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Abstract: It is now established that sex differences occur in clinical manifestation, disease progression,
and prognosis for both cardiovascular (CVDs) and central nervous system (CNS) disorders. As such,
a great deal of effort is now being put into understanding these differences and turning them into
“advantages”: (a) for the discovery of new sex-specific biomarkers and (b) through a review of old
biomarkers from the perspective of the “newly” discovered sex/gender medicine. This is also true
for matrix metalloproteinases (MMPs), enzymes involved in extracellular matrix (ECM) remodelling,
which play a role in both CVDs and CNS disorders. However, most of the studies conducted up to
now relegated sex to a mere confounding variable used for statistical model correction rather than a
determining factor that can influence MMP levels and, in turn, disease prognosis. Consistently, this
approach causes a loss of information that might help clinicians in identifying novel patterns and
improve the applicability of MMPs in clinical practice by providing sex-specific threshold values. In
this scenario, the current review aims to gather the available knowledge on sex-related differences
in MMPs levels in CVDs and CNS conditions, hoping to shed light on their use as sex-specific
biomarkers of disease prognosis or progression.

Keywords: matrix metalloproteinases; cardiovascular disorders; central nervous system; sex-related
differences; CNS; MMP

1. Introduction

Biologically based differences between the sexes impact several aspects of human life,
starting from development to the construction of behaviour [1]. However, sex differences
are also able to influence both health and disease, impacting biomedical research as well as
individual and public health and healthcare delivery [2,3].

A remarkable aspect is that sex differences may influence susceptibility to a disease or
its progression at both molecular and epidemiological levels [4]. This is evident by looking
at the point global estimates for disability-adjusted life-year (DALY) disaggregated by sex,
which represents both a measure of disease burden and a proxy for disease prevalence
(Figure 1).
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Figure 1. Global estimates of disability-adjusted life-year (DALY) are disaggregated by sex for com-
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ditions; Infant, sudden infant death syndrome; Un Inj, unintentional injuries; Int Inj, intentional in-

juries. Error bars represent the 95% uncertainty level (95% UL). 
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tions are constantly studied from a prevention and treatment point of view, and accumu-

lating evidence suggests that both share an underlying sex difference [4]. As displayed in 

Figure 1, CVDs are characterized by a male-driven DALY, whereas neurological condi-

tions (including stroke) present almost an equal proportion of both sexes. Although the 

exact causes for such differences are still largely unknown, the general knowledge about 

the matter in both disease groups is increasing. Despite this, a great deal of information is 
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permeability, a fact that is directly correlated with increased infiltration of immune cells 
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concentrations of MMPs have been related to atherosclerotic plaque instability and worse 
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Figure 1. Global estimates of disability-adjusted life-year (DALY) are disaggregated by sex for
communicable diseases, non-communicable diseases, and injuries. Source: Global Burden of Disease
Study 2019 (GBD 2019) (https://vizhub.healthdata.org/gbd-results/, accessed on 12 July 2022).
Inf&Par, infectious and parasitic diseases; Resp inf, respiratory infectious; Mat Cond, maternal
conditions; Neo Cond, neonatal conditions; Nut Def, nutritional deficiencies; Oth neop, other
neoplasms; Diab, diabetes mellitus; End Bl Imm, endocrine, blood, immune disorders; Ment Sub,
mental and substance use disorders; Neuro, neurological conditions; Sense, sense organ diseases;
CVD, cardiovascular diseases; Resp, respiratory diseases; Dig, digestive disease; Gen, genitourinary
diseases; Skin, skin diseases; Musc, musculoskeletal diseases; Cong, congenital diseases; Oral, oral
conditions; Infant, sudden infant death syndrome; Un Inj, unintentional injuries; Int Inj, intentional
injuries. Error bars represent the 95% uncertainty level (95% UL).

As displayed, virtually all conditions show a sex-driven disparity or a gender bias for
injuries, but two conditions are of paramount importance when dealing with sex differences:
cardiovascular diseases (CVDs) and neurological disorders. This is particularly true con-
sidering that CVDs are a leading cause of death, whereas neurological disorders strongly
impact the quality of life of affected patients [5,6]. For these reasons, such conditions
are constantly studied from a prevention and treatment point of view, and accumulat-
ing evidence suggests that both share an underlying sex difference [4]. As displayed in
Figure 1, CVDs are characterized by a male-driven DALY, whereas neurological conditions
(including stroke) present almost an equal proportion of both sexes. Although the exact
causes for such differences are still largely unknown, the general knowledge about the
matter in both disease groups is increasing. Despite this, a great deal of information is still
lacking about the mechanisms of sex bias in most of the studies on biomarkers [7].

This is true also for matrix metalloproteinases (MMPs), enzymes responsible for
extracellular matrix (ECM) turnover in both physiological states and diseases, that have
been largely linked to both disorders [8,9]. For instance, high blood and cerebrospinal
fluid levels of MMPs have been associated with an impaired blood–brain barrier (BBB)
permeability, a fact that is directly correlated with increased infiltration of immune cells
within the central nervous system (CNS) [10,11]. The same is true for CVDs, where high
concentrations of MMPs have been related to atherosclerotic plaque instability and worse
outcome [12]. Thus, considering the involvement of these important enzymes in such
disorders, it is compelling to observe whether sex can impact MMPs expression in these
diseases. To the best of our knowledge, no meta-analysis or updated review exists on
this matter.

Therefore, in the attempt to fill in the gap, we aimed at gathering the available knowl-
edge on potential sex-related differences in MMPs levels in CVDs and CNS conditions,
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hoping to shed light on their possible use as sex-specific biomarkers of disease prognosis
or progression. To this end, after a brief introduction to the biochemistry of MMPs and
their involvement in CVDs and CNS conditions, we will shift the focus to all the present
information about sex differences.

2. Search Strategy and Data

We conducted a literature search in MEDLINE for all studies in the English language
without age restriction, published any time to May 2022 with the keywords “MMPs” AND
“neurodegenerative disorders” OR “neurodegenerative diseases” AND “sex difference”
OR “gender difference”, in the title or abstract. The same criteria were followed for CVDs,
with the keywords “MMPs” AND “cardiovascular disorders” OR “cardiovascular diseases”
AND “sex difference” OR “gender difference”. To avoid missing possible articles on the
matter, we repeated the literature search also separating by pathology. For neurodegener-
ative disorders, the keywords “Parkinson’s disease”, “Multiple Sclerosis”, “Alzheimer’s
disease”, “Epilepsy”, “Ischemic stroke”, “Haemorrhagic stroke”, “Stroke”, “Migraine”
were alternatively associated with AND “MMPs” AND/OR “sex difference”/“gender
difference”. For CVDs, the keywords “Rheumatic Heart Disease”, “Hypertensive dis-
ease”, “Ischemic Heart disease”, “Coronary heart disease” OR “CAD”, “Cardiomyopathy”,
“Myocarditis”, “Endocarditis”, “Myocardial infarction”, “Aneurism”, were alternatively
associated with AND “MMPs” AND/OR “sex difference”/“gender difference”. We also
searched for possible interesting articles on the matter by looking into reviews.

The data of global estimates of disability-adjusted life-year (DALY) disaggregated
by sex and pathology were derived from the study Global Burden of Disease Study 2019
(GBD 2019) (https://vizhub.healthdata.org/gbd-results/, accessed on 12 July 2022).

3. Matrix Metalloproteinases

As already said, MMPs are important zinc-dependent endoproteases involved in both
physiological and pathological ECM remodelling [13]. For instance, they are involved in
reproductive growth, embryonic development and morphogenesis during pregnancy, bone
remodelling, tissue repair, and wound healing [14]. Being produced as zymogens, their net
activity on tissues is a careful balance between activation processes and inhibition by specific
inhibitors (tissue inhibitors of matrix metalloproteinases, TIMPs) and not specific ones (e.g.,
α2-macroglobulin) [15]. Thus, alterations in MMPs expression, activity/activation, and
inhibition cause an accelerated ECM breakdown leading to a pathological condition, as
happens in CVDs, musculoskeletal disorders, and various cancers [16–19].

MMPs have also been implicated in other processes such as systemic inflammation
and CNS disorders, playing a pivotal role in the proteolytic degradation of the blood-brain
barrier [10,11,20]. Collectively, circulating levels of MMPs have been proposed as potential
markers of many cardiovascular and neurological diseases [8,9]. Before examining the
potential influence of sex on the circulating levels of MMPs, we will briefly focus on the
general structure of MMPs.

3.1. Structure and Function of MMPs
3.1.1. General Structure and Regulation

This family of calcium- and zinc-dependent endopeptidases comprises more than
25 members divided into six classes based on their ability to degrade various components of
the ECM: collagenases (MMP-1, MMP-8, MMP-13, MMP-18), gelatinases (MMP-2, MMP-9),
stromelysins (MMP-3, MMP-10, MMP-11), matrilysins (MMP-7, MMP-26), membrane-type
MMPs anchored to the cell membrane by a transmembrane (TM) domain or by a glyco-
sylphosphatidylinositol (GPI)-anchored domain, and “other MMPs” [21–23]. Collagenases
and gelatinases alter the molecules of the basal lamina, subsequently leading to cell death.
In particular, collagenases degrade triple-helical fibrillar collagen in bone and ligaments,
whereas gelatinases are involved in different cellular processes including angiogenesis and
neurogenesis [14]. Stromelysins are small proteases that degrade segments of the ECM,
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and matrilysins process cell surface molecules and digest ECM components [14]. Finally,
MT-MMPs have collagenolytic activity and may activate some proteases and components
of the cell surface [24,25].

From a structural point of view (Figure 2), the MMP family shares a high homology,
with a conserved zinc-binding motif (HEXXHXXGXXH) in the catalytic domain [26,27] and
a common core structure consisting of a pro-peptide of about 80 amino acids, a catalytic
domain of about 170 amino acids, a linker peptide called hinge region of variable length,
and a hemopexin domain of about 200 amino acids. In addition, MMPs contain an amino-
terminal signal sequence removed in the secretory pathway, targeting the enzyme to the
endoplasmic reticulum (Figure 2, in grey) [28].
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Figure 2. Schematic structure of the major classes of MMPs. FR, fibronectin repeats; TMD, trans-
membrane domain; GPI, glycosylphosphatidylinositol. The structure of MMP-11 is similar to that of
stromelysins except for a furin-like domain between the propeptide and the catalytic domain.

Four important divalent cations are embedded within the catalytic domain, possessing
different roles: one zinc ion is coordinated by three histidines in the catalytic cleft and is
essential in the polarization of water molecules necessary for the hydrolysis of the peptidic
bond [28]. Within the same domain, another zinc ion and at least two calcium ions are
essential to maintain the correct spatial structure for the interaction of substrates with the
active site [28].

The hinge region (Figure 2, in dark blue) serves as a linking sequence to allow the
free movement between the catalytic and hemopexin domains [28]. A carboxy-terminal
(C-terminal) hemopexin-like (PEX) domain, with a four-bladed β-propeller structure con-
nected to the hinge region, is usually involved in substrate recognition and inhibitor
binding [29]. Additionally, different classes of MMPs have peculiar structural features that
distinguish them from the prototypical MMP structure: for instance, gelatinases (MMP
-2 and MMP-9) have a fibronectin-like domain inserted within the catalytic domain that
facilitates both gelatin and collagen binding [30].
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MMPs are maintained into an inactive form by a pro-peptide domain, which should
be removed to convert the enzyme into the active form, an event that usually happens in
the extracellular space through other proteolytic enzymes such as serine proteases, plasmin,
or other MMPs [14]. As an exception, some MMPs have a furin recognition site before the
catalytic domain, allowing the intracellular activation of the enzyme by furin [10,21].

Other pathophysiological activation pathways include the modification of the thiol
group of the cysteine in the pro-domain and are responsible for maintaining the enzyme
inactive by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Such modi-
fication leads to the oxidation of the side chain of the amino acid with S-nitrosylation or
S-glutathionylation being the predominant changes [31,32].

The expression and activity of MMPs are regulated at many levels. At the transcrip-
tional level, the synthesis of new MMPs is regulated by various cytokines, growth factors,
and ROS [33].

Once synthesized, the activity of MMPs depends on the activation of their latent form
as well as on endogenous tissue inhibitors, namely α2-macroglobulins and TIMPs [22],
which bind to the enzymes suppressing the activity. When the activity is not well-balanced
by a fine-tuned inhibition, a transition from physiological to pathological condition oc-
curs [14].

Currently, four TIMPs have been described (from TIMP-1 to TIMP-4), with TIMP-1
and TIMP-2 being the most studied. Interestingly, TIMP-2 can participate in both inhibition
and activation of enzymes by forming 1:1 stoichiometric non-covalent complexes [34].

A particular mention must be made for MMP-9, which belongs to the gelatinase
subfamily. While the inactive form of MMP-9 (proMMP-9) is usually secreted in a complex
with TIMP-1 [35], it also exists in a TIMP-1 free form released by neutrophils [36]. In
addition, there are at least two active forms of MMP-9 in body fluids: an N-truncated active
enzyme that can be regulated by TIMP-1 and a “fully activated” enzyme lacking both the N-
and C-terminal hemopexin domains, which cannot be inhibited by TIMP-1 at physiological
concentrations [37,38].

3.1.2. Role of MMPs in CVDs

As said before, MMPs can be largely modulated by cytokines and growth factors,
molecules that are produced during inflammatory conditions. As expected, inflammation
is a cornerstone in most of the CVDs [39] and acts by deranging the delicate axis between
MMP activation and inhibition. For instance, MMP activation can alter the architecture of
atherosclerotic plaque helping its disruption [40]. However, their role is not just relegated
to the “simple” plaque instability, but they also participate in a plethora of cardiovascular
conditions including aneurism, myocardial infarction, atherosclerosis, hypertension, and
cardiomyopathies (Table 1).

Table 1. Matrix metalloproteinases (MMPs) that are mainly involved in cardiovascular dis-
eases (CVDs).

MMPs CVDs Role References

MMP-2 Hypertension Causes vasoconstriction [41–43]
Limits vasodilation [44,45]

Cardiomyopathies Increases infarct areas [46]
Process several cardiac proteins [47,48]

MMP-1, -2, -3, -8, and -9 Aneurism Weakens the ECM structure [49,50]

MMP-2 and -9 Myocardial infarction Degrade ECM/process cytokines
and chemokines [51]

MMP-2, -3, -8, -9, and 12 atherosclerosis connected to plaque development [52–56]

MMP-7 and -9 hypertension cause vasoconstriction/increase
blood pressure [43]

ECM, extracellular matrix.
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In aneurism, MMP-1, MMP-2, MMP-3, MMP-8, and MMP-9 are overexpressed within
the aortic wall, participating in the weakening of ECM structure through the degradation
of several collagens, elastin, and fibronectin [49,50].

A role in myocardial infarction (MI) has been found as well although is still far to be
clear and somewhat complicated. MMPs seem to be involved in both healing processes
after MI injury [57,58] as well as in the adverse remodelling that occurs after MI [52,59–61].
Interestingly, if the cytokine production following MI is controlled, an appropriate wound
healing response is established, where MMPs, especially MMP-9 and MMP-2, actively
participate in the process by degrading the ECM, favouring the infiltration of inflammatory
cells and processing cytokines and chemokines [51]. However, if the production of MMPs
is actively sustained well beyond the first 72 h (the period after the initial wound healing is
complete), their action could be harmful [62].

One pathogenic mechanism by which MMPs can contribute to atherosclerosis is
through the enhancement of vascular smooth muscle cell migration and the formation of
neointima after a vascular injury [63,64]. In addition, as said before, active MMPs produced
within the atherosclerotic lesion may contribute to plaque instability: in particular, MMP-2,
MMP-3, MMP-8, MMP-9, and MMP-12 have been connected to plaque development and a
worse outcome [52–56].

A connection has also been found between MMPs and hypertension [41]. In particular,
MMP-2 was increased in the thoracic aortas and heart of a model of hypertensive rat, where
it may participate in hypertension-induced vascular remodelling [42,65,66]. This may be
partially mediated by the ability of some MMPs to cleave receptors and factors responsible
to maintain the vascular tone. For instance, MMP-7 and MMP-9 injection in spontaneously
hypertensive rats (SHR) causes vasoconstriction, thereby increasing the blood pressure [43].
This may be due to a not yet well-characterized increase in MMP-dependent β2-adrenergic
shedding. In addition, in vitro studies have found that MMP-2 can cleave factors that can
increase vasoconstriction activity [67] or limit their vasodilating effect [44,45].

Finally, a growing body of evidence points toward MMP-2 as a major player in
cardiomyopathies. For instance, the overexpression of active MMP-2 alone in the heart of
transgenic mice models of ischemia/reperfusion can increase the infarct area and decrease
the contractile function of the hearth [46]. On the contrary, the deletion of MMP-2 seems to
be protective toward the heart remodelling and functionality following injury [68]. This
might be at least partially related to the ability of MMP-2 to process several cardiac proteins
including troponin I and myosin light chain [47,48].

3.1.3. Role of MMPs in Neurological Conditions

Within the CNS, MMPs participate both in (i) physiological processes such as neurogen-
esis, axonal guidance, synaptic plasticity, learning, and memory [69] and (ii) in pathological
conditions such as neuroinflammation, neurodegeneration, and cerebrovascular related
disorders [70].

Matrix metalloproteinases can be produced by several CNS-related cells, including
endothelial cells, microglia, oligodendrocytes, neurons, and astrocytes [71]. Under normal
conditions, MMPs have been observed to be (i) generally absent or (ii) at undetectable or
(iii) otherwise modest levels in the mature brain [20]. A dysregulation of MMP activity
and/or the presence of upregulatory stimuli could alter the physiological balance, inducing
a pro-inflammatory state [72,73].

The MMPs most involved in brain processes are MMP-2, MMP-3, MMP-9, MMP-10,
and MMP-14 [74,75] (Table 2).
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Table 2. Matrix metalloproteinases (MMPs) that are mainly involved in central nervous system
(CNS) pathologies.

MMPs CNS Conditions Role References

MMP-2 AD Protective [76]
MS Associated to remission [77]

MMP-3 AD and PD Detrimental [78,79]
MMP-9 MS Associated to demyelination [80]

AD Associated to neuronal cell death [81]
PD and dolichoectasia Associated to neuroinflammation [20,82,83]

ALS Associated to neuroinflammation [84,85]
MMP-10 HD Detrimental [86]

MMP-2, -3, -9 HI lesions Increase BBB permeability [74]

AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; BBB, blood–brain-barrier; HD, Huntington’s disease;
HI, hypoxic ischemic; ICH, intracerebral haemorrhage; MS, multiple sclerosis; PD, Parkinson’s disease.

While MMPs are considered generally absent, or in any case scarcely detectable in the
CNS, MMP-2 seems to be an exception because it is physiologically expressed also in the
healthy brain and cerebrospinal fluid (CSF) [74].

In pathological conditions, MMPs may increase blood–brain-barrier (BBB) permeabil-
ity by acting on the basal lamina and tight junctions in endothelial cells, resulting in the
final common pathway of acute neuroinflammatory damage [74,87].

In Alzheimer’s disease (AD), MMP-2 might be assumed to have a protective role [76],
and in MS, active MMP-2 was associated with the remission phase of the disease, suggesting
a role of this enzyme in the termination of MS neuroinflammation [77].

If, on the one hand, MMP-3 was physiologically associated with synaptic plastic-
ity, learning, and neuronal development, in the other, uncontrolled MMP-3 activity was
associated with Alzheimer’s and Parkinson’s diseases (AD and PD) [78,88].

MMP-9 is probably the most studied MMP in CNS disorders, especially in associ-
ation with neuroinflammation. MMP-9 was associated with demyelination in MS [80],
neuronal cell death in AD [81], neuroinflammation in PD [20], dolichoectasia [82,83], and
neuroinflammation and cell death in amyotrophic lateral sclerosis (ALS) [84,85]. In hypoxic-
ischemic lesions, MMP-2, MMP-3, and MMP-9 together increase the permeability of the
BBB with a consequent greater risk of haemorrhagic transformation [74].

Finally, MMP-10 inhibition cleaves huntingtin and reduces cell death [86].

4. Sex Differences in MMPs and Pathologies
4.1. Sex Differences in MMPs and Cardiovascular Diseases

Cardiovascular diseases have long been seen as conditions that primarily affect
males [4]. This conclusion can be drawn also by looking at Figure 1, where males ac-
count for almost 58% of the CDV group of DALY. However, the age-corrected risk of
CVDs is similar between males and females [89] since it becomes equal between sexes after
menopause or even increases for females. Nonetheless, by separating CVDs into several
categories, we can see that the situation is more complex. Indeed, ischemic heart disease;
the spectrum of disorders including cardiomyopathy, myocarditis, and endocarditis; and
aneurism are far more frequent in males than females (Figure 3). On the other hand, females
seem primarily affected by rheumatic and hypertensive heart disease (Figure 3).
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Figure 3. Global estimates of disability-adjusted life-year (DALY) disaggregated by sex for cardiovas-
cular diseases (CVDs). HD, heart disease; C.M.E., cardiomyopathy, myocarditis, endocarditis. Source:
Global Burden of Disease Study 2019 (GBD 2019) (https://vizhub.healthdata.org/gbd-results/,
accessed on 12 July 2022). Error bars represent the 95% uncertainty level (95% UL).

Despite this evidence and the impact that sex hormones have on the expression
of MMPs [79], the reports about a cross-interaction between MMPs, CVDs, and sex are
still in their infancy. According to what is present in the literature, the most studied
MMPs showing a sex difference in CVDs are MMP-2, MMP-3, MMP-9, MMP-8, MMP-13,
and MMP-14 although the information on the last two members is scarce (see below for
detailed information).

The results about sex disparity of MMP-2 in CVDs are conflicting and at variance
with the considered condition. For instance, male patients affected by aneurysms have
shown increased levels of MMP-2 in the aorta [90], a fact confirmed also in vivo in the
mouse model [91] and in vitro on rat smooth muscle cells [92]. However, the opposite was
found in females when considering patients with bicuspid valve thoracic aortic aneurysm
(BV-AAA) [93,94]. This apparent contradiction could be explained by the fact that fe-
males affected by BV-AAA also show an extensive remodelling of the aorta [95], which
is characterized by a decrease in deposition of ECM components and by increased degra-
dation operated essentially by MMPs [96]. Finally, the levels of the MMP-2 were found
elevated in the hearts of male rats during acute myocardial infarction (MI) [97], with higher
serum levels of the enzyme found to be associated with lower myocardial fibrosis only in
females [98].

MMP-3 is one of the enzymes that demonstrated an undeniable increase in males
with respect to females in most of the studies dealing with MI [99–101]. In addition,
serum MMP-3 was positively correlated with inflammatory markