI: 1.75 — 1-80), being male (OR: 1-86, 95% CI: 1.81 — 1.90),
and SED (OR: 1-11,95% CI: 1-10 — 1-11) are all significantly associated
with T2 D risk. Dominance analysis shows that the most important
predictors to explain T2 D status in this model are age, sex, GA group,
and SED. However, we found the GA-SED interaction terms — South
Asian-SED and African-SED — to be statistically significant (p-values
of 0-001 and 0.016, respectively), suggesting that the impact of SED
on T2 D varies among GA groups. The full model that includes the
interaction term has a significantly higher log likelihood than a
reduced model with no interaction term, further supporting the pres-
ence of GA-SED interactions (likelihood ratio x?> = 15.96
P =3.4 x 10~%; Supplementary Table 2). Given the observed GA-SED
interactions, it is not possible make any firm conclusions regarding
the relative importance GA versus SED on T2 D outcomes.

Next, we used another logistic regression model (Model 2; Sup-
plementary Table 3), which includes a categorical variable whose lev-
els are given by the combination of GA categories and SED tercile
categories, yielding a total of 9 categories with European Low SED as
the reference. As seen for Model 1, age, sex, GA and SED all show sig-
nificant associations with T2 D status with Model 2 (Fig. 3). The rela-
tive impact of GA groups on T2 D status is the same: European has
the lowest effect sizes, followed by African, and South Asian showing
the highest effect sizes. For each GA group, increasing SED is consis-
tently associated with greater effect sizes, thereby confirming the
GA-SED interactions detected in Model 1.

To further characterize the impact of GA-SED interactions on T2 D
status, we modeled T2 D case/control status using SED, along with
the covariates age and sex, using multivariable logistic regression
and then stratified the results by GA groups. For each individual GA
group, the logistic model was used to calculate the probability of pre-
dicted T2 D per participant. T2 D observed prevalence values increase
monotically for each GA group across T2 D model prediction quin-
tiles, and the relative T2 D prevalence values for each GA group stay
the same within each quintile (Fig. 3A). On regressing T2 D observed
prevalence against T2 D model predictions per GA group and fitting a
linear trend for each group separately, we found that the slopes for
each GA group differed substantially (Fig. 3B). The magnitude of asso-
ciation between SED and T2 D for the South Asian group is ~2-5 times
higher than the European group, and the African group association is
~1.5 times higher than the European group. Differences in the slopes
are all statistically significant — confirming the interaction effects
between GA and SED (African - European slope p-
value = 728 x 10°%7, African — South Asian slope
p-value = 1.39 x 107%, and European — South Asian slope p-
value = 733 x 1072%). Furthermore, the intercept of this fitted line is
higher for the South Asian group implying that even at the lowest
possible SED level recorded in these data, the risk for T2 D is rela-
tively high in this group.

4. Discussion

For this study on the UK Biobank, we confirmed previously
observed T2 D ethnic disparities and found that SED is indeed a sig-
nificant risk factor for T2 D. We report for the first time that T2 D is
associated with a significant interactions between GA and SED. In
particular, SED is a relatively greater risk factor for T2 D for individu-
als with South Asian and African ancestry, compared to those with
European ancestry. This finding suggests that more ancestry-specific
interventions need to be taken at the policy level to ameliorate health
disparities, channeling resources to communities which are at high-
est risk.

We make a crucial distinction between GA and self-identified eth-
nicity in this study. As part of the UK Biobank enrollment survey, par-
ticipants are asked to identify their ethnic group followed by their
ethnic background (i.e., subgroup). For example, participants that
identify with the Asian ethnic group are then prompted to choose
from Bangladeshi, Indian, Pakistani, or Other Asian backgrounds.
These self-identified ethnic group and background identities are
social constructs based on shared heritage and culture, whereas GA
reflects genetic differences among populations with distinct biogeo-
graphic origins. The approach of forming coherent clusters from
genetic PCA data allowed us to generate discrete, non-overlapping
GA groups, which can be used to help us disambiguate socioenviron-
mental factors from genetic factors that might contribute to T2 D eth-
nic disparities. It should be noted that the GA groups delineated here
and the participant self-identified ethnic groups assess different con-
structs and are not entirely concordant (Supplementary Fig. 2). There
are a number of cases where participants’ self-identified ethnicity
does not coincide with their GA, but the majority of participants’ eth-
nic identities correspond to their GA. This reflects the fact that social
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T2D ~ GA-SED combinations + Age + Sex

