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Background: Previous studies have shown that T-helper 17 (Th17) cell-related cytokines
are significantly increased in the vitreous of proliferative diabetic retinopathy (PDR),
suggesting that Th17 cells play an important role in the inflammatory response of
diabetic retinopathy (DR), but its cell infiltration and gene correlation in the retina of DR,
especially in diabetic macular edema (DME), have not been studied.

Methods: The dataset GSE160306 was downloaded from the Gene Expression
Omnibus (GEO) database, which contains 9 NPDR samples and 10 DME samples.
ImmuCellAl algorithm was used to estimate the abundance of Th17 cells in 24 kinds of
infiltrating immune cells. The differentially expressed Th17 related genes (DETh17RGs)
between NPDR and DME were documented by difference analysis and correlation
analysis. Through aggregate analyses such as gene ontology (GO) and Kyoto
Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis, a protein-
protein interaction (PPl) network was constructed to analyze the potential function of
DETh17RGs. CytoHubba plug-in algorithm, Lasso regression analysis and support vector
machine recursive feature elimination (SVM-RFE) were implemented to comprehensively
identify Hub DETh17RGs. The expression archetypes of Hub DETh17RGs were further
verified in several other independent datasets related to DR. The Th17RG score was
defined as the genetic characterization of six Hub DETh17RGs using the GSVA sample
score method, which was used to distinguish early and advanced diabetic nephropathy
(DN) as well as normal and diabetic nephropathy. Finally, real-time quantitative PCR
(gPCR) was implemented to verify the transcription levels of Hub DETh17RGs in the STZ-
induced DR model mice (C57BL/6J).

Results: 238 DETh17RGs were identified, of which 212 genes were positively correlated
while only 26 genes were negatively correlated. Six genes (CD44, CDC42, TIMP1, BMP7,
RHOC, FLT1) were identified as Hub DETh17RGs. Because DR and DN have a strong
correlation in clinical practice, the verification of multiple independent datasets related to
DR and DN proved that Hub DETh17RGs can not only distinguish PDR patients from
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normal people, but also distinguish DN patients from normal people. It can also identify the
initial and advanced stages of the two diseases (NPDR vs DME, Early DN vs Advanced
DN). Except for CDC42 and TIMP1, the gPCR transcription levels and trends of other Hub
DETh17RGs in STZ-induced DR model mice were consistent with the human
transcriptome level in this study.

Conclusion: This study will improve our understanding of Th17 cell-related molecular
mechanisms in the progression of DME. At the same time, it also provides an updated
basis for the molecular mechanism of Th17 cell crosstalk in the eye and kidney in diabetes.

Keywords: diabetic retinopathy, diabetic macular edema, Th17 cell, bioinformatic analysis, biomarker

INTRODUCTION

It is estimated that 34.2% of diabetics worldwide suffer from
varying degrees of diabetic retinopathy (DR) (1). Patients with
vision-threatening diabetic retinopathy (VIDR) and diabetic
macular edema (DME) account for 10.2% and 7.5% of the
total diabetic population (2, 3). 3.6% of patients with type 1
diabetes and 1.6% of patients with type 2 diabetes will eventually
be blinded by DR and its complications (4). The prevalence is
still increasing in some developing countries with large
populations (5, 6). There was a significant regional difference
in the prevalence of DME between patients with type 1 diabetes
mellitus (T1D) and type 2 diabetes mellitus (T2D). The epidemic
rate is 11% in Europe, 6% in Southeast Asia and 22% in some
African countries (7). The duration of diabetes affects the
incidence of DME, with the prevalence of DME ranging from
3% in 10 years to 20% in 20 years or more (7). More than 21
million people around the world were affected by DME (8).
Therefore, the discovery of new biomarkers related to the
occurrence and progression of DME may provide new and
better prospects for the clinical treatment of DME patients.
With the deepening of DR research, autoimmunity was
discovered to play a pivotal role in the development of DR
(9, 10). Primordial CD4+T cells can be divided into seven
subtypes: Thl, Th2, Th17, Treg cells (nTreg and iTreg [Th3
and Trl1]), Th9, Th22, Tth according to the different types of
cytokines secreted in different environments under the
stimulation of antigens (11). As a new type of effector CD4+T
cell subsets different from Th1 and Th2 cells, the helper T cell 17
(Th17) has become a hot spot in the regulation of research on
inflammatory responses in recent years (12). At present, it is
believed that RORYt is the main transcriptional regulator of Th17
cells, which can drive the expression of IL-17A, IL-17F and IL-
22. These three cytokines are the three landmark cytokines
secreted by Th17 cells. Other transcription factors involved in
Th17 differentiation, such as RORa, Batf and IRF4, may also be
involved in regulating the expression of IL-17 gene (13). Th17
cells can not only enhance immune defense and maintain
immune homeostasis in a non-inflammatory way, but also
have “pathogenic” phenotype and widely participate in the
occurrence and development of a variety of inflammatory
diseases (14). At present, the research on Th17 cells in DR is
still rare, and the research on its mechanism of DME generation

and progression in DR has not been reported. Therefore, in-
depth exploration of the molecular regulation mechanism of
Th17 cell pathogenicity is helpful to provide new ideas for the
treatment of DR and DME.

