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Abstract

Motivation: A fundamental problem for disease treatment is that while antibiotics are a powerful counter to bacteria,
they are ineffective against viruses. Often, bacterial and viral infections are confused due to their similar symptoms
and lack of rapid diagnostics. With many clinicians relying primarily on symptoms for diagnosis, overuse and mis-
use of modern antibiotics are rife, contributing to the growing pool of antibiotic resistance. To ensure an individual
receives optimal treatment given their disease state and to reduce over-prescription of antibiotics, the host response
can in theory be measured quickly to distinguish between the two states. To establish a predictive biomarker panel
of disease state (viral/bacterial/no-infection), we conducted a meta-analysis of human blood infection studies using
machine learning.

Results: We focused on publicly available gene expression data from two widely used platforms, Affymetrix and
Illumina microarrays as they represented a significant proportion of the available data. We were able to develop
multi-class models with high accuracies with our best model predicting 93% of bacterial and 89% viral samples cor-
rectly. To compare the selected features in each of the different technologies, we reverse-engineered the underlying
molecular regulatory network and explored the neighbourhood of the selected features. The networks highlighted
that although on the gene-level the models differed, they contained genes from the same areas of the network.
Specifically, this convergence was to pathways including the Type I interferon Signalling Pathway, Chemotaxis,
Apoptotic Processes and Inflammatory/Innate Response.

Availability: Data and code are available on the Gene Expression Omnibus and github.

Contact: philipp.antczak@uk-koeln.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The varying differences within both classes of bacterial and viral
infections cause the body to respond in a distinct way (Shi and
Gewirtz, 2018). Bacteria can be countered by pathways such as
complement-mediated lysis and the cell-mediated response for those
that survive phagocytosis and live within the cell (intracellular bac-
teria). In this response, cells present bacterial peptides (antigens) on
their surface, which are identifiable by Helper T cells that mediate
bacterial destruction (Chaplin, 2010). There are a large variety of

viruses and bacteria that affect the host’s immune system in various
ways. Whilst some response pathways may overlap for bacterial and
viral infections, there are however a number of key differences
(Rock et al., 2016; Yewdell and Bennink, 1999). In fact, these differ-
ent response pathways cause varied transcription (expression) of key
genes and, as such, can provide a basis for distinguishing disease
state based on the host’s transcriptional response (Manger and
Relman, 2000). Such knowledge can be exploited in differentiating
between viral, bacterial and control biological states. A previous
study demonstrated this by developing a small set of only seven
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genes that can accurately discriminate bacterial from viral infections
across a range of clinical conditions, whilst simultaneously succeed-
ing to determine with high accuracy that patients do not require
antibiotics (Sweeney et al., 2016). Simultaneously, there have been
numerous other studies looking at diagnosing infection based on
the- host’s transcriptional response (Dawany et al., 2014; Hu et al.,
2013; Nascimento et al., 2009; Ramilo et al., 2007; Zaas et al.,
2009). Previous work failed to generalize as the data contains a far
smaller set of pathogens than would be encountered in ‘real world’
scenarios, or studies focussed on single technology platforms, specif-
ic pathogens or geographical regions (which contain populations
with different HLA alleles and different local pathogen groups). To
address this lack of generalization, this work aims to utilize a large-
scale analysis over a more representative sample set to improve bio-
marker generalizability. To gain statistical power and develop more
robust panels, meta analyses of publicly available data have proven
to be an effective technique (Lagani et al., 2016). However, analysis
integrating several cohorts together faces inherent limitations from
systematic variations otherwise known as ‘batch effects’. Without
proper handling, these batch effects have been demonstrated to be
detrimental in population level gene expression analysis (Akey et al.,
2007). Data-driven identification of robust biomarkers is a much-
debated subject in the biological field. Several machine learning
(ML) approaches have been proposed, with typically good perform-
ance on datasets used in a given study, but poorer performance
when biomarkers are taken forward for validation. This is mainly
due to lack of external validation or inherent cross-validation
approaches used during the model optimization process. Important
is the distinction between uni- and multi-variate approaches to bio-
marker discovery. While identifying a single predictive marker might
be preferred in theory, multi-variate approaches have enabled the
discovery of more complex relationships that can provide perform-
ance (sensitivity; specificity) far exceeding univariate predictive
models (Trevino and Falciani, 2006) including features embedded in
specific regions of an underlying molecular interaction network
improving biological insight into physiological responses (Ortega
et al., 2008). One particular aspect in multi-variate predictive
approaches is the optimization of the representative model, which
rarely can be achieved through brute force testing and relies on fea-
ture selection algorithms. In this publication, we focus on the use of
the Random Forest (RF) (Breiman, 2001) classifier, which has been
demonstrated to perform well in real-world classification problems
with high dimensionality and biased data (Denil et al., 2014). RFs
are bagged decision tree models, which classify data points on a sub-
set of features and have been praised for their ability to avoid over-
fitting (Segal, 2004). Unlike Support Vector Machines or Neural
Networks (two frequently used models with high predictive capabil-
ities), RFs forego much of the model selection step using an ensem-
ble approach that builds many weak classifiers into a single strong
self-averaging, interpolating model (Cawley and Talbot, 2010).
Whilst RFs consist of many weaker models, they have been shown
highly effective at capturing non-linear relationships between model
predictors and outputs in a number of genomic studies (Dı́az-Uriarte
and Alvarez de Andrés, 2006; Jiang et al., 2004). Feature selection
can vastly improve these ML models by removing and reducing the
overall complexity of the data, increasing the statistical power,
faster computational implementation and removing the overall noise
(Iguyon and Elisseeff, 2003). Various feature selection procedures
exist and have been demonstrated in biological problems (Saeys
et al., 2007). For this study, we focused on backwards elimination
(BW) for gene expression data (Dı́az-Uriarte and Alvarez de Andrés,
2006) forming a well-established benchmark, and an evolutionary
algorithm, a more explorative and parameterizable search approach,
to obtain smaller feature sets (Trevino and Falciani, 2006). BW es-
sentially searches for the optimal feature set by progressively elimi-
nating the least important features from a given dataset and testing
whether the new model is significantly more accurate than the previ-
ous. Whereas evolutionary algorithms are based on evolving popula-
tion(s) of models, which are repetitively intermixed, and subject to
random point mutations. This evolutionary process is assumed to
produce converging model populations in terms of performance and