Variable QOdds ratio (Conf%c::rji;aitri?erval)
Age : ® 1.77 (1.75, 1.80)
1
Sex Female + Reference
Male E ® 1.87 (1.82, 1.92)
GA -SED  European - Low SED ‘ Reference
1
European - Medium SED : ® 1.25(1.20, 1.29)
1
European - High SED E ® 1.97 (1.90, 2.03)
African - Low SED E —— 2.91(1.77,4.53)
African - Medium SED E —e— 3.64 (2.79, 4.68)
1
Afican - High SED i & 4.95 (4.48, 5.45)
1
South Asian - Low SED E R 4.56 (3.80, 5.44)
South Asian - Medium SED E - B2/A (5 5085112)
South Asian - High SED E e 3 7.95 (7.32, 8.63)
i R

Fig. 3. T2 D multivariable logistic regression model with GA-SED tercile combinations (Model 2). Model 2 includes terms for GA groups combined with low, medium, and high
SED terciles, age, and sex. The forest plot shows odds ratios and 95% confidence intervals along with the statistical significance for each variable used to model T2 D status. Details of
the estimated coefficients, their standard errors, and p-values are shown in Supplementary Table 3.

determinants of ethnicity are strongly informed by notions of ances-
tral origins and may correlate with phenotypic characteristics.

SED is used here as a proxy for lifestyle factors and environmental
exposures that might exacerbate or ameliorate risk for T2 D. The
implications of a significant interaction between SED and GA groups
can be attributed to a number of different factors. Lifestyle and expo-
sures that co-vary with higher SED may have a disproportionately
higher impact on T2 D risk in certain populations owing to their

genetics, and/or higher SED may lead to different lifestyle and expo-
sures among different populations. The latter possibility could
include influences on SED-related experiences of structural oppres-
sion that differ among GA groups. In any case, targeted group-specific
interventions that are informed by such differences can help to
decrease T2 D health disparities.

There are several potential limitations to our observational study
of T2 D health disparities. Some cultural attributes like diet and

T2D ~ SED + Age + Sex

=

@
(=]

n
(=]
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T2D observed prevalence (%)
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Fig. 4. Interaction between genetic ancestry and socioeconomic deprivation. T2 D was predicted using a multivariable logistic regression model using SED, age, and sex as terms.
T2 D prevalence per GA group partitioned by quintiles (A) and percentiles (B) of SED model predictions. Linear equations and model fits are shown for each ancestry group in panel

B. Ancestry groups are color coded as shown.
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lifestyle factors might co-vary with GA, SED and self-reported ethnic-
ity, especially for recent immigrants. Thus, the observed GA effects
on T2 D could be attributed to unmeasured confounders. Co-variation
between GA and environmental factors might change over time, with
second and third generation immigrants becoming acculturated and
changing their dietary habits. It has been shown that second genera-
tion Asians in England are more likely to be obese compared to the
first generation of immigrants [42]. It is also known that the risk for
T2 D in South Asians increases for a BMI >23 compared to a BMI of
>25 in Europeans [43]. We did not account for generation of immi-
gration in our GA analyses.

SED was measured here using the Townsend Index, which is a
composite metric of four different variables, each of which may
reflect different kinds of adverse exposures. This measure of SED may
miss important indicators such as household income and education
level. As this is an observational study, albeit with a large sample
size, it is hard to completely disentangle the effects of different con-
tributing factors on the observed health disparity. In addition, the UK
Biobank recruited participants who are healthier, on average, com-
pared to the general population and live in less socioeconomically
deprived areas compared to non-participants (also referred to as a
‘healthy volunteer bias). Regardless, disease-exposure relationships
in the UK Biobank are thought to be generalizable, irrespective of the
healthy volunteer bias [44].

Finally, it should be noted that the PCA clustering approach used
for GA inference yields groups that are largely concordant with conti-
nental ancestry. Accordingly, there is a substantial overlap between
the GA groups analyzed here and participants’ ethnic self-identifica-
tion (Supplementary Fig. 2). A more nuanced approach that includes
quantitative GA estimates, i.e. percent ancestry contributions from
ancestral source populations, could help to further disambiguate
genetic from socioenvironmental effects on T2 D. Furthermore, the
use of GA poses operational difficulties in targeting the impacted
communities since this information is not readily available to policy-
makers and physicians. However, once a gene-by-environmental
interaction is identified, as is the case here for the interaction
between GA and SED, population-specific interventions and policies
can be targeted at the closest corresponding ethnic groups where
there exists a high concordance between GA and ethnic groups (Sup-
plementary Fig. 2).
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