With the emergence and popularization of gene chip and
RNA-seq technology, the search for new diagnostic markers and
therapeutic targets for DR and DME becomes more concise.
Some genetic biomarkers related to DR and DME have been
reported with the help of these techniques (15-17). However, the
relationship between Th17 cells and their related biomarkers and
the molecular mechanism of Th17 cells involved in DR and DME
have not been explored. In order to study the relationship
between them, the ImmucellAT algorithm was used to calculate
the composition of 24 kinds of immune cells, including Th17
cells. The R software was used to calculate the differential genes
and correlation analysis. After comprehensive calculation, the
differentially expressed Th17 cell related genes (DETh17RGs) in
non-proliferative diabetic retinopathy (NPDR) and diabetic
macular edema (DME) were obtained. Then enrichment
analyses of DETh17RGs were implemented to obtain functions
and pathways annotation, protein-protein interaction network
(PPI) was constructed, and Hub DETh17RGs were obtained by
Cytoscape software analysis. Subsequently, multiple DR-related
independent datasets were obtained in the datasets for
verification, and GSVA scoring method was used to integrate
all hub genes to verify the diagnostic efficacy of diabetic
nephropathy (DN)-related independent datasets. Finally, Hub
DETh17RGs were applied to the retina of molded animals for
verification. Through the above analyses and experiments, we
can obtain the genetic molecular mechanism of the occurrence
and development of DME related to Th17 cells, and explore the
crosstalk association related to the occurrence and development
of diabetes in DME and DN, so as to provide new ideas for the
study of the mechanism of Th17 cells in diabetes.

MATERIALS AND METHODS

GEO Dataset Processing

The GSE160306 dataset, which is based on the GPL20301
Illumina HiSeq 4000 (Homo sapiens) platform, was
downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/). The dataset is
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high-throughput sequencing expression profile analysis data,
including 79 transcriptome data related to diabetic retinopathy.
The gene expression profile data of macular samples of different
clinical stages: NPDR (9 samples) and DME (10 samples) were
analyzed. Before the analysis, Log2 was used to normalize the
high-throughput data.

Immunocyte Infiltration in Macular
Samples of NPDR and DME

The Immune Cell Abundance Identifier (ImmuCellAI) was used
to estimate the abundance of 24 variety types of infiltrating
immune cells including Th17 cells from RNA-seq digital gene
expression matrix data and to obtain the corresponding immune
cell infiltration matrix (18). Landscapes of immune cell
infiltration in retina tissue from macula of NPDR patients and
retina tissue from macula of DME patients were downloaded.
The proportion of each immune cell subtype was extracted from
the sample. A heat map that included the 24 types of immune
cells was created using the pheatmap package. The total
infiltration score of each sample is defined as 1, which is the
sum of the percentage of 24 infiltrating immune cells. In order to
compare the abundance of each immune cell type between
NPDR and DME samples, the Wilcoxon rank sum test
was applied.

Identification of DETh17RGs

The “edgeR” package in R software was used to identify and obtain
differentially expressed genes (DEGs) between NPDR and DME
samples. The criteria for statistical significance were: |logFC| (fold
change) > 1.0 or p < 0.05. Then, Pearson correlation analysis was
implemented to determine the genes related to Th17 cell
abundance. The Pearson’s correlation coefficient (PCC) of DEGs
>0.6 were regarded as DETh17RGs.

Functional Enrichment Analysis

ShinyGO (http://bioinformatics.sdstate.edu/go/) is an integrated
program that can be accessed through the Internet to display the
results of genetic enrichment analysis and the visualization of
gene characteristics. Its purpose is to explore the potential
biological denotation of gene clusters for users. Therefore, in
order to investigate the biological function and denotation of
DETh17RGs, the biological process of gene ontology (GO) and
the Kyoto Encyclopedia of Gene and Genome (KEGG) pathway
were analyzed and enriched by utilizing ShinyGO online
software. The enrichment analysis significance threshold was
set as the false discovery rate (FDR) < 0.05.

Screening of Hub DETh17RGs by
Comprehensive Method

In this study, three methods were used to screen Hub
DETh17RGs: CytoHubba plug-in algorithm in Cytoscape
software, lasso regression analysis and support vector machine
recursive feature elimination (SVM-RFE). The CytoHubba plug-
in has the ability to rank and filter nodes in the network
according to the characteristics of network in order to identify
the core elements of the complex network. All eleven algorithms
including MCC, DMNC, MNC, Degree, EPC, EcCentricity,

Closeness, Radiality, Betweenness, Stress, and BottleNeck in
the CytoHubba plug-in were applied and the intersection of
the top 50 nodes from each method were recorded to identify the
latent Hub DETh17RGs. In the CytoHubba plug-in, the
DETh17RGs with eleven algorithm conditions that meet nine
or more conditions were screened and considered as candidate
Hub DETh17RGs. LASSO regression was used to minimize extra
redundancy and irrelevance in order to achieve the purpose of
sparse and feature selection. R software package glmnet was used
in lasso-cox method for regression analysis, and the response
type was set to binomial. In addition, 3-fold cross-validation was
set to adjust the penalty parameters, and variables were
determined by finding lambda (A) with the minimum
classification error. SVM-RFE is an optimal feature selection
algorithm, which is based on support vector machine and sorts
features according to recursive feature deletion sequence. The
SVM-RFE classifier made by R package e1071 was used to
classify and analyze the candidate biomarkers. The SVM-RFE
model based on radial basis function and 10-fold cross-
validation was established, and the best variables were selected
according to the minimum 10 x CV error. Finally, the candidate
genes obtained by the above three methods were intersected to
attain the final Hub DETh17RGs.

PPl Network Construction

The development of protein-protein interaction (PPI) network
was demonstrated with STRING (search tool for searching
interacting genes/proteins), which can provide systematic
screening of interactions between human proteins and genes.
The DETh17RGs list obtained by difference and correlation
analysis was uploaded to the STRING database to identify and
integrate to build a PPI network with a default comprehensive
score of more than 0.4. Export the PPI network file and
revisualize it using the Cytoscape 3.9.0 software.

Verification of Hub DETh17RGs in
Proliferative Diabetic Retinopathy

To study the relationship between Hub DETh17RGs and the
progress of PDR, the unsupervised hierarchical clustering
analysis of the GSE160306 dataset was implemented by
performing the “Pheatmap” package in R. Three independent
datasets containing samples extracted from the PDR
neovascularization membrane were used to verify the
expressions of the Hub DETh17RGs in the extramacular
proliferative membrane, that is, GSE94019 (n=13), GSE102485
(n = 5), and GSE60436 (n=6). In order to establish the
comparison standard of the verification set, the control group
in the dataset GSE160306 was selected as the normal person
without diabetes, and the DME group remained unchanged, and
the split violin plot was performed to visualize the comparison
between the two groups.

GSVA Constructs Hub DETh17RGs
Diagnostic Features

Gene set variation analysis (GSVA) is a nonparametric and
unsupervised method, which combines the gene expression
profile of RNA-seq and the gene set of metabolic pathway to
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evaluate the metabolic pathway enrichment score of each
sample. The matrix of gene X samples were transformed into
the matrix of gene set X samples, and the enrichment score was
calculated. In this study, the Hub DETh17RGs were integrated
as the set of characteristic genes to participate in each validation
dataset, and the R package GSVA was used to calculate the
GSVA enrichment score for each sample, which we define as
the “Th17RG score”. Because of the high clinical correlation
between DR and DN (19, 20), DN has been proved to be an
independent risk factor for DR and DME (20-22). In this study,
the validation set includes not only the above three PDR sample
datasets from intraocular neovascularization membrane, but
also three tissue sample datasets from the kidneys of patients
with diabetic nephropathy (DN). The datasets were GSE142025
(n=27), GSE30528 (n=22) and GSE96804 (n=61). The package
pROC in R was performed to analyze and assess the diagnostic
value of the Hub DETh17RGs in GSE30528 and GSE96804
using receiver operating characteristic (ROC) curves and
reckoning the area under the curve (AUC). To investigate the
relationship between Hub DETh17RGs and DN disease
progression, the unsupervised hierarchical clustering analysis
was performed again on the GSE142025 dataset using the R
package “Pheatmap”.

Isolation of RNA and Mensuration of Hub
DETh17RGs Expression by Quantitative
Real-Time Polymerase Chain Reaction
Eight-week-old C57BL/6] mice (22.5-26g) were fed standard
pellet diet without restriction on diet and water. The indoor
atmospheric conditions was good, the temperature was
controlled at (23 + 2) °C, and the relative humidity was 50%.
Blood glucose was detected before modeling (normal blood
glucose was between 4.25 and 6.50 mmol/L). STZ solution was
prepared by dissolving streptozotocin (STZ, Sigma Company,
USA, S0130-1G) in sodium citrate solution of 0.1 mol/L at pH
4.2. Mice were intraperitoneally injected with 55mg/kg STZ
solution for 5 consecutive days, fasted for 6 hours before
injection, and blood glucose was measured by tail vein 7 days
after the last injection. If blood glucose was > 16.5mmol/L, the
diabetic mouse model was considered to be established
successfully. Five months after the successful construction of
the diabetic mouse model, hyperplasia and disorder of retinal
capillaries were observed, and proliferative blood vessel groups
were observed in the ganglion cell layer and the inner core
layer, indicating that typical characteristic pathological changes
of DR had appeared, and the DR mouse model was recognized
to be successfully constructed.

In addition to obtaining Hub DETh17RGs through
comprehensive bioinformatic analyses, animal experiments were
also organized to verify the expression level of Hub DETh17RGs in
the retina. The mice modeled by the above methods were used as
the experimental subjects, in which 8 mice were successfully
modeled as the experimental group and 6 mice were classified as
the control group by intraperitoneal injection of normal saline.
Total retinal tissue RNA was extracted using TRIzol extraction
reagent (TRIzol; Invitgen,Carlsad, CA) and reverse transcribed with

the HiFiScript cDNA synthesis kit (First-Strand,Cowin Biosciences,
China) to detect the expression level of Hub DETh17RGs-mRNA in
the mouse retina. The primers in the experiment were synthesized
by Shanghai Biotechnology Company (Shanghai, China). The
sequence information of the primers was displayed in Table 1.
According to the scheme recommended by the manufacturer,
SYBGREEN PCR Master Mix’s PCR system kit (Conway Century
Co., Ltd., Beijing, China) was used for real-time quantitative PCR
reaction. The internal reference gene used to measure the level of
gene expression in this study is GAPDH. The relative expression
level of Hub DETh17RGs was estimated by two power values of A
Ct, and the experiment of each gene in each sample was repeated
3 times.

RESULTS

DETh17RGs in the Formation and

Progress of DME

Using the ImmucellAI algorithm to calculate the immune cell
composition of each sample in the GSE160306 dataset,
Figure 1A showed the component results obtained from 19
DR macular samples. DME group showed significantly higher
Th17 cell infiltration than NPDR group (Figure 1B). A total of
2216 DEGs were obtained by differential analysis with the edgeR
package, of which 238 DEGs were highly correlated with Th17
cell abundance (PCC > 0.6) and were identified as DETh17RGs
(Figure 1C). Of all the immune cell species analyzed, Th17 cells
simultaneously had significant differences in NPDR versus
normal and NPDR versus DME, indicating a critical role for
Th17 cells in the progression of DR and DME.

GO and KEGG Enrichment

Analysis of DETh17RGs

The web page analysis tool ShinyGO was used to enrich and
analyze the uploaded DETh17RGs list. The top five terms ranked
by Fold Enrichment in the biological process of the GO analysis
were: Positive regulation of cell migration, Positive regulation of
locomotion, Positive regulation of cell motility, Positive regulation

TABLE 1 | Primers for Hub DETh17RG.

Genes Primer Sequences
Cd44 Forward CGGAACCACAGCCTCCTTTCAA
Reverse TGCCATCCGTTCTGAAACCACG
Cdc42 Forward GATTGGTGGAGAGCCATACACTC
Reverse TGAGGATGGAGAGACCACTGAG
Timp1 Forward TCTTGGTTCCCTGGCGTACTCT
Reverse GTGAGTGTCACTCTCCAGTTTGC
Bmp7 Forward GGAGCGATTTGACAACGAGACC
Reverse AGTGGTTGCTGGTGGCTGTGAT
Rhoc Forward GAGGCAAGATGAGCATACCAGG
Reverse GCCATCTCAAATACCTCCCGCA
Fit1 Forward TGGATGAGCAGTGTGAACGGCT
Reverse GCCAAATGCAGAGGCTTGAACG
Gapdh Forward CATCACTGCCACCCAGAAGACTG
Reverse ATGCCAGTGAGCTTCCCGTTCAG
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FIGURE 1 | Macular DETh17RGs were identified between the NPDR group and the DME group. (A) abundance of 24 types of immune cells in 19 samples calculated
using the ImmucellAl algorithm; (B) comparison of the total Th17 percentage between 9 NPDR samples and 10 DME samples; (C) volcano plot of differentially expressed
genes between 9 NPDR samples and 10 DME samples. DETh17RGs, differentially expressed Th17 cell related genes, Th17RGs, Th17 cell related genes.

of cellular component movement and Regulation of cell migration.
Due to space limitations, GO terms related to Th17 cells cannot be
shown in the figure. We present them in text form as follows:
regulation of interleukin 17 production, positive regulation of
interleukin 17 production, and T-helper cell type 17 immune
response. The same ranking method in the KEGG analysis of the
top five terms were: Hedgehog signaling pathway, Complement
and coagulation cascades, Staphylococcus aureus infection,
Pertussis, Wnt signaling pathway. The details of the first 30
terms of GO and KEGG were visualized in Figures 2A, B.

Identification of Hub DETh17RGs

The upsetR method was used to obtain the intersection of the genes
obtained by 11 methods in the CytoHubba plug-in, and there were
29 candidate Hub DETh17RGs that met the intersection condition
of9 or more (Figure 3A). In Lasso regression analysis, the candidate
Hub DETh17RGs for accurate prediction of DME can be
determined when A = 0.13 in the process of constructing LASSO
model (Figure 3B). Based on the optimal A value of 0.13, we plotted
the LASSO coeflicient spectrum of differentially expressed genes

(Figure 3C), and a total of 22 potential Hub DETh17RGs were
obtained. In the analysis of the SVM-RFE algorithm, all
DETh17RGs were screened and the top 100 genes were chosen to
construct the SVM-RFE model. Check that the error rate of model
10x CV was 0.127 when the number offeatures was 59, that is, when
the red dot position was the lowest error rate, and these 59 genes
were included in the candidate Hub DETh17RGs (Figure 3D).
After the intersection of the genes obtained by the above three
methods, there were still 6 genes left, which were defined as Hub
DETh17RGs (Figure 3E). The Hub DETh17RGs were CD44,
CDC42, TIMP1, BMP7, RHOC, FLT1.

PPl Network and Identification of

Hub DETh17RGs

A DETh17RGs protein-protein interaction network consisting of
195 nodes and 695 edges was created by utilizing STRING online
network tool and was re-visualized with Cytoscape (Figure 4).
After calculation, the degrees of Hub DETh17RGs were CD44
(degree = 43), CDC42 (degree = 35), TIMP1 (degree = 14), BMP7
(degree = 12), RHOC (degree = 15) and FLT1 (degree = 14).
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FIGURE 2 | Enrichment analysis of DETh17RGs in GO and KEGG pathways. (A) Top 30 terms of DETh17RGs enrichment in the biological process of GO; (B) Top
30 terms of DETh17RGs enriched in KEGG pathway. Fold enrichment = GeneRatio/BgRatio.

Compared with NPDR, there were 5 Hub DETh17RGs up-
regulated and 1 down-regulated in DME.

Verification of Hub DETh17RGs in PDR

Hub DETh17RGs expression data were extracted from GSE160306
datasets for unsupervised hierarchical clustering. According to the
results of ward.D2 clustering method, most of the NPDR samples
were divided into cluster 1 (7/9,78%), while the vast majority of DME
samples were classified as cluster 2 (8/10,80%), which fully showed
that these six genes were closely related to the occurrence and
development of DME (Figure 5A). Visualization of Hub
DETh17RGs expression in the GSE160306 dataset with split violin
plot revealed that all the six genes illustrated significant differences
between normal and DME (Figure 5B). During the verification
process of datasets, we found that except for BMP7, the expression

patterns of the other five genes in the validation set were basically the
same: CD44, CDC42, TIMP1, RHOC were significantly up-regulated
in all validation datasets, FLT1 was significantly up-regulated in all
validation datasets except GSE94019, and BMP7 was significantly up-
regulated in GSE102485, but significantly down-regulated in
GSE94019 and GSE60436 (Figure 5C).

Diagnostic Value of Hub DETh17RGs
Features in DN

Since diabetes involves multiple systems and multiple organs, Th17
cells can also infiltrate in multiple organs under pathological
conditions, and DR and DN are independent risk factors for each
other, these reminded us that Hub DETh17RGs may also contribute
to the identification of DN patients. In order to verify this assumption,
six Hub DETh17RGs were aggregated and the GSV A algorithm was
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assigned to analyze and calculate the Th17RG score. In GSE30528
and GSE96804, the Th17RG score of DN patients was significantly
lower than that of normal controls (Figures 6A, B). ROC analysis
showed that the AUC of GSE30528 and GSE96804 reached 82% and
74%, respectively, which could be considered to have a high degree of
differentiation (Figures 6C, D). Furthermore, Hub DETh17RGs
expression data were obtained from GSE142025 dataset and
unsupervised hierarchical clustering was conducted using ward.D2
method. The results showed that most of the early DN samples were
divided into cluster 1 (5/6,83%), while the vast majority of late DN

samples were classified as cluster 2 (20/21,95%), which fully
demonstrated that Hub DETh17RGs can well distinguish between
early DN and advanced DN (Figure 6E). Details of all datasets used in
this study are displayed in Table 2.

Verification of Relative Expression of Hub
DETh17RGs by Quantitative Real-Time
Polymerase Chain Reaction

In order to verify the results of comprehensive bioinformatic
analysis, QPCR analysis was performed on the retinal samples of
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the mice in the study. The results illustrated that Cd44, Bmp?7,
Rhoc and Flt1 in DR group were up-regulated by 4.19, 5.70, 2.51
and 2.83 times, respectively, compared with the control group,
which were consistent with the results of transcriptome analysis
in this study with significant differences. There was no significant
difference in Cdc42 expression between the two groups.
Although there was significant difference in Timpl between
the two groups, it was down-regulated compared to the control
group, which was different from the results in our transcriptome
analysis (Figure 7). The above animal experiments results were
generally consistent with the transcriptome analysis results in
this study, which proves the reliability of the transcriptome data.

DISCUSSION

Recent studies have illustrated that differentiated and mature
Th17 cells participate in the process of innate and acquired
immunity by promoting the secretion of cytokines with strong
pro-inflammatory effects, such as IL-17A, IL-17F, IL-21, IL-22,

IL-26, etc., leading to inflammatory damage of tissues and
organs, and play an important role in the formation and
development of inflammatory diseases (30-32). The
abnormality of Th17 cells is one of the momentous reasons for
the progression of diabetes (33), however, the study of its
mechanism in DR is still in its infancy. Some studies have
confirmed that the level of serum IL-17 in patients with DR is
increased (34, 35), the level of IL-17A in vitreous fluid of patients
with PDR is increased, but there is no significant change in
aqueous humor (36, 37). Animal experiments have revealed that
the immune response mediated by Th17 cells plays a promoting
role in the morphological and functional changes of retinal
vessels in spontaneous diabetes mellitus (38). However, in the
development of DR, especially DME, the molecular mechanism
and genetic markers of Th17 in the retina, especially in macular
retina, need to be studied. In our study, the score of Th17RG in
DME was significantly higher than that in NPDR, which
indirectly proved that the number of macular Th17 cells in
DME was significantly higher than that in NPDR. Through the
functional analysis and annotation of DETh17RGs, the results
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certified that they were mainly enriched in cell movement,
migration, proliferation, response to stimulation, immune
response, signal transduction and regulation; complement and
coagulation cascade, leukocyte transendothelial migration,
neutrophil extracellular trap formation, and some pivotal
pathways. Through a series of algorithm calculations and
verifications, CD44, CDC42, TIMP1, BMP7, RHOC and FLT1
were sieved as Hub DETh17RGs from 238 DETh17RGs.
Verification of multiple independent datasets confirmed that
they could identify different stages of DR disease. More
interestingly, the hub gene features constructed by aggregating
six genes by GSVA can distinguish not only early DN and late
DN patients, but also DN patients and healthy people.

One of the most important functions of immune cells is the
migration during development, inflammation and homeostasis
(39). Th17 cells also follow this rule. They are highly efficient
inflammatory cells that can trigger tissue inflammation and induce
other inflammatory cells to infiltrate target organs (40, 41). Some
studies have presented that Th17 cells infiltrate into
the intraocular tissue from the circulatory system through the
retinal vascular endothelium and participate in the inflammatory
response in the retinal pigment epithelium (RPE) and uvea

(42, 43). Other studies have confirmed that intercellular
adhesion molecule-1 mediates the migration of Th1l7 cells in
human retinal vascular endothelial cells (44). The co-staining of
IL-17, RORyt and CD4 in the retina of diabetic retinopathy
showed that Th17 cells infiltrated and damaged the retina
during the formation of DR (45). The above results are
consistent with the top five GO functional enrichment results in
this study: the top five terms enriched by DETh17RGs in this
study are all related to cell movement, migration and regulation.
Th17 cells themselves belong to a subcategory of inflammatory T
helper cells, so it is natural to demonstrate their involvement in the
immune response and immune system processes in the GO
enrichment analysis.

In addition, DETh17RGs is also enriched in many pathways
related to DR and DME, such as hedgehog signaling pathway,
complement and coagulation cascade, Wnt signaling pathway, p53
signaling pathway, Rapl signaling pathway, NF-«kB signaling
pathway, leukocyte transendothelial migration, nod-like receptor
signaling pathway, extracellular trap formation of neutrophils and
so on. The complement and coagulation cascade reaction is a
complex biological process, which is the two main proteolysis
cascade reactions in blood (46, 47). Complement-coagulation
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TABLE 2 | Datasets implemented for analysis in this study.

Dataset Platform Case samples Control samples
GSE160306 (23) GPL20301 10 9
GSE94019 (24) GPL11154 9 4
GSE102485 (25) GPL18573 22 3
GSEB0436 (26) GPL6884 6 3
GSE30528 (27) GPL571 9 13
GSE96804 (28) GPL17586 41 20
GSE142025 (29) GPL20301 21 6

interactions are essential for the appropriate innate response to
retinal injury caused by diabetes, which can limit the development
of hyperemia and inflammation while promoting healing (48, 49).
Several studies have shown that the complement and coagulation
cascade are related to DR, which is reflected in the accumulation of

Cd44

1
Control DR

Timp1 was significantly down-regulated. **p < 0.001, NS p > 0.05.

Cdc42

1
Control DR

many coagulation factors and complement-related genes such as
C1QB, C1QC, C3 and C9. The differential expression of C1QB and
C1QC was also verified in DETh17RGs in our study (50, 51).
Platelet endothelial cell adhesion molecule-1 (PECAM-1), which is
highly expressed in the intercellular junction of retinal endothelial
cells and the lumen-facing region of blood vessels, is an
indispensable participant in the migration of leukocytes across the
endothelium to the retinal tissue (52). However, its expression in
DR retinal tissue is reduced, which can cause leukocyte stasis, lead to
normal capillary blockage, distal normal capillary degeneration,
hypoxia in the supply area, and stimulate neovascularization (53).
At the same time, due to the increase of vascular capillary
permeability caused by long-term hyperglycemia, immune cells
such as neutrophils become easier to infiltrate into choroid and
retina through capillaries, leading to the progression of retinopathy
caused by this chronic inflammation (54). In vivo and in vitro
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FIGURE 7 | The Hub DETh17RGs mRNA levels in the retina of DR mouse models and controls. Compared with the control group, the transcription levels of Cd44,
Bmp7, Rhoc and Fit1 in the DR mouse model group were significantly up-regulated, while the changes of Cdc42 were not significant, and the transcription level of
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studies have reported that high glucose can increase the release of
Neutrophil extracellular traps (NET) (55). It has also been reported
that the level of NET biomarkers is an independent risk factor for
DR, and the presence of NET complex in DM patients with PDR
was positively correlated with the severity of DR (55, 56). Multiple
factors coordination mediate the ability of neutrophils to exert NET,
which has recently been found to be the core participant in the
pathogenesis of PDR induced by DM (57, 58). The above facts are
highly consistent with the formation of extracellular traps of
neutrophils analyzed in this study. A number of studies have
confirmed that signaling pathways, such as Rapl, NF-xB and
NOD, are involved in the pathogenesis of DR and DME and are
crucial in disease formation (59-61); others have confirmed that in
the formation of DR and DME, signaling pathways like hedgehog,
PI3K and Wnt even have crosstalk mechanism (62). Our study
reveals the possible signaling pathways related to Th17 cell
infiltration and DME formation, which provides a basis for
follow-up research.

In this study, six hub DETh17RGs were identified from the
PPI network, which are CD44, CDC42, TIMP1, BMP7, RHOC
and FLT1. Gene-encoded proteins participate in the occurrence
and development of DR and have a significant impact on the
disease process. CD44 is an extensively expressed cell surface
adhesion molecule, which subserves pathological angiogenesis
and disease evolution and the development of DR by regulating
endothelial cell adhesion, invasion, proliferation, migration and
intercellular communication (63). It was also verified in in vitro
assays that CDC42 promotes cytoskeletal rearrangement, cell
differentiation, and cell proliferation by controlling signaling
transduction pathways, while also regulating cell migration and
cell adhesion (64-66). Animal studies have approved the
importance of CDC42 in filamentous pseudopodia formation
and endothelial cell migration (67); it has been confirmed that
CDCA42 is also involved in diabetes-related complications, such
as insulin resistance, DN, diabetic cardiomyopathy, and further
research in DR is underway (68). TIMP-1 is a strong inhibitor
of most matrix metalloproteinases (MMP), and the balance
between them may be critical to tissue homeostasis in DR (69).
Studies have reported elevated levels of TIMP-1 in vitreous
fluid in the PDR, and some studies have shown that the balance
between TIMP-1 and MMP may be disrupted early in the onset
of DR (69-71). In late NPDR/PDR, the concentration of TIMP-
1 in aqueous humor increased, but there was no significant
change in serum, indicating that its intraocular regulation was
independent of systemic regulation, and that TIMP-1 was
involved in the progression of DR (71). BMP-7, a member of
BMPs, interacts with TGF- B and participates in the process
of tissue degeneration and fibrosis. Many studies have
demonstrated the antagonistic and reverse fibrosis effects of
BMP-7 in fibrosis, so it is reasonable to suggest that BMP-7 may
have the same preventive effect on ocular fibrotic diseases such
as DR (72). It has been reported that BMPs acts as a regulator of
the EMT process in DR and plays a role in angiogenesis and
inflammation (73). The overexpression of RHOC is associated
with cell proliferation that enhances cell motility, makes it

invasive, and promotes the production of angiogenic factors
such as VEGF (74, 75). By controlling the proliferation,
migration and vascular permeability of endothelial cells,
RHOC plays a role in regulating angiogenesis in DR and
related macular disease, as well as in maintaining vascular
homeostasis (75, 76). FLT1, the first member of the vascular
endothelial growth factor receptor (VEGFR) family, also known
as VEGFRI, plays multiple diverse roles in vascular
development, angiogenesis, cell survival and inflammation
(77, 78). Studies have confirmed that VEGFRI1 is involved in
the pathogenesis of DR and DME, and relevant drugs that
target it have been developed to treat DR and DME (78, 79). In
this study, the results of two genes, CDC42 and TIMP1, are
inconsistent between RNA-seq and qPCR. We consider that
there may be the following reasons: first, the quantification of
qPCR is measured in the local region of the gene, while the
quantification of RNA-seq is measured in the full-length region
of the gene. Therefore, the difference in the quantity of gene
expression between qPCR and RNA-seq will lead to conflict in
estimating the change of gene expression level, but it does not
mean that the result of one of these methods is wrong. Second,
similarly, if there is a difference in gene expression in RNA-seq,
but no difference is detected in qPCR, the designed qPCR
primers may amplify a region of exons with no significant
change in expression. Third, RNA-seq and qPCR themselves
are two different experimental platforms, and it is reasonable
that some of the results can not be completely one-to-one
correspondence because of the different technical principles.
Studies have confirmed that, in strict accordance with the
analytical workflow, 15-20% of genes are considered to be
“inconsistent” when comparing the results obtained with
RNA-seq with those obtained with qPCR (“inconsistency” is
defined as differential expression between two methods in the
opposite direction, or one method shows differential expression
while the other does not) (80).

In terms of diabetic microvascular complications, DR and
DN have similar pathogenesis, retinal vessels and renal
vessels have similar physiological structures, both of which
can reflect microcirculation injury (81). Various metabolic
disorders in patients with diabetes can activate a variety of
pathophysiological processes in the body and promote the
occurrence of microvascular complications. Under the
condition of high glucose, the polyol pathway begins to
participate in glucose metabolism and aldose reductase reduces
intracellular glucose to insoluble sorbitol, thus changing the
permeability of the cell membrane and causing a large amount
of water to enter kidney and retinal endothelial cells rapidly,
resulting in edema and cell damage. Furthermore, advanced
glycation end products (AGE) interact with their receptors to
increase intracellular oxidative stress, activate NF-xB, and
eventually cause inflammation, resulting in renal and retinal
vascular dysfunction (82). In addition, increasing intracellular
glucose concentration leads to increased diacylglycerol (DAG),
the key helper of protein kinase C (PKC), which activates the PKC
pathway and increases the expression of vasoconstrictor
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endothelin-1 to reduce blood flow, resulting in thickening of the
renal basement membrane, increased extracellular matrix, and
retinal neovascularization (82, 83). Although it is impossible to
determine the order of onset of DR and DN in the clinic, the
phenomenon that both exist at the same time is more common in
clinic (84). Clinically, DR and DN are mutually independent risk
factors, which influence the development and change of the
disease (19, 85, 86). Common risk factors for the progression of
DR and DN include blood glucose, blood pressure, blood lipids,
course of diabetes, obesity, smoking and so on (87). At present, a
number of studies have shown that DR has diagnostic value for
DN: meta-studies have shown that DR has a sensitivity of 0.65
and a specificity of 0.75 in distinguishing DN from non-diabetic
renal disease (NDRD) in patients with type 2 diabetes, and they
emphasized that PDR has a high specificity in the diagnosis of DN
(88). In addition, the latest meta-analysis revealed that the
sensitivity and specificity of DR in diagnosing DN were 0.67
and 0.78, and the specificity of PDR in predicting DN was 0.99,
suggesting that DR is a good index to predict DN (89). A study on
the predictive efficacy of the severity of retinopathy on end-stage
renal disease (ESRD) in patients with DN discovered that 56% of
DN patients with PDR progressed to ESRD after a median follow-
up of 15 months, suggesting that the severity of DR was an
independent risk factor for ESRD (90). A study in Taiwan, China,
followed 4,050 patients with chronic kidney disease (CKD) for at
least one year and found that DR was a risk factor for the
progression of CKD, while patients with PDR had a
significantly higher risk of progression of CKD than patients
with NPDR at baseline, with an OR of 2.18 (91). Another study
showed that the severity of DR in patients with type 2 diabetes
was positively correlated with the progression of CKD, and the
risk of CKD progression in patients with PDR was 16.6 times
higher than that in patients without DR (92). Macular edema
refers to the abnormal increase of macular fluid and the
infiltration of extracellular fluid into the retinal capsule, when
there is thickening in the nonvascular area of the macular fovea or
rigid exudation and thickening within 500 wm from the fovea. It is
called clinically significant macular edema (93). Studies have
found that patients with clinically significant macular edema are
more likely to develop nephropathy (94). In addition, some
researchers divided macular edema into diffuse, cystic, serous,
vitreous traction and mixed cystoid and serous types according to
their morphology. The results demonstrated that serous macular
edema had the highest probability of albuminuria, and severe
renal failure was related to macular edema (94). It can be seen that
DR patients with macular edema, especially with the clinical
significance of serous macular edema, have a higher probability
of nephropathy. In recent years, there have been few studies on
the relationship between macular edema and nephropathy, and
some studies have indicated that there is no correlation between
macular edema and eGFR (95). This may be due to the occurrence
of diabetic macular edema in the late stage of DR, and the
consistency of DN and DR in the course of disease. Therefore,
early observation of macular edema and eGFR may not be able to
find a strong relationship. However, when patients with diabetes
have both DR and macular edema, they are more likely to be

diagnosed with DN. Although the role of Hub DETh17RGs in DR
has been generally revealed, there is still a lack of research on their
respective mechanisms at the DME level. Our study illustrated
that their expression patterns between NPDR and DME are
basically the same as those of normal and PDR in independent
datasets. This phenomenon demonstrated that Hub DETh17RGs
in DR is not only related to the occurrence of DME in the macula,
but also to the progression of the disease, which is also confirmed
by the brief overview of the relationship between each Hub
DETh17RG and DR. The most significant finding is that the
expression pattern of Hub DETh17RGs at different stages of DN
is similar to that of DR in this study: It can distinguish not only
early DN and late DN patients, but also DN patients and healthy
people. Therefore, Hub DETh17RGs excavates the clinically
observed macro-relationship between DR, DME and DN to the
micro-genetic level, and also reflects its diagnostic value in two
different organs of diabetic complications.

Our research still has some limitations. First of all, in the course
of long-term chronic disease of diabetes, the gene expression
patterns of some immune cell types may be adjusted due to the
changes of complex pathological environment around different
tissues. In this study, immune cells located in glomerulus and
macula showed different expression profiles under the regulation
of tissue microenvironment. Due to the influence of this factor, we
can only build tissue infiltration-specific model separately according
to tissue types, but cannot combine the immune cells of two
different tissues collected to build a unified model. Therefore, data
cannot be combined as a whole to complete data comparison
between multiple groups of tissues. Secondly, because some of the
immune cells in the study belong to certain cell subsets, they may
have similar transcriptome characteristics or share some common
characteristic genes, and these types of cells may potentially interfere
with the calculation of proportional scores. Thirdly, because the type
of the original dataset belongs to the case-control study, it is
impossible to clarify the causal relationship between the
expression of DETh17RGs and the abundance of Thl7 cells.
Fourth, a prospective cohort study is needed in diabetic patients
without complications such as DR, DME and DN to verify the
diagnostic and prognostic value of Hub DETh17RGs. Finally, no in
vitro experimental studies have been carried out to confirm our
findings, and in vivo experiments need to be further explored. In the
future research, a large number of samples are needed to study the
pathogenesis of cells and animals at the molecular biological level in
order to elucidate the crosstalk mechanism of Hub DETh17RGs in
different organs and tissues of diabetes.

CONCLUSION

Through comprehensive bioinformatic analysis, this study
identified the Th17 cell-related genes closely associated with the
progression of DME, and also analyzed the possible molecular
mechanisms linking Th17 cells with the progression of DME and
DR. The Hub DETh17RGs obtained by implementing a variety of
reliable algorithms plays a critical role in the occurrence and
progression of DME, and they may also play a pivotal role in the
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disease progression of DN. These results expand our understanding
of the mechanisms underlying the effects of Th17 cells on diabetic
complications such as DR, DME and DN, and demonstrate their
potential as new therapeutic targets for DR and DME.
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