their associated feature sets (de la Fraga and Coello Coello, 2011).

In this publication, we focus on the development of predictive mod-
els able to distinguish viral, bacterial and no infection samples using

publicly available transcriptomics data (human blood samples where
individuals had bacterial, viral or no infection) from two microarray

technologies (Affymetrix and Illumina). We applied a BW and evo-
lutionary algorithm to these data to identify models predictive of in-
fection status and compared the results in a biological context by

exploring the neighbourhoods of these genes. These network repre-
sentations show that while the technologies develop different mod-

els, selection occurs in similar functional space, highlighting the
robustness of our models. We further validated our models by evalu-
ating the top models across the two technologies.

2 Materials and methods

2.1 Data integration
To identify and validate a panel of biomarkers able to differentiate
bacterial and viral infections, we performed a meta-analysis of GEO

gene expression data, all from open source microarray human blood
infection studies. Our analysis was divided into three major method

steps: (i) pre-processing, (ii) feature selection and (iii) inferring a
gene interaction network to discover and validate gene lists (1).
Following the major steps, we performed and report the results of a

final out-of-sample test on data not previously used in the
training phase for greater validation. All code is available on github
(https://github.com/PGB-LIV/Classifying-disease-state-in-high-di

mensional-data).

Data

Datasets from Affymetrix and Illumina platforms, consisting of

3868 samples, from 21 different studies were included in the ana-
lysis (Table 1—available on GEO under GSE162329 and

GSE162330). Selection criteria included study set size, class patho-
gen strain distribution and ability to integrate the data. Studies for
which there were ambiguous annotations (possible bacterial (b?)

viral (v?)) were incorporated (an analysis for confirmed cases only is
shown in Section S2, Supplementary Material). To integrate the

data, ProbeIDs were substituted by their gene mappings and dedu-
plicated by selecting the ProbeID/gene combination with the highest
average intensity across samples (Table 2 and Wang et al., 2012).

Data from each manufacturer was batch-corrected to remove inter-
platform and intra-platform batch effects using ComBat (Johnson

et al., 2007) in a two-step sequential batch correction pipeline
(Section S1, Supplementary Material). For intra platform batch cor-
rection, ‘study ID’ was passed as the batch and ‘sample classes’ were

used as covariates. For the inter platform batch correction, ‘series’
(platform GPL) was provided as the batch variable with no addition-
al covariates. Batch correction success was estimated by calculating

the significance of the overlap of differential gene expression results
pre and post batch as well as through principal component analysis

(PCA) (Pearson, 1901).

Feature selection

Two feature selection procedures: (i) a Backward Elimination pro-

cess (Huang et al., 2009) and (ii) a genetically inspired search algo-
rithm (GALGO) (Trevino and Falciani, 2006) were used. Both
search procedures operated using the RF Classifier, implemented in

the R Ranger package (Wright and Ziegler, 2017). Datasets were
fed into these approaches with their full class list (bacterial/viral/no

infection) and a single predictive model requested. Depending on the
feature selection strategy, this included different steps described
below. For both a study aware data split and smaller class penalty,

as implemented in Breiman’s (2001), was used to ensure best pos-
sible model development. In both cases, the reported results are
based on the evaluation data split.
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Backward elimination

A 60/20/20 training/test/evaluation data split was used in BW, with
60 used for model training, 20 used to select trained models, then a
final 20 as a ‘held out’ subset for final evaluation and reporting, a
standard technique in ML (Hastie et al., 2009). For each dataset, we
ran 240 BW search procedures, using out-of-bag (OOB) error as the
minimization criterion and implementation using the VarSelRF R
package (Dı́az-Uriarte, 2007). Each run generated a single optimal
model that minimized OOB. For each dataset, a single representa-
tive model was selected from the 240 runs that maximized accuracy
on test data.

Genetic algorithm

The Genetic algorithm (GA) optimized approach is an efficient
method for creating suitable multivariate models. We used the R li-
brary GALGO (Trevino and Falciani, 2006) to identify a small fea-
ture model by continuously crossing a number of small feature
models (chromosomes of features) with each other, hypothetically
identifying better models with successive generations and repeating
this procedure several times. We used an initialized fitness goal of
0.95, model size (chromosome size) of 15 genes and k-fold cross-
validation to counter overtraining. Similar to the BW approach,
GALGO uses a multiple split strategy (Trevino and Falciani, 2006).
Two hundred and fifty models were generated for each dataset and
a representative model established through a frequency based for-
ward selection strategy that ensures only genes that contributed to
predictions are included in the final model (Section S2,
Supplementary Material).

2.2 Inferring underlying interaction network
Gene regulatory networks were developed using ARACNe
(Margolin et al., 2006) (Fig. 1). To select significant interactions
within our dataset, we used a P-value threshold < 0.05 in the
ARACNe procedure. Networks were loaded into Cytoscape
(Shannon et al., 2003) and visualized. To identify highly intercon-
nected sub-networks within our reconstructed regulatory network,

we utilized the Cytoscape clustering plugin GLay (Su et al., 2010) to
implement the divisive Girvan–Newman algorithm that removes
edges based on betweenness (Newman, 2006). This resulted in a
number of smaller sub-networks and allowed us to inspect their
functional roles within the larger network. DAVID was used to map
higher-level ontologies on these subnetworks (Huang et al., 2007).
For clusters of genes with enriched and significant terms related to
the immune response, we labelled them manually as functionally
relevant (FR) clusters. These FR clusters allowed us to make infer-
ences about which biological functions hold predictive power by
overlaying model selected genes onto our labelled gene regulatory
network.

2.3 Out of sample testing
To validate the models obtained by feature selection within the
Affymetrix and Illumina datasets, we tested their predictive abil-
ity in the other dataset. Briefly, in the case of the Affymetrix
optimized model, we extract the best performing genes and
retrained and tested the RF classifier using the Illumina dataset
with a 60/40 training/test split. For an Illumina optimized
model, we followed the same principle but on the Affymetrix
dataset. These non-discovery datasets contained samples from
different studies and technology and therefore represented the
ideal validation datasets. With similar error between discovery
and non-discovery data, one can be confident that models have
not overfitted to a given dataset and are suggested to be
generalizable.

3 Results

3.1 Integrating data across multiple platforms
The final datasets contained 19,947 and 13,383 distinct genes for
the Illumina and Affymetrix datasets, respectively. The lower
Affymetrix count was due to platforms GPL571 and GPL9188 that
only contained 13,383 genes (Table 1). Manufacturer relevant data-
sets were merged successfully (Fig. S2, Supplementary Material).

Table 1. Summary of platform-level Affymetrix and Illumina datasets prior to pre-processing

Manufacturer Affymetrix Affymetrix Affymetrix Illumina

Platform (GPL) GPL570 GPL571 GPL9188 GPL10558

Studies (GSE) GSE49954, GSE50628,

GSE54992, GSE25504,

GSE66099, GSE69606,

GSE6269, GSE18090,

GSE28750, GSE34205

GSE52428, GSE95104,

GSE17156

GSE30550 GSE29385, GSE32707,

GSE37250, GSE40396,

GSE60244, GSE64456,

GSE68310

Distinct Genes 22,213 13,383 13,383 19,947

Sample Count (%) 615 (100) 834 (100) 268 (100) 2151 (100)

Bacterial (b) (%) 27 (4.4) 60 (7.2) 0 (0) 215 (10.0)

Uncertain Bacterial (b?) (%) 227 (36.9) 0 (0) 0 (0) 141 (6.6)

Viral (v) (%) 164 (26.7) 358 (42.9) 132 (49.3) 1069 (49.7)

Uncertain Viral (v?) (%) 0 (0) 348 (41.7) 119 (44.4) 0 (0)

Control (c) (%) 156 (25.4) 68 (8.2) 17 (6.3) 467 (21.7)

Other (%) 41 (6.7) 0 (0) 0 (0) 259 (12)

Table 2. Merged and batch corrected modelling dataset description

Dataset Distinct genes Platforms Bacterial samples Viral samples Control samples Total samples

Affy_I 13,383 GPL570, GPL571,

GPL9188

314 (18.74%) 1121 (66.89%) 241 (14.38%) 1676

Illumina_I 19,947 GPL10558 356 (18.82%) 1069 (56.50%) 467 (24.68%) 1892

Merged and batch corrected Affymetrix and Illumina (ambiguous classes integrated) dataset breakdown by distinct genes, platforms, class make up, and sample

count.
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The resulting two datasets Affy_I and Illumina_I contained 1676
and 1892 samples, respectively. Both datasets contained more than
50% viral samples with bacterial samples the most underrepresented

class (Table 1).

3.2 Identifying biomarker panels predictive of viral,

bacterial and no-infection
A backward selection (BW) and genetic algorithm-based approach
(GA) were applied to the resulting data. To compare the selection
strategies between the two approaches, genes were ranked and their

relative gene selection frequencies computed (Table 3). BW search

procedures in both technologies converged to a small set of genes.
For Affymetrix, 14 genes were included at a rate of 1.0, whereas, for
Illumina BW, results contain 12 genes at a rate of 1.0 (Table 3).
GA’s on the other hand contained a much wider gene selection in
the evolved chromosome; in both manufacturers, only a single gene
was included at a relative rate of 1.0. Overall search results (aggre-
gated between runs by frequency) from BW and GA in both
Affymetrix and Illumina all contained LY6E (lymphocyte antigen
6E, UniProt: Q16553) amongst their nine most frequently selected
genes. IFI27 (interferon alpha-inducible protein 27, mitochondrial,
UniProt: P40305) and IFI44 (interferon-induced protein 44,
UniProt: Q8TCB0), also had high selection frequencies for three of
the four search procedures (Table 3). These three genes (LY6E,
IFI27 and IFI44) are all type-I interferon-inducible genes (ISGs),
demonstrated to have altered expressions in disease states and
known to be highly effective at countering infection (Kyogoku et al.,
2013; McNab et al., 2015; Rönnblom and Eloranta, 2013;
Schneider et al., 2014). Many of the other frequently selected genes
have been previously linked to disease state in literature. MS4A4A,
IFI44L, OAS2 and IFIT5 are known ISGs; increased levels of MMP8
have been observed in HIV viral studies (Singh et al., 2018);
SIGLEC1, a Type 1 transmembrane protein, is expressed by a sub-
population of macrophages found upregulated during in vivo re-
spiratory syncytial virus infections (Jans et al., 2018) and
contributes to the initiation of formation of the virus-containing
compartment (Hammonds et al., 2017).

To further investigate gene convergence, we compared the rela-
tive model gene inclusion rates for all search procedures together.
Figure 2 shows the resulting stacked frequency, where 88 genes are
visualized that had greater than 5% aggregated inclusion across all
search procedures (Table S38, Supplementary Material). This high-
lighted LY6E, IFI27 and CD177 as important key genes. CD177 is a
neutrophil-specific receptor known to be at increased expression for
patients in septic shock (Demaret et al., 2016; Stroncek, 2007). To
better compare the models, we performed a functional enrichment
analysis of these 88 intersecting genes between the two manufac-
turers’ models. We found both highly enriched and significant terms
relating to the immune response: ‘Antiviral defense’ comprising 12
genes, the ‘type I interferon signalling pathway’ that included 10
genes, and ‘Immunity’ encompassing 17 genes (Fig. 3). Final repre-
sentative models were developed (Affy_BW, Affy_GA, Illumina_BW
and Illumina_GA) and evaluated on their performance on a held-out
data split. Model performance was recorded as the size of the gene
list and its class-based performance in terms of: Balanced Accuracy,
Sensitivity, Specificity and Mcnemar’s Test P-value that tests for

Table 3. Top 16 Gene selection for Affymetrix and Illumina models and their relative selection frequencies

Affymetrix genes (relative frequency) Illumina (relative frequency)

BW GA BW GA

MS4A4A (1.00) PCOLCE2 (1.00) IFI44 (1.00) IFI27 (1.00)

MTHFD2 (1.00) CEP55 (0.97) MCEMP1 (1.00) EPSTI1 (0.41)

RSL24D1 (1.00) HBA1.HBA2 (0.88) CD177 (1.00) LY6E (0.39)

TSPO (1.00) CDC27 (0.66) GPR84 (1.00) SPATS2L (0.34)

LY6E (1.00) TSPO (0.56) EIF1 (1.00) RSAD2 (0.26)

MMP8 (1.00) LY6E (0.50) IFI27 (1.00) IFIT5 (0.24)

NSUN7 (1.00) MMP8 (0.47) EPSTI1 (1.00) IFI44 (0.24)

IFI27 (1.00) PGD (0.47) REPIN1 (1.00) ZDHHC19 (0.22)

CXCL10 (1.00) RSL24D1 (0.47) LY6E (1.00) FCGR1A; FCGR1CP (0.21)

ITGAM (1.00) SIGLEC1 (0.47) ALKBH5 (1.00) IFI44L (0.19)

PSMA6; KIAA0391 (1.00) IFI44 (0.44) EEF2 (1.00) MCEMP1 (0.19)

GRB10 (1.00) OAS3 (0.44) RBM33 (1.00) PRC1 (0.18)

GYG1 (1.00) WNT10B (0.44) ARRB1 (0.99) HPGD (0.17)

PGD (1.00) ADAMTS3 (0.41) DSCR3 (0.99) OAS2 (0.17)

CD177 (0.99) HPR.HP (0.38) TSPAN18 (0.99) HERC5 (0.17)

OLAH (0.99) OLAH (0.38) FCGR1A; FCGR1CP (0.96) IFITM3 (0.15)

Frequency provided in brackets is based on the model selection frequency in each optimization run (the number of times a gene was selected across the number

of optimised models). Bold genes are included amongst three of models top 16 selection, and underlined genes are included in all four.

Fig. 1. Conceptual overview. Individual data (A), containing bacterial (b), viral (v),

control (c), and samples with lower levels of study confidence(? s) are merged. (B)

Combined and batch corrected dataset. Feature selection is performed on data B in

Step 2 using (i) BW and (ii) an Evolutionary algorithm. (C) Gene Lists obtained in

the feature selection. Data B is also used to infer and cluster a gene interaction net-

work by (i) reverse engineering the gene interaction network and (ii) clustering the

adjacency matrix. (D) The clustered interaction network overlaid with genes found

in the best performing model of each dataset and search procedure

2350 A.C.Myall et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab089#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab089#supplementary-data


consistency in responses and can reveal bias to classifying a certain
class (Dietterich, 1998) (full results included in S2 Biomarker search
results, Supplementary Material). Average model size was similar
between both Affymetrix and Illumina models (30–37 genes) (Table
4). On average models classified 0.89 of Bacterial, 0.72 of Control
and 0.86 of Viral classes correctly across all datasets. In particular,
the Affymetrix models, BW and GA, performed particularly well in
terms of balanced accuracy on bacterial samples (0.94 and 0.93, re-
spectively). In terms of sensitivity all models performed well for bac-
terial and viral classes (on average 0.85 and 0.93, respectively),
however control sample performance was worse when compared to
the viral and bacterial classes (0.57). Evaluating model specificity,
bacterial classification performance was particularly high over all
models (averaging 0.95) that would suggest that we can identify bac-
terial samples particularly well regardless of the model used.

3.3 Inferred interaction networks
GLay clustering of the Illumina gene interaction network initially
revealed 14 clusters containing more than 10 genes (Fig. 4—see
Section S3, Supplementary Material, for the Affymetrix based ana-
lysis). To enable a more granular analysis of specific network sec-
tions (those indicated to be FR in the immune response as indicated
by enrichment analysis, or containing genes selected by our models)
we further partitioned several of the initial clusters, forming a net-
work hierarchy (limited to a depth of 3). This resulted in 110

distinct groups of genes that we analysed (Table 5). In the Illumina
data-derived results, 24 of the 110 clusters were marked as FR
(Table 5), of these, 10 FR clusters contained genes selected by an
Illumina optimal model. In total 55 genes from the Illumina optimal
models were found in these 10 FR clusters (68% of all the 81
Illumina model selected genes found in the network). Additionally, a
small number of clusters (four) were selected by every optimal
Illumina model.

Affymetrix—illumina cluster comparison

We found a similar number of clusters converged between both
Affymetrix and Illumina-derived gene lists in their respective
networks (Section S3, Supplementary Material). Importantly,
the clusters were identified using an approach that tests for
increased connectivity within the network, and as such, modules
containing highly co-expressed genes are identified. Separate
clusters therefore represent features that are further away from
each other. The observed convergence therefore suggests that
the RF models are selecting features from particular gene func-
tional units within our network. Interestingly, the gene level
convergence is more heterogenous likely due to technical differ-
ences between the technologies. For greater biological under-
standing we compared the most selected clusters from both the
Affymetrix and Illumina Interaction Network. In Illumina this
was Cluster 3.1.3 (Section S3, Supplementary Material). Whilst
the size between both clusters was not comparable
(Affymetrix—Cluster 5 being 435 Genes and Illumina Cluster
3.1.3 being only 47) we found an intersection of 16 Genes
(DDX60, IFI35, IFI44, IFI44L, IFIH1, IFIT1, IFIT2, IRF7,
ISG15, MX1, OAS2, SCO2, TIMM10, TRAFD1, TRIM22 and
ZBP1), which was statistically significant (P-value < 3.18e-12),
10 of which known to be ISGs (IFI35, IFI44, IFI44L, IFIH1,
IFIT1, IFIT2, IRF7, ISG15, MX1, OAS2) (McNab et al., 2015).
Performing DAVID enrichment analysis on both clusters, we
find in Illumina Cluster 3.1.3 one highly enriched term ‘type I
interferon signalling pathway’ albeit with a non-significant P-
value (Section S3, Supplementary Material). We do not see the
same term in the Affymetrix cluster; however, it does contain
numerous ISGs, which we saw commonly amongst gene lists.
This convergence between independent feature selection across
separate manufacturers and different studies reinforces the high
predictive power of ISGs for discriminating disease state across
infection studies.

Independent cluster convergence between affymetrix and

illumina models

To examine whether convergence between Affymetrix and Illumina
was also to the same clusters containing the same genes we looked
at where in the Illumina interaction network Affymetrix gene lists
selected from (Fig. 4, full break down in Section S3, Supplementary
Material). Although selected genes varied between Affymetrix and

Fig. 2. Gene frequency in Affymetrix and Illumina models. Each model frequency is scaled between 1 and 25. Model overlapping gene frequencies are then stacked and col-

oured by model-dataset combination. Affymetrix models by shades of blue and Illumina models by shades of red

Fig. 3. Functional enrichment analysis of the identified 88 genes intersecting be-

tween Affymetrix and Illumina search procedures. ‘Antiviral defense’ is the most sig-

nificant term, whilst ‘type I interferon signalling pathway’ is the most enriched

albeit with a non-significant P-value
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Illumina sets, we indeed found that both converged around the same
clusters of genes. Moreover, we found that 19 clusters (including
lower level sub clusters) were selected by both Affymetrix and
Illumina models in the Illumina interaction network. Interestingly

amongst this set, the four sub clusters intersecting across all Illumina
gene lists (all from within the larger Illumina-Cluster 3: Fig. 4) were
also selected by Affymetrix gene lists: Illumina-Cluster 3.1.3,
Illumina-Cluster 3.1.4, Illumina-Cluster 3.1.5 and Illumina-Cluster
3.4. All of these clusters contained genes revealed by selection fre-
quency analysis in previous Section 4.2. We investigated all four
clusters selected by all Illumina models (Clusters 3.1.3, 3.1.4, 3.1.5
and 3.4) and found they could be separated functionally to different
aspects of an immune response. As mentioned, enrichment analysis
on Illumina Cluster 3.1.3 revealed the ISGs to be present. However,
enrichment analysis also revealed a number of both highly enriched
and significant terms related to viral infections (‘response to
Viruses’, ‘defense response to virus’), and most prominently
‘Antiviral Defense’, which is no surprise given the high number of
interferon related genes in the cluster (Section S3, Supplementary
Material). Comparing the 47 genes in Clusters 3.1.3 to our model
frequency analysis revealed 18 overlapping genes (DHX58, EPSTI1,
HERC5, IFI44, IFI44L, IFI6, IFIT1, IFIT2, IFIT5, ISG15, MX1,
OAS2, OAS3, RSAD2, RTP4, SAMD9, SPATS2L and TMEM123).
For cluster 3.1.4, in which LY6E resides, it bears relation to cell

Fig. 4. Clustered Illumina interaction network. Illumina models’ selected genes are blue, Affymetrix selected genes are orange, and those intersecting both technologies are

pink. (A) Illumina Interaction network after initial clustering (visualizing clusters > 10 genes). (B) Cluster 3, containing the most selected genes that intersected between

Affymetrix and Illumina models. (B.1) Cluster 3 enlarged. (C) Highly selected sub clusters of Cluster 3. (D) Cluster 3.4, a sub cluster of Cluster 3 containing two genes that

were selected by both Affymetrix and Illumina models

Table 5. Illumina interpreted inferred interaction network

properties

Nodes (genes) Sub-clusters

of more than

four genes

(% of all)

FR clusters

(% of all)

FR clusters

selected

by > 1

model

(% of all)

FR clusters

selected

by all

four models

(% of all)

19839 110 (1.00) 24 (21) 10 (9) 4 (4)

Clusters have been labelled either functionally related to the immune re-

sponse (FR). For a cluster to be labelled as FR, functional enrichment analysis

of their gene list will have revealed terms both enriched and significant impli-

cated in the host response to disease.

Table 4. Overall optimal model performance

Affymetrix Illumina Average

BW GA BW GA

Gene-set size 33 36 30 37 34

Balanced accuracy

(B/C/V)

0.94/0.78/0.86 0.93/0.82/0.89 0.86/0.70/0.78 0.82/0.58/0.89 0.89/0.72/0.86

Sensitivity (B/C/V) 0.90/0.57/0.97 0.88/0.66/0.97 0.80/0.47/0.87 0.83/0.58/0.89 0.85/0.57/0.93

Specificity (B/C/V) 0.93/0.96/0.76 0.99/0.97/0.81 0.93/0.92/0.87 0.93/0.94/0.77 0.95/0.95/0.80

Mcnemar’s test

P-value

3.57E-03 4.90E-10 2.36E-03 4.33E-15 5.93E-03

2352 A.C.Myall et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab089#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab089#supplementary-data


signalling with by far the most significant and enriched term
‘chemotaxis’ (Section S3, Supplementary Material). Chemotaxis is
well known to play critical role in host response to infections and is
specifically involved in recruitment of leukocytes and movement of
lymphocytes around the body (Jin et al., 2008). The intersect of clus-
ter 3.1.4 with our model frequency analysis was also large, being 12
of its 40 genes (ATF3, CCL2, CXCL10, HERC6, LAMP3,
LGALS3BP, LY6E, OTOF, PARP12, SEPT4, SERPING1 and
SIGLEC1). Cluster 3.1.5 contains genes involved in programmed
cell death, containing several significant and enriched terms like
‘Apoptosis’, ‘Regulation of apoptotic process’ and ‘apoptotic pro-
cess’ (Section S3, Supplementary Material). A total of 3 of its 37
genes intersected our model frequency analysis (CHMP5, FCGR1A
and FCGR1B). Illumina cluster 3.4 contained genes more related to
general innate responses with enriched terms containing
‘Inflammatory response’ and ‘innate immune response’ with non-
significant P-values (Section S3, Supplementary Material). Amongst
the genes are a number related to the Toll-like receptor family (also
an enriched and significant term), which respond to microbial prod-
ucts and viruses, and are key receptors of the innate immune system
(Das et al., 2017). Although not visible in the functional enrichment
analysis, Illumina Cluster 3.4 also contained a number of
Interleukin genes (IL1B, IL1R1, IL4R, IL18R1, IRAK3), known to
be involved in inflammation and fundamental to innate immunity
(Dinarello, 2011). Out of the 253 genes in cluster 3.4, 15, including
CD177, intersected with previous frequency analysis (BATF,
CD177, DDAH2, GADD45A, GPR84, GRB10, GYG1, HK3,
IRAK3, MAN2A2, MKNK1, NSUN7, SULT1B1, TSPO and
ZDHHC19).

3.4 Cross manufacturer gene list performance
We evaluated each of the BW & GA representative models from
Affymetrix on the Illumina Data and Illumina Models on the
Affymetrix data. Contrasting each model’s performance between
these two discovery and non-discovery datasets we get the perform-
ance results depicted in Figure 5. This figure shows the difference be-
tween overall accuracy and class-based accuracy, speciality and
sensitivity when generalizing our models to data pertaining from a
different technology and set of studies. In terms of overall accuracy
(Fig. 5A) Affymetrix models, both GA ad BW, performed worse
when applying to the Illumina data. However, the drop was less
than 0.1 for both Affymetrix GA and BW. Whereas for Illumina,
both GA and BW models slightly gained accuracy when applied to
the Affymetrix data (0.04 and 0.05, respectively). Looking

specifically at bacterial performance (Fig. 5B), both Illumina models
performed worse on the Affymetrix data in terms of bacterial bal-
anced Accuracy (BW_I 0.71 and GA_I 0.73 2dp). Whereas the
Affymetrix models performed well on the Illumina data (BW_I 0.89
and GA_I 0.89 2dp). In terms of bacterial specificity there was little
change for all models, staying within 6 0.05 2dp of change in per-
formance. However, in terms of bacterial sensitivity, the Illumina
models performed particularly worse on the Affymetrix data (BW_I
0.44 and GA_I 0.47 2dp). Across viral class specific metrics (Fig.
5B), no model had any large change in Balanced Accuracy (change
< 0.05 2dp). The largest metric change was seen in sensitivity, with
Affymetrix models slightly decreasing, but with an original score of
0.97 and 0.95 for BW_I and GA_I they are still performing well
when ran on the Illumina data. Overall, both Affymetrix and
Illumina models performed well given that data was pertaining from
different manufacturers and different groups of studies. Particularly
stability around viral performance suggests a robustness within the
gene lists for classifying viral samples correctly. However, given that
bacterial performance change was very comparable to viral, it too
suggests a strong ability to classify bacterial samples, even when
moving out of the original dataset.

4 Discussion

Due to the amount of relevant data, we focused our analysis on
studies from two of the largest microarray platforms, Affymetrix
and Illumina. Although RNA sequencing data is being currently
used to evaluate molecular responses, the number of publicly avail-
able human blood infection samples is significantly lower than those
of microarrays. The technologies used in this publication utilize very
different methods for detecting mRNA sequences with Affymetrix
using a 25 bp capture target while Illumina uses a 50 bp capture tar-
get with very different detection methods. This creates larger tech-
nical differences that cannot be easily removed using mathematical
approaches (Barnes et al., 2005). Simpler solutions are more specif-
ically justifiable and allow for greater interpretation, which is the
motivation for feature selection amongst models in biological data.
We employed two feature selection algorithms using the Random
Forest Classifier over our data: BW and GALGO—both essentially
cutting the noise and finding the most significant biological vari-
ation responsible for predicting disease state. It is unknown without
a brute force search whether a truly optimal combination of genes
has been found, however both BW and GA approaches converged
around a small group of genes located in uncorrelated and function-
ally separable clusters. Models were found to be strongly enriched
for the ISGs. In fact, IFI27 and LY6E (both ISGs) were included in
all Affymetrix and Illumina models. IFI27 is involved in various sig-
nalling pathways affecting apoptosis (Gytz et al., 2017; Liu et al.,
2014; Rosebeck and Leaman, 2008). Whereas, LY6E belongs to a
class of interferon-inducible factors that broadly enhance viral in-
fectivity (Mar et al., 2018). LY6E has also been attributed a diverse
set of effects, including attenuating T-cell receptor signalling (Saitoh
et al., 1995) and suppressing responsiveness to lipopolysaccharide
that stimulate immune responses (Meng and Lowell, 1997).
Moreover, IFI27 was shown by Tang et al. to be a single–gene bio-
marker that discriminates between influenza and other viral and
bacterial infections in patients with suspected respiratory infection
(Tang et al., 2017). However, this single-gene biomarker approach
lacks generalizability and robustness when predicting a more varied
pathogen set. As we have observed, performance in our meta-
analysis was greatly improved by including more genes in our mod-
els. While Sweeney et al. (2016) employed a more multivariate ap-
proach their 7 gene strong model only marginally was able to
discriminate between bacterial and viral classes in our dataset
(Section S5, Supplementary Material). More specifically, we asked
the question whether the resulting score was able to discriminate be-
tween bacterial, control and viral samples and found that while on
average these 7 genes discriminated between viral and bacterial sam-
ples a technology dependent threshold is required to optimally sep-
arate the classes (Figs S24 and S25, Supplementary Material).
Moreover, control samples generally scored similarly to bacterial

Fig. 5. Cross manufacturer model change in performance. Difference in performance

when taking Affymetrix-derived models and testing on the Illumina data, and the

Illumina-derived models when testing on the Affymetrix data. (A) Difference in

performance in terms of overall accuracy. (B) Class-based performance in terms of

balanced accuracy, sensitivity, and specificity. For each performance measure, bars

are grouped by model, and each bar refers to the difference between performance on

the original dataset (which each model was discovered on) and the performance

on the data it had not been exposed too. For Affymetrix models, this would contrast

the performance on the Affymetrix data, with the same model’s performance on the

Illumina data
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samples. In a secondary attempt we tried to utilize the same RF ap-
proach using the 7 genes provided by the authors and found that in
all cases specificity in the model was high but sensitivity was signifi-
cantly lower than the models we have developed (Tables S32–S37).
Our larger set of RF selected genes contained numerous examples
confirmed by previous studies to be implicated in disease states. For
instance, our results coincide with recent meta-analysis, by Andres-
Terre et al. (2015), looking at transcriptional signatures of infec-
tions, specifically in distinguishing influenza from other viral and
bacterial infections, which found 127 multi-gene signatures, 27 of
which were also present in our representative models (ATF3, BST2,
CXCL10, EIF2AK2, HERC5, HERC6, IFI27, IFI44, IFI44L, IFI6,
IFIT1, IFIT2, IFIT5, ISG15, JUP, LGALS3BP, LY6E, MRPL44,
MTHFD2, MX1, OAS1, OAS2, OAS3, OASL, RSAD2, RTP4,
SERPING1, SPATS2L) serving to validate our successful data inte-
gration and biological findings (Andres-Terre et al., 2015). Notably
amongst these coinciding genes are IFI27 and LY6E, again confirm-
ing the validity of our converging feature selection. To better under-
stand the genes selected by our approach we directly compared the
88 genes that were selected on the basis of having a>5% inclusion
rate (Fig. S14, Supplementary Material). Notably between
Affymetrix and Illumina data, the direction of change (up or down-
regulation) comparing bacterial, control and viral samples was
retained with some clear differences in variation for a subset of
genes likely due to the technological differences between the plat-
forms. For example, the gene XIST shows high variability in the
Affymetrix dataset and a smaller magnitude of variation within the
Illumina data but with a consistent change in the medians across the
samples (Fig. S14, Supplementary Material). Similarly, IFI27, one of
the key genes identified by our and other authors shows similar re-
sponse mechanics although with a marginally higher level of expres-
sion in Illumina datasets. Overall, the responses, regardless of the
two technologies tested, are comparable and contribute to the ability
to develop a cross-technology predictive model. By inferring the
underlying interaction network, we discovered that convergence
was not only happening to a set of genes, but also, and more prom-
inently, convergence was focusing around particular groups of func-
tionally similar genes. This gene-group convergence only emerged as
part of an in-depth investigation into the driving forces of feature se-
lection from a biological network perspective. When representative
members of these uncorrelated gene clusters are taken together, they
can form highly predictive gene lists. With the ability to define the
host response to viral and bacterial infections, genes of our identified
clusters are likely good at approximating key functions important in
disease state prediction. Notably, the four functional groups of
genes were indicated to be: Type I ISGs, Chemotaxis genes,
Apoptotic Processes genes and Inflammatory/Innate Response genes,
which were prevalent in every model (both Affymetrix and
Illumina). Within this cluster convergence, we found a highly
selected group of genes to be ISGs (the most frequent between both
Affymetrix and Illumina models). This is no surprise, given Type I
Interferons serve as a link between the innate and adaptive immune
systems (Tough, 2004) and have a broad range of effects on both in-
nate and adaptive immune cells during infection with viruses, bac-
teria and parasites (McNab et al., 2015). While ISGs exact function
are not fully understood, it appears that our RF models have identi-
fied their strong connection to disease state (Hertzog et al., 2003;
Kovarik et al., 2016). Whilst convergence was prominent around
four functional groups of genes, we also note that both in
Affymetrix and Illumina, a more variable set of functional gene
groups were used in addition within our gene lists. Hence, there is a
degree of variability in gene solutions, and it seems that there is an
interchangeable portion of our gene lists in which a number of genes
from uncorrelated functional groups of genes can be used to achieve
high performance in defining disease state. Finally, we verified our
gene lists for generalizability by retraining and evaluating on data
from a different manufacturer to which they were discovered in
(Affymetrix Gene lists to Illumina and Illumina Gene lists to
Affymetrix). It is apparent that all gene lists tend to do better on
Affymetrix data, regardless of which set they were discovered on,
which suggests that the dataset, not the gene lists, is influencing

performance. Hence, we have uncovered the differentiating biologic-
al signatures underlying able to define bacterial and viral infections.

5 Conclusion

With the high accuracy that our models achieve within these data-
sets, stratification and treatment options for relevant individuals can
be easily improved through the use of such models. To apply this in
clinical settings across larger populations, additional development
of a cheap diagnostic test, for example, using PCR or Nanostring,
would be required. Importantly, the increase in costs associated
with such an initial diagnostic test would be significantly offset by
more rationale use of antibiotics in clinical settings and could poten-
tially mitigate the increasingly observed antibiotic resistance. To
tackle this challenge, we need to establish better diagnostic tools,
linked to computational mechanisms, to provide a more comprehen-
sive detection of diseases and associated treatments. Such personal-
ized medicine approaches can only be supported with models such
as developed within this publication. As data availability is growing
and healthcare is transforming into the digital age, it is conceivable
that our model will have a place in supporting clinical decisions at
some point in the future.
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