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A B S T R A C T   

Background: Multiple Sclerosis (MS), a neurodegenerative and neuroinflammatory disease, causing lesions that 
disrupt the brain’s anatomical and physiological connectivity networks, resulting in cognitive, visual and/or 
motor disabilities. Advanced imaging techniques like diffusion and functional MRI allow measurement of the 
brain’s structural connectivity (SC) and functional connectivity (FC) networks, and can enable a better under
standing of how their disruptions cause disability in people with MS (pwMS). However, advanced MRI tech
niques are used mainly for research purposes as they are expensive, time-consuming and require high-level 
expertise to acquire and process. As an alternative, the Network Modification (NeMo) Tool can be used to es
timate SC and FC using lesion masks derived from pwMS and a reference set of controls’ connectivity networks. 
Objective: Here, we test the hypothesis that estimated SC and FC (eSC and eFC) from the NeMo Tool, based only 
on an individual’s lesion masks, can be used to classify pwMS into disability categories just as well as SC and FC 
extracted from advanced MRI directly in pwMS. We also aim to find the connections most important for 
differentiating between no disability vs evidence of disability groups. 
Materials and Methods: One hundred pwMS (age:45.5 ± 11.4 years, 66% female, disease duration: 12.97 ± 8.07 
years) were included in this study. Expanded Disability Status Scale (EDSS) was used to assess disability, 67 
pwMS had no disability (EDSS < 2). Observed SC and FC were extracted from diffusion and functional MRI 
directly in pwMS, respectively. The NeMo Tool was used to estimate the remaining structural connectome (eSC), 
by removing streamlines in a reference set of tractograms that intersected the lesion mask. The NeMo Tool’s eSC 
was used then as input to a deep neural network to estimate the corresponding FC (eFC). Logistic regression with 
ridge regularization was used to classify pwMS into disability categories (no disability vs evidence of disability), 
based on demographics/clinical information (sex, age, race, disease duration, clinical phenotype, and spinal 
lesion burden) and either pairwise entries or regional summaries from one of the following matrices: SC, FC, eSC, 
and eFC. The area under the ROC curve (AUC) was used to assess the classification performance. Both univariate 
statistics and parameter coefficients from the classification models were used to identify features important to 
differentiating between the groups. 
Results: The regional eSC and eFC models outperformed their observed FC and SC counterparts (p-value < 0.05), 
while the pairwise eSC and SC performed similarly (p = 0.10). Regional eSC and eFC models had higher AUC 
(0.66–0.68) than the pairwise models (0.60–0.65), with regional eFC having highest classification accuracy 
across all models. Ridge regression coefficients for the regional eFC and regional observed FC models were 
significantly correlated (Pearson’s r = 0.52, p-value < 10e-7). Decreased estimated SC node strength in default 
mode and ventral attention networks and increased eFC node strength in visual networks was associated with 
evidence of disability. 

Abbreviations: AUC, area under curve; EDSS, extended disability status score; eFC, estimated functional connectivity; eSC, estimated structural connectivity; FC, 
functional connectivity; GM, gray matter; HC, healthy control; QSM, quantitative susceptibility imaging; LST, lesion segmentation tool; MS, multiple sclerosis; NeMo, 
network modification; pwMS, people with multiple sclerosis; SC, structural connectivity; WM, white matter. 
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Discussion: Here, for the first time, we use clinically acquired lesion masks to estimate both structural and 
functional connectomes in patient populations to better understand brain lesion-dysfunction mapping in pwMS. 
Models based on the NeMo Tool’s estimates of SC and FC better classified pwMS by disability level than SC and 
FC observed directly in the individual using advanced MRI. This work provides a viable alternative to performing 
high-cost, advanced MRI in patient populations, bringing the connectome one step closer to the clinic.   

1. Introduction 

Multiple sclerosis (MS) is a disease that is largely characterized by 
brain lesions, detected using clinical MRI, that can cause disability. The 
number and size of lesions, however, is not always proportional to an 
individual’s disability (Barkhof, 2002); recent work has demonstrated 
that lesions’ disruption to structural and physiological connectivity 
networks may be more important for accurate lesion-dysfunction map
ping (Kuceyeski et al., 2018; A. F. Kuceyeski et al., 2015b). Con
nectomics, or brain connectivity network analysis, provides a promising 
tool to directly measure the effect of MS-related pathology and to cap
ture the reorganization mechanisms in response to pathology. Having a 
more accurate lesion-dysfunction map, particularly a lesion-future 
dysfunction map, would allow development of more accurate progno
ses and could be used to personalize treatment plans to improve clinical 
care of people with MS (pwMS). 

Advanced neuroimaging techniques such as diffusion magnetic 
resonance imaging (dMRI) and functional MRI (fMRI) are commonly 
used to quantify the structural (white matter) connectome (SC) and the 
functional (co-activation) connectome (FC). Previous studies have 
shown that SC metrics can successfully differentiate healthy controls 
(HC) from pwMS, classify pwMS who showed different clinical pheno
types, and be used to assess its relationship with disability (Li et al., 
2013; Muthuraman et al., 2016; Shu et al., 2011). However, tractog
raphy can be challenging in areas of complex fiber orientations and can 
produce false-positive and -negative connections. Lesions, pathologies in 
normal-appearing white matter, inflammation, demyelination and 
axonal loss may decrease SNR in dMRI and make existing tractography 
issues even more pervasive in pwMS (Kuceyeski et al., 2011; Lipp et al., 
2020; Pagani et al., 2007). In terms of measuring FC in pwMS, inflam
mation induces alterations in synaptic transmission (Rossi et al., 2012; 
Stampanoni Bassi et al., 2017) and thus may affect the BOLD signal in 
non-trivial ways (Bassi et al., 2017; Tomassini et al., 2016). FC changes 
in pwMS relative to controls may also be driven by compensation 
(Tommasin et al., 2018), maladaptation (Cruz-Gómez et al., 2014) or 
both (Tona et al., 2014), making the mapping of FC to dysfunction even 
more complicated. Therefore, observed SC and FC extracted from 
advanced MRI in pwMS may not be accurately representing underlying 
brain networks and/or be informative of disability. 

In addition to the above outlined challenges using advanced MRI in 
pwMS, the imaging techniques themselves are expensive, time- 
consuming and require a high level of expertise. Therefore, alternative 
techniques that use only conventional, clinically-acquired MRI may 
allow more widespread use of SC and FC measures for understanding the 
mechanisms and connectome-behavior mapping in pwMS (Foulon et al., 
2018; Griffis et al., 2021). As an alternative to performing tractography 
in pwMS, lesion masks extracted from conventional MRI can be used to 
calculate estimated structural connectivity (eSC) via the Network 
Modification (NeMo) Tool (Kuceyeski et al., 2013). The recently upda
ted NeMo Tool version 2.0 (https://kuceyeski-wcm-web.s3.us-east-1. 
amazonaws.com/upload.html) uses tractography results from 420 un
related Human Connectome Project controls as a reference; a lesion 
mask from a pwMS is used to remove “damaged” streamlines that pass 
through the lesions from the reference tractographies and the remaining 
streamlines are used to obtain eSC. A recent work introduced a deep 
neural network trained to predict FC from SC (Sarwar et al., 2021). 
Using their framework, we created a neural network trained on the 
NeMo Tool’s 420 control reference subjects to predict FC from SC. This 

neural network was then integrated into the NeMo Tool so that it could 
take its eSC and produce the corresponding estimated FC (eFC), a 
functionality which as far as we know is not available in other tools that 
estimate structural dysconnectivity (Foulon et al., 2018; Griffis et al., 
2021). To summarize, the NeMo Tool version 2.0 uses only an in
dividual’s lesion mask to produce estimates of their SC and FC networks. 

Observed connectivity from advanced imaging and estimated dis
ruptions in connectivity based on conventional imaging have been 
independently associated with disability and cognitive impairment in 
pwMS (Has Silemek et al., 2020; Kuceyeski et al., 2018; Pagani et al., 
2019; Tommasin et al., 2018). A recent study (Salvalaggio et al., 2020) 
showed structural disconnectivity due to stroke lesions is a better pre
dictor than indirect functional disconnectivity, estimated using 
symptom-lesion network mapping (Boes et al., 2015), in predicting 
multiple functional deficits in stroke. Moreover, the same study showed 
observed FC from fMRI was superior than indirect functional dis
connectivity in the subset of the stroke patients. However, no study has 
yet compared the ability of observed and estimated SC/FC metrics in 
classifying pwMS into disability categories. 

In this paper, models based on eSC and eFC derived from clinical 
MRI-derived lesion masks and the NeMo Tool were compared with 
models based on SC and FC extracted directly from advanced MRI in 
their ability to classify pwMS into disability groups. Specifically, the 
classification performance of models based on pairwise and regional SC, 
FC, eSC, and eFC metrics were compared. We hypothesized that models 
based on eSC and eFC metrics would perform at least as well as the SC 
and FC metrics from advanced imaging. Second, the most important 
pairwise and region-wise connections in the classification task were 
quantified. 

2. Materials and methods 

2.1. Subjects 

One hundred pwMS (age:45.5 ± 11.4, 66% females) with a diagnosis 
of clinically isolated syndrome (CIS) or MS (7 CIS, 88 relapsing- 
remitting, 5 primary or secondary progressive MS) were enrolled in 
our study. Possible participants were excluded if they had contraindi
cations to MRI. Demographic data was collected (age, sex, race, clinical 
phenotype, and disease duration) and subjects underwent an MRI scan. 
Extended Disability Status Score (EDSS) was used to quantify disability, 
where an EDSS < 2 was considered no disability and EDSS ≥ 2 consid
ered evidence of disability. This threshold was defined based on the fact 
that pwMS having EDSS values of 0–1.5 present some abnormal signs/ 
symptoms but do not have functional disability. The spinal cord lesion 
number was included in the patients’ clinical radiology report and this 
was used to estimate spinal cord burden in patients. All studies were 
approved by an ethical standards committee on human experimenta
tion, and written informed consent was obtained from all patients. 

2.2. Image acquisition, processing, and connectome extraction 

MRI data were acquired on a 3 T Siemens Skyra scanner (Siemens, 
Erlangen, Germany) with a 20-channel head-neck coil and a 32-channel 
spine-array coil. Anatomical MRI (T1/T2/T2-FLAIR, 1 mm3 iso-voxel), 
resting-state fMRI (6 min, TR = 2.3 s, 3.75 × 3.75 × 4 mm voxels) and 
diffusion MRI (55 directions HARDI, b = 800, 1.8 × 1.8 × 2.5 mm 
voxels) acquisitions were performed. Sagittal STIR images were 
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acquired for identification of spinal lesions (TR = 3.5 s, TI = 220 ms, TE 
= 45 ms, in-plane resolution 0.43 mm, FOV = 22 mm, slice thickness 3 
mm). Multi-echo 2D GRE field maps were collected for use with both 
fMRI and diffusion MRI (0.75 × 0.75 × 2 mm voxels, TE1 = 6.69 ms, 
ΔTE = 4.06 ms, number of TEs = 6). 

2.2.1. Structural and functional connectivity extraction 
White matter (WM) and gray matter (GM) were segmented and GM 

further parcellated into 86 regions of interest (68 cortical and 18 
subcortical/cerebellar) using FreeSurfer (Fischl and Dale, 2000). The 
white and gray matter surfaces were checked for each subject on Free
surfer and hand-edited with control points and reconstruction editing if 
necessary. As described elsewhere (Kuceyeski et al., 2016), fMRI pre
processing included simultaneous nuisance regression and removal of 
WM and cerebrospinal fluid (CSF) effects (Hallquist et al., 2013), fol
lowed by band-pass filtering (0.008–0.09 Hz) using the CONN v18b 
toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012) and SPM12 in 
Matlab. Nuisance regressors included 24 motion parameters (6 rotation 
and translation, temporal derivatives, and squared version of each) and 
the top 5 eigenvectors from eroded masks of both WM and CSF. The 
mean fMRI signal over all voxels in a region was calculated and the mean 
regional time series correlated (Pearson’s correlation) between every 
pair of regions to obtain pairwise FC matrices. Regional FC node 
strengths were calculated by taking the sum of the columns in the FC 
matrix after removing the negative entries. 

Diffusion MRI was interpolated to isotropic 1.8 mm voxels, and then 
corrected for eddy current, motion and EPI-distortion with the eddy 
command from FSL 5.0.11 (Andersson and Sotiropoulos, 2016) using 
the outlier detection and replacement option (Andersson et al., 2016). 
MRtrix3Tissue (https://3Tissue.github.io), a fork of MRtrix3 (Tournier 
et al., 2019) was used to estimate a voxel-wise single-shell, 3-tissue 
constrained spherical deconvolution model (SS3T-CSD) and then 
compute whole-brain tractography for each subject. The tractography 
seed mask was generated using MRtrix to estimate gray matter and 
white-matter volume fractions from local diffusion properties, and 
thresholding to include all voxels with a gray + white volume fraction ≤
0.05, essentially including all non-CSF voxels within the brain volume, 
including lesion voxels. We seeded 92 streamlines randomly within in 
each mask voxel, and performed deterministic (sd-stream) tractography 
with MRtrix3 (Tournier et al., 2010; Tournier et al., 2012) with a fiber- 
orientation distribution (FOD) amplitude cutoff of 0.05, leading to 
approximately 5 million streamlines per subject. We then applied the 
SIFT2 global filtering algorithm (Smith et al., 2015) to account for bias 
that exists in greedy, locally-optimal streamline reconstruction algo
rithms. The SC matrix was constructed by taking the sum of the SIFT2 
weights of streamlines connecting pairs of regions and then dividing by 
the sum of the two regions’ volumes. In addition to the pairwise SC 
measures, regional SC node strength was quantified by taking the sum of 
each of the columns in the SC matrix. 

2.2.2. Lesion mask creation 
The WM hyperintensity lesion masks were created by running the T2 

FLAIR images through the Lesion Segmentation Tool (LST) and were 
further hand-edited as needed. T2 FLAIR-based lesion masks were 
transformed to the individual’s T1 native space using the inverse of the 
T1 to GRE transform and nearest-neighbor interpolation. Individual T1 
images were then normalized to MNI space using FSL’s linear (FLIRT) 
and non-linear (FNIRT) transformation tools (http://www.fmrib.ox.ac. 
uk/fsl/index.html); transformations with nearest-neighbor interpola
tion were then applied to transform the native anatomical space 
T2FLAIR lesion masks to MNI space. The transformations were concat
enated (T2FLAIR to T1 to MNI) to minimize interpolation effects. Le
sions were manually inspected after the transformation to MNI space to 
verify the accuracy of coregistration. 

2.2.3. Network Modification Tool 
The NeMo Tool (Kuceyeski et al., 2013) used each subject’s MNI- 

space T2 FLAIR lesion mask to calculate eSC and eFC using a refer
ence database of SCs and FCs from 420 unrelated controls from the 
Human Connectome Project (see Fig. 1 for the workflow and supple
mentary material for details). The NeMo Tool’s original functionality 
was to estimate SC (or structural disconnectivity) due to a lesion mask by 
identifying streamlines from each healthy control tractography set that 
pass through the lesion mask, and then recording the gray matter re
gions they connect. The eSC matrix is then the sum of the SIFT2 weights 
of the remaining streamlines connecting pairs of regions, divided by the 
sum of the two regions’ volumes averaged over the 420 individuals in 
the reference set. Regional eSC node degree was taken to be the sum of 
the columns in the eSC matrix. 

In addition, we extended the NeMo Tool’s functionality to create eFC 
from lesion masks by first creating a deep neural network that can 
predict FC from SC using a previously published approach (Sarwar et al., 
2021). We used the NeMo Tool’s 420 subjects to train, validate and test 
the model, which was optimized to minimize the difference between 
predicted and observed FC but also minimize the l1 distance between 
inter-subject similarity of the predicted FC and observed FC across the 
individuals in the training set. The model, which takes in the upper 
triangular part of the SC matrix, is a feed-forward fully connected neural 
network comprised 8 hidden layers with 1024 neurons and a dropout 
rate of 0.5 for each layer. We used leaky rectified linear unit (ReLU, 
leakage parameter set to 0.2) and hyperbolic tangent (tanh) as the 
activation functions and initialized the weights using the Xavier algo
rithm. Adam was used as our optimizer. The hyperparameters in the loss 
function include λ, the regularization parameter, and γ, the parameter 
that modeled averaged the inter-subject correlation of the observed FC 
of each individual in the training set, were determined by grid search in 
the interval of [0.1, 0.7] with steps of 0.1 for γ, and across values of 
[0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1] for λ. The best 
value for these parameters was found to beγ = 0.2 andλ = 0.01. We 
trained the model using 340 individuals’ FCs and SCs (out of 420 total) 
for 20,000 epochs with batch size n = 10 and learning rateα = 1e-5. The 
final model was tested on the remaining 80 individuals, see Supple
mental Fig. 1 for a violin plot showing the correlation between predicted 
and true FC and correlations between inter-subject predicted FC, which 
were similar to the original publication’s results (Sarwar et al., 2021). 
Once trained and validated on the NeMo Tool’s controls, the neural 
network was then applied to the eSCs from each of the individual lesion 
masks to produce an eFC matrix for each pwMS. Regional eFC node 
strengths were calculated by taking the sum of each of the columns in 
the eFC after removing the negative entries. 

2.3. Mass univariate analysis 

First, demographics and clinical variables were tested for differences 
between the no disability vs evidence of disability groups using the Chi- 
squared test for qualitative variables and Wilcoxon rank-sum test for 
quantitative variables. Second, the pairwise and regional SC, FC, eSC, 
and eFC were tested for differences between the two disability groups 
using the Wilcoxon rank-sum test. Differences were considered signifi
cant when p < 0.05 after Benjamini-Hochberg (BH) correction for 
multiple comparisons (Benjamini and Hochberg, 1995). Entries in the 
eSC and SC were only considered in the univariate tests if they were non- 
zero for a majority of pwMS. All statistical analyses were performed and 
graphs created using R version 3.4.4 and Matlab version R2020a. 

2.4. Classification analysis 

Logistic regression with ridge regularization was used to classify 
pwMS into disability categories based on demographics/clinical infor
mation (sex, age, race, disease duration, clinical phenotype, and spinal 
lesion burden) and one of the pairwise or regional connectivity metrics 
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derived from advanced MRI (SC and FC) or estimated from clinical 
imaging and the NeMo Tool (eSC and eFC). All pairwise connections and 
regional information were included in the pairwise and regional models, 
respectively. The number of the variables was 3655 (upper-triangle of 
the 86x86 connectivity matrix) for the pairwise models and 86 for the 
regional models. 

The models were trained with outer and inner loops of k-fold cross- 
validation (k = 5) to optimize the hyperparameters and test model 
performance. The folds for both inner and outer loops were stratified to 
ensure that each fold contained the same proportion of subjects in the 
two classes as the original dataset. The inner loop (repeated over 5 
different partitions of the training dataset only) optimized the set of 
hyperparameters that maximized validation AUC. A model was then 
fitted using the entire training dataset and those optimal hyper
parameters, which was then assessed on the hold-out test set from the 
outer loop. The outer loop was repeated for 100 different random par
titions of the data (See Fig. 4 in the supplementary document). The 
median of AUC (overall 5 folds × 100 iterations = 500 test sets) was 
calculated to assess the performance of the models. In addition to the 

AUC values; confusion matrices, brier scores, sensitivity, specificity, and 
balanced accuracy are provided. The classification performances of 
different models were compared using permutation test (David, 2008) of 
1000 permutations. P-values were the number of permutations that had 
a difference in means bigger than the original difference and were 
considered significant when p < 0.05 after BH correction for multiple 
comparisons (Benjamini and Hochberg, 1995). The important variables 
were identified using both univariate statistics (t-test or Wilcoxon rank 
sum test based on the connectivity type) and the mean feature weights 
(the beta parameter coefficients) over all 500 models (100 partitions of 
the data into 5 folds) (Tian et al., 2021). Regional and region-pair 
feature weights were also summarized at a functional network level by 
assigning each of the 68 cortical regions to one of seven canonical 
functional networks (Yeo et al., 2011); subcortex and cerebellum were 
also added as networks. Pearson’s correlation coefficient was used to 
assess similarity of the feature weights from the four estimated and 
observed connectivity model pairs. Finally, as a sensitivity analysis, we 
repeated the classification analysis with EDSS of 3 as the threshold for 
defining disability groups (88 pwMS who had not disability vs 12 pwMS 

Fig. 1. Workflow of the study. (A) Observed SC and FC were extracted from dMRI and fMRI directly in pwMS. The eSC and eFC matrices were computed using the 
lesion masks extracted from T2 FLAIR images and the Network Modification (NeMo) Tool. The eSC matrix was estimated by overlaying the lesion mask on a reference 
set of tractography results and removing streamlines that passed through the lesion mask. A deep neural network trained to predict FC from SC using the NeMo Tool’s 
control data (see tan box) was used to predict eFC rom eSC. 
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who had evidence of disability). The demographics, clinical and imaging 
variables were given in the supplementary document (please see Sup
plementary Table 2) for the groups created with EDSS 3. 

When the data contains class imbalance, models tend to favor the 
majority class. Due to the class imbalance in our data (67 vs 33 pwMS 
with no disability vs evidence of disability), the over-sampling approach 
Synthetic Majority Over-sampling Technique (SMOTE) (Chawla et al., 
2002) was used to obtain a balanced training dataset during cross- 
validation. SMOTE compensates for imbalanced classes by creating 
synthetic examples using nearest neighbor information and has been 
shown to be among the most robust and accurate methods with which to 
control for imbalanced data (Santos et al., 2018). 

Data/code availability statement: The codes that were used in this 
study are publicly available. Please see  

1) https://github.com/cerent/MS-Estimated-Observed-SC-FC for the 
classification and statistical analyses as well as the violin plots,  

2) https://github.com/zijin-gu/sc2fc for the codes of the deep neural 
network framework for structural and functional connectivity map
ping, and  

3) https://github.com/kjamison/connviewer for the circle and glass 
brain plots. 

The Network Modification tool that can be used to upload the lesion 
masks to compute the estimated structural connectivity can be reached 
via: https://kuceyeski-wcm-web.s3.us-east-1.amazonaws.com/upload. 
html 

The deidentified data (the connectivity matrices) that support the 
findings of this study are available upon reasonable request from the 
corresponding author. Data sharing agreement and approval from our 
ethics committee are needed to share the connectivity matrices. 

Ethics statement: All studies were approved by an ethical standards 
committee on human experimentation, and written informed consent 
was obtained from all patients. 

3. Results 

3.1. Patient characteristics 

The 67 pwMS who did not have disability were significantly younger 
than those 33 pwMS having disability (corrected p < 0.05) and had a 
trend for shorter disease duration (corrected p < 0.10) (See Table 1). The 
pwMS with progressive diagnoses were in the disability group, while 
those with CIS were in the no disability group. The population average 

lesion mask showed that lesions tended to occur most commonly in 
periventricular white matter, see Supplementary Fig. 2. 

3.2. Comparison of connectivity between disability groups 

There was no significant difference in the pairwise or regional SC, 
FC, eSC, or between the regional eFC between the no disability vs evi
dence of disability groups. However, the pairwise eFC between the right 
rostral anterior cingulate and right temporal pole was significantly 
greater in pwMS who had no disability compared to those with evidence 
of disability (corrected p-value = 0.04). Figs. 2 and 3 illustrate the p- 
values (before correction) of group differences in pairwise and regional 
connectivity metrics between two disability groups, respectively. FC 
between ventral attention and frontoparietal and between cerebellum 
and subcortex, and eFC between ventral attention and visual were the 
connections that showed the biggest difference between pwMS who had 
evidence of disability vs those who had no disability. Regional node 
strength differences are shown in Fig. 3; weaker eSC in all networks 
(except the cerebellum) and stronger eFC in all networks was observed 
in those pwMS who had evidence of disability. Observed FC was 
stronger in most networks (except subcortex, cerebellum and ventral 
attention) while observed SC was weaker in cerebellum and subcortex 
and stronger in limbic networks in pwMS who had evidence of disability. 

3.3. Classification results 

Fig. 4 shows that models based on pairwise SC and eSC had similar 
AUC (p = 0.21, BH corrected), while pairwise eFC significantly out
performed FC (p-value < 10e-4) and had the highest AUC of all the 
pairwise models. Both models based on estimated regional node strength 
outperformed observed regional node strength in classifying pwMS into 
disability groups (corrected p-value < 0.01 for both regional SC vs eSC 
and regional FC vs eFC). The highest AUC over all 8 models tested was 
the one based on regional eFC, with a median of 0.681. Regional eSC and 
eFC had higher AUC results than pairwise eSC and eFC, and, while 
pairwise eFC outperformed pairwise eSC (corrected p-value < 10e-4), 
regional eSC and eFC were not significantly different (corrected p-value 
= 0.17). Confusion matrices, sensitivity, specificity, balanced accuracy, 
and Brier score largely agreed with AUC results (see Supplementary 
Table 3 and Fig. 3). Classification models were also tested using EDSS of 
3 as the threshold for defining disability groups (88 pwMS who had not 
disability vs 12 pwMS who had evidence of disability); the results are 
largely similar but the models, except the regional eFC model, had 
overall slightly larger AUCs (see Supplementary Fig. 5). The drop in the 
AUC results of the regional eFC model might be due to the major 
decrease in the number of the subjects of the disability group (33 with 
EDSS 2 and 12 with EDSS 3) and decreased separation of regional eFC 
metrics when EDSS 3 was used. We also re-ran the classification models 
using only CIS and RRMS patients (i.e. five pwMS with progressive 
disease category were excluded as their disease mechanisms or pro
gression may be different from other subtypes. The results were similar 
to what we observed with the original dataset: the pairwise and regional 
eFC outperformed other models (see Supplementary Fig. 6). 

3.4. Feature weights 

Age and sex had the highest weights in the pairwise and regional eSC 
and eFC models; being older or male was associated with having evi
dence of disability. Fig. 5 shows the feature weights for the pairwise and 
regional eSC and eFC classification models. Connections from the cere
bellum to the somatomotor regions and from cerebellum to limbic re
gions had the highest weights in both pairwise eSC and eFC models but 
in opposite directions; greater eFC and weaker eSC were associated with 
no disability. Additionally, weaker eSC between ventral attention and 
frontoparietal and subcortical networks was associated with evidence of 
disability while weaker eFC between cerebellum and somatomotor/ 

Table 1 
Subject demographics and clinical information. Values were presented as me
dian [1st, 3rd quantile] for the continuous variables as the number/percent for 
sex. The two sets of groups (no disability vs evidence of disability) were tested 
for differences; p-values shown were corrected for multiple comparisons; *in
dicates significance at p < 0.05.   

All pwMS (n =
100) 

No 
disability 
(n = 67) 

Evidence of 
disability (n =
33) 

p-value 

Age 46 [37, 56] 40 [35, 50] 56 [46, 58]  0.0001* 
Female (%) 66 (66%) 46 (69%) 20 (61%)  0.56 
Disease 

duration 
11 [7, 16] 10 [7, 15] 13 [9, 17]  0.06 

EDSS 1 [0, 2] 0 [0, 1] 2 [2, 3]  <2.2e-16* 
Number of 

spinal cord 
lesions 

1 [0,3] 1 [0,3] 2 [0,3]  0.46 

Disease 
category 

7 CIS, 88 
RRMS,5 
Progressive MS 

7 CIS, 60 
RRMS 

28 RRMS, 5 
Progressive MS  

<2.2e-16* 

Lesion 
volume 
(mm3) 

2065 [717, 
4779] 

1995 [734, 
4200] 

2482 [453, 
7788]  

0.49  
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visual/dorsal attention networks was associated with evidence of 
disability. 

Weaker eSC node strength in the cerebellum, somatomotor, and 
limbic networks and stronger eSC node strength in the ventral/dorsal 
attention and default mode networks were associated with no disability. 
Stronger eFC node strength in the visual, dorsal attention and fronto
parietal was associated with evidence of disability, while weaker eFC 
node strength in the cerebellum and somatomotor networks was asso
ciated with evidence of disability. 

Fig. 6 shows the feature weights for the observed SC and FC models, 
which both had lower classification accuracy and only provided them 
here for comparison to the eFC/eSC models. Weaker SC between the 
dorsal attention and visual networks and weaker FC between cerebellum 
and subcortical, ventral attention and default mode networks were 
associated with greater disability. Weaker SC between dorsal attention 
and cerebellum/somatomotor networks and weaker FC between default 

mode and dorsal attention networks was associated with no disability. 
Weaker SC and FC to/from the right cerebellum to the rest of the brain 
was also found to be associated with having evidence of disability (Tozlu 
et al., 2020a). There was a moderate correlation between the feature 
weights from the regional FC and eFC models (r = 0.52), while the 
correlations between pairwise FC vs eFC, as well as pairwise/regional SC 
vs eSC were non-significant and weak (r < 0.1) (See Supplementary 
Table 1). When the features were analyzed at network level, weaker SC 
and FC in the cerebellum was commonly found as associated with 
disability. 

4. Discussion 

In this study, we compared the performance of models using 
observed SC and FC (derived from advanced MRI directly in pwMS) 
against models using estimated SC and FC (derived from clinically 

Fig. 2. Comparison of pairwise connections between disability groups. The difference in connections between the evidence of disability vs no disability groups, 
where positive values (hotter colors) indicate pwMS who had evidence of disability had higher connectivity than those without disability, while negative values 
(cooler colors) indicate pwMS who had evidence of disability had trends for weaker connectivity than those without disability. Group differences are visualized via 
-log(p)*sign(difference in mean or median), where p here is the uncorrected p (only one pairwise connection was significant after correction for multiple com
parisons). The p-values were obtained using t-test to compare FC and eFC between disability groups, while Wilcoxon rank-sum test was performed to compare SC and 
eSC values between disability groups. Difference in mean was used for FC and eFC, while difference in median was computed for SC and eSC. *Note: none of the 
pairwise connections for SC, FC or eSC were significant; only one eFC connection (between right rostral anterior cingulate and right temporal pole) was significantly 
larger in pwMS who had no disability. 
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acquired lesion masks and the NeMo Tool) in classifying pwMS into no 
disability vs evidence of disability groups. We also identified the regions 
and/or connections that were most different between and important in 
classifying pwMS into disability groups and compared feature weights 
over the estimated and observed models. Our main findings were (1) 
models based on regional eSC and pairwise/regional eFC outperformed 
models based on their observed counterparts, (2) models based on 
pairwise eSC performed just as well as models based on pairwise 
observed SC, (3) models based on regional eSC and eFC performed the 
best out of all models considered (4) stronger eFC node strength of re
gions in the visual network and weaker eSC node strength of regions in 
the default mode and ventral attention networks was associated with 
disability, and (5) feature weights computed from the regional eFC and 
FC models were moderately, significantly correlated. 

4.1. Previous studies comparing estimated and observed connectivity 

The original NeMo Tool was used previously to map disruptions of SC 
to concurrent and future impairments in stroke and MS (A. Kuceyeski 
et al., 2015a; Kuceyeski et al., 2018, 2014; A. F. Kuceyeski et al., 2015b). 
As far as we know, no study to date has compared indirectly estimated 
SC or FC from the NeMo tool or any other techniques to directly 
observed SC or FC in their respective abilities to predict impairment or 
disability in pwMS. However, we are aware of several recent studies in 
stroke that have shown contrasting results. For example, one study 
showed that lesion masks themselves, in addition to estimated structural 
disconnectivity and to a lesser extend directly observed FC, predicted 
multiple post-stroke impairments while estimated functional network 
disruptions did not (Salvalaggio et al., 2020). In a follow-up replication 
study with the same dataset, Cohen et al. (Cohen et al., 2021) found that 

Fig. 3. Comparison of node strength be
tween disability groups. The difference in 
node strength between the evidence of 
disability vs no disability groups, where 
positive values (hotter colors) indicate pwMS 
who had evidence of disability had trends for 
higher connectivity than those without 
disability, while negative values (cooler 
colors) indicate pwMS who had evidence of 
disability had trends for weaker connectivity 
than those without disability. The colors 
display -log(p-value)*sign(difference in 
group means), where the p-value is uncor
rected significance of the group difference 
via an unpaired t-test (no p-values remained 
significant after correction). The radial plots 
summarize network-level differences via the 
mean of the positive and negative -log(p) 
*sign(differences in group means) across 7 
networks from the Yeo atlas, plus cerebellum 
and subcortex. The absolute value of the 
average negative connections were presented 
in the radial plots.   
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modifying the way in which estimated functional disruption was 
calculated resulted in models with explained variance similar to the 
estimated structural disconnectivity. Although our estimated FC was 
calculated in a very different manner than these studies, our results 
agree with the latter one. In fact, our results in pwMS actually show that 
models based on pairwise eFC outperform models based on pairwise 
eSC. Our novel approach to estimating FC from lesion masks could be a 
complimentary or alternative technique to lesion-network dysfunction 
mapping that may allow even greater explained variance when per
forming brain-behavior mapping in individuals with neurological 
disease. 

4.2. Estimated vs observed connectivity: Advantages and disadvantages 

Collecting and processing dMRI and fMRI in patient populations is 
difficult, as individuals often cannot tolerate long scan times, scans are 
expensive, and processing of the images requires a high level of exper
tise. In addition, anatomical or physiological changes like edema and/or 
inflammation can add noise to already noisy dMRI and fMRI modalities 
and further corrupt their accurate measurement. It has been shown that 
various tractography approaches in pwMS will better allow tracing of 
streamlines through MS lesions than others (Lipp et al., 2020). This is an 
especially important consideration when calculating SCs based on 
diffusion summary statistics like FA since the damaged voxels would 
optimally be included in the calculation. When using streamline count to 
construct SC, as we do here, it may be better to have decreased tracking 
through the lesioned areas so that damage to the white matter tract is 
reflected in the streamline count metric. In this study, deterministic 
tractography was used since it has been previously shown that deter
ministic tractography can identify white matter tracts just as well as 
probabilistic tractography, but with fewer false positive connections 
(Sarwar et al., 2019) that may be more prevalent in diffusion images of 
pwMS that contain more noise. In any case, our recent study (Tozlu 
et al., 2020a) that used a subset of the present cohort to classify the 
pwMS into disability groups showed that SC matrices computed from the 
deterministic and probabilistic approaches showed similar accuracy in 
the classification task. Furthermore, streamline count was used to 
compute the observed SC matrices since the NeMo Tool uses streamline 
count to create the estimated SCs and the deep neural network was 
trained using the deterministic SC matrices. Finally, big data ap
proaches, including deep learning, require very large samples of in
dividuals in order to create models that can generalize to new patient 
populations and truly be informative of disease mechanisms or be used 

for accurate prognoses. Collecting advanced MRI in the number of 
people needed to train these types of models would be nearly impossible, 
but our approach to estimating both SC and FC from clinically acquired 
lesion masks is much more feasible. Additionally, when obtaining large 
sample sizes, data is often combined across different sites. Inter-site 
variability in advanced MRI acquisitions is much more prominent than 
would be anatomical imaging used to create lesion masks only. There
fore, the NeMo tool can be advantageous as it is easier to implement, 
provides less noisy data, and allows to study larger number of patients 
compared to advanced imaging techniques, because only clinically ac
quired lesion masks are used to estimate SC and FC networks. 

The NeMo Tool does have some disadvantages compared to col
lecting advanced MRI directly in patient populations. First, the eSC and 
eFC are based on a population of 420 controls and may not closely reflect 
the particular individual’s anatomical or physiological connections. 
Second, there may be compensatory rewiring of SC or reorganization of 
FC that will not be reflected in the eSC and/or eFC, which means that use 
of the NeMo tool may not be appropriate in studies aimed at identifying 
recovery mechanisms. Third, there may be other pathologies in the brain 
that are not included in lesion masks and are thus not considered by the 
NeMo Tool. Finally, lesion masks must be coregistered to a common 
space which can be inaccurate at times in individuals with brain atrophy 
or gross abnormalities (Pereira et al., 2010). 

4.3. Comparison to previous classification studies in pwMS 

Previous studies have used SC and FC metrics to distinguish pwMS 
from HC and/or to classify pwMS by disability level defined by thresh
olding EDSS scores (Richiardi et al., 2012; Zhong et al., 2017; Zurita 
et al., 2018). A previous study compared the classification accuracy of 
SC and FC to discriminate pwMS into disability groups using a threshold 
EDSS of 2 (Zurita et al., 2018); our models based on observed connec
tivity metrics had higher AUC (0.47 vs 0.59 for models based on SC and 
0.53 vs 0.59 for models based on FC). The difference in results might be 
due to different clinical stage used in the studies (they used relapsing 
remitting and our study that included all phenotypes), different classi
fication methods (they used support vector machines and we used a 
ridge classifier) and different MRI acquisition and processing protocols. 
In a recent preprint, we used the NeMo Tool’s estimated regional dis
connectivity measures based on different lesion types (hyperintense rim 
positive or negative on quantitative susceptibility mapping imaging) 
and found AUCs similar to those found here (0.63–0.67) in classifying a 
different population of pwMS into no disability vs evidence of disability 

Fig. 4. Classification results. AUC results 
obtained using pairwise connectivity (left 
panel) and regional node strength (right 
panel) to classify pwMS into no disability vs 
evidence of disability groups. The plots show 
the median (white dot) and inter quantile 
range (black bar) of the AUCs over the 500 
hold-out test sets. The asterisks show the 
models that were significantly different after 
BH correction. SC: structural connectivity, 
FC: functional connectivity, eSC: estimated 
structural connectivity, and eFC: estimated 
functional connectivity.   

C. Tozlu et al.                                                                                                                                                                                                                                   



NeuroImage: Clinical 32 (2021) 102827

9

categories also based on a threshold EDSS of 2 (Tozlu et al., 2020b). An 
EDSS threshold of 3 was identified as the cut-off for functional reorga
nization and adaptation in MS (Tommasin et al., 2018). This study found 
no significant difference in FC between HC and pwMS who had an EDSS 
≤ 3, while FC decreased in the pwMS who had an EDSS > 3. Our 
replication study using a threshold EDSS of 3 and found largely similar 

results (see Supplementary Fig. 5). 
The focus of this work was on comparing the accuracy of observed vs 

estimated connectivity networks in classifying the people with MS ac
cording to disability level as well as investigating the regions or pairwise 
connections which were informative of disability. We did not set out to 
identify the most accurate classification model; with the limited number 

Fig. 5. The feature weights computed with eSC and eFC models. The relative weights of the (A) pairwise and (B) regional (node strength) eSC and eFC obtained in 
classifying pwMS according to disability. Feature weight metrics were divided by the maximum of the absolute value over all models. Positive weights (hotter colors) 
indicate those connections/regions where stronger connectivity was associated with having evidence of disability class, while negative weights (cooler colors) 
indicate those connections/regions where stronger connectivity was associated with being in the no disability class. The circle plots summarize the pairwise feature 
weights by representing the mean of the positive and negative pairwise feature weights between functional network assignments (7 networks from the Yeo atlas, plus 
cerebellum and subcortex). The radial plots summarize the feature weights of regional models by representing the mean of the positive and negative weights in the 
same functional networks used for the circle plot. The absolute value of the average negative connections were presented in the radial plots. 
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of individuals in the study and large dimensionality of the imaging 
variables, a model with fewer variables likely will have higher AUC. In 
fact, a simple logistic regression model using only age, sex, race, disease 
duration, and total brain lesion volume (on T2 FLAIR) had a median 
AUC of 0.71, which was similar to the best model (regional eFC with 
median AUC of 0.68). Future work focusing only on prediction accuracy 

(and not model inference, as we do here) using this data set may 
investigate dimensionality reduction techniques applied to high 
dimensional imaging measures to improve classification performance. 

Fig. 6. The feature weights computed with SC and FC models. The relative weights of the (A) pairwise and (B) regional (node strength) SC and FC obtained in 
classifying pwMS according disability. Feature weight metrics were scaled by the maximum of the absolute value over all models. Positive weights (hotter colors) 
indicate those connections/regions where stronger connectivity was associated with having evidence of disability class, while negative weights (cooler colors) 
indicate those connections/regions where stronger connectivity was associated with being in the no disability class. The circle plots summarize the pairwise feature 
weights by representing the mean of the positive and negative pairwise feature weights between functional network assignments (7 networks from the Yeo atlas, plus 
cerebellum and subcortex) The radial plots summarize the feature weights of regional models by representing the mean of the positive and negative weights in the 
same functional networks used for the circle plot. The absolute value of the average negative connections were presented in the radial plots. 
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4.4. Comparison of feature weights: Estimated vs observed connectivity 
models 

Even though the feature weights from the regional FC and eFC 
models are moderately correlated (Pearson’s r = 0.52, p-value < 10e-7), 
the correlation between the raw values of regional FC and eFC was weak 
(r = 0.09, p-value < 10e-16), therefore the interpretation of the feature 
weights of the eFC variables which were estimated via a deep learning 
model trained on healthy controls should be made with caution. 
Increased FC and eFC in cerebellum, subcortex, somatomotor, and 
ventral attention networks were commonly found to be associated with 
no disability while decreased FC and eFC in dorsal attention and default 
mode networks were commonly found to be associated with no 
disability. Moreover, higher node strength in many regions (>35) in the 
FC and eFC models were commonly associated with disability. This 
finding is consistent with previous studies showing upregulation of FC 
reflecting possible compensation in pwMS having lower EDSS compared 
to those with greater EDSS (Tommasin et al., 2018). 

4.5. Assessment of feature importance 

A recent study (Tian et al., 2021) showed that coefficients of models 
predicting cognition and sex using observed FC can be unreliable. In 
their paper, they argue that increasing sample size, applying the Haufe 
transformation and using non-sparse regularization can all improve the 
feature weight reliability; furthermore they found that mass univariate 
results can be more reliable than model coefficients. In our study, we 
used (non-sparse) ridge regularization, however the Haufe trans
formation cannot be applied as our model contains binary/categorical 
demographic variables (such as sex and spinal cord lesion category). 
Therefore, here we focus on reporting classification model coefficients 
that also agreed with the mass univariate group comparison results. 

4.6. eSC in the default mode and ventral attention and eFC in the visual 
networks had the highest importance for disability classification in MS 

In our study, weaker eSC in the default mode and ventral attention 
networks was commonly found as associated with disability in both 
univariate test and the classification model. Structural disruption and 
functional alterations in the default mode network were previously 
found as associated with poorer cognitive abilities and cognitive reha
bilitation outcomes (Fuchs et al., 2020; Has Silemek et al., 2020). 
However, this is the first study that showed the relationship between 
disability and connectivity changes in these networks in MS. In our 
study, we also showed that greater eFC in the regions of the visual 
network was associated with disability. Our results were in concordance 
with a previous study (Rocca et al., 2018) that also showed greater FC of 
the visual network in pwMS as compared to HCs and interpreted as the 
presence of cross-modal plasticity mechanisms after visual impairment 
seen in early MS (Rocca et al., 2005). 

4.7. eSC and eFC between the cerebellum and somatomotor networks is 
central to accurate disability classification 

It was not surprising that the eSC and eFC from the somatomotor 
network and cerebellum had the highest weights in identifying pwMS’s 
disability level, as these networks are central to motor and movement. In 
addition to the cerebellum-somatomotor/limbic connection, a decrease 
in the connectivity metrics in the cerebellum was also associated with 
having more probability of having disability. Previous studies have 
shown relationships between cerebellar pathology and impairments in 
motor control and cognition (D’Ambrosio et al., 2017; Weier et al., 
2014). The presence of cerebellum-related symptoms at the onset of MS 
such as coordination issues or tremor were i) shown to be associated 
with shorter time to an EDSS of 6 (Weinshenker et al., 1991) and ii) 
related to earlier onset of progressive disease diagnosis (Novotna et al., 

2015). Atrophy in the anterior cerebellum was associated with motor 
dysfunction (D’Ambrosio et al., 2017) in pwMS. In our previous study, 
the cerebellum was also shown as the most important region in classi
fying pwMS by disability level, where eSC was computed using only 
hyperintense rim lesions from quantitative susceptibility imaging (Tozlu 
et al., 2020b). Another study that investigated FC in the cerebellum 
found that the loss of functional cerebellar connections was related to 
disability. Our results and previous findings may suggest that decreasing 
structural deterioration and functional upregulation in the cerebellum 
may be a new target for clinical trials (Tommasin et al., 2018). 

Among demographics and clinical variables, age and sex appeared to 
be an important predictor for disability classification; specifically, being 
older and male was associated with a higher probability of being in the 
disability group. It has been shown previously that male patients tend to 
have more severe disease onset with accelerated clinical progression in 
MS (Bove et al., 2012). 

4.8. Limitations and future work 

One of the limitations of the present study was in the quality of the 
advanced MRI collected directly in pwMS. The fMRI acquisition time 
was relatively short and had a longer TR (6 min, TR = 2.3 s) and the 
dMRI acquisition had only a single b-value of 800 and only 55 di
rections. These limitations may mean less accurate observed FC or SC, 
which could have negatively impacted their classification accuracy. A 
future study will be needed to compare eSC and eFC to SC and FC from 
higher quality fMRI and dMRI acquisitions, however if high-quality SC 
and FC are superior than eSC and sFC, it may still be preferable to use 
estimates given feasibility issues. The estimates of SC and FC from the 
NeMo tool are based on a database of controls and thus cannot capture 
an individual’s specific SC anatomy or the particulars of the relationship 
between SC and FC under the influence of lesion pathology. Addition
ally, there may be pathologies in the white matter of pwMS that are not 
contained in the lesion masks and are thus not considered in the NeMo 
Tool’s estimates. However, MS lesions disrupt diffusion MRI signals and 
add noise to tractography results, and the current findings indicate that 
the NeMo Tool is a good alternative to performing tractography directly 
in pwMS. This study investigates cross-sectional relationships between 
disability and connectivity; a future study mapping baseline connec
tivity to future disability is be needed to better understand the prog
nostic ability of estimated connectomes. The secondary goal of this study 
was to compare the various models’ feature importance patterns, and 
dimensionality reduction techniques would not permit easy comparison. 
However, future work may explore using dimension reduction to 
improve model performance. 

4.9. Conclusions 

This is the first study to show that models using estimated SC and FC 
based only on lesion masks and the NeMo Tool outperform models based 
on observed SC and FC extracted from advanced MRI in classifying 
pwMS into disability categories. Models based on eFC’s regional node 
strength had the highest overall classification performance. Stronger 
eFC node strength of regions in the visual network and weaker eSC node 
strength of regions in the default mode and ventral attention networks 
was associated with disability. A deeper understanding of the role of the 
connectome in MS is needed if we are to gain a comprehensive view of 
the disease, develop more accurate prognostic or therapeutic tools and 
ultimately improve clinical outcomes in pwMS. This work provides a 
viable alternative to performing high-cost, advanced MRI in patient 
populations, brings the connectome one step closer to the clinic. 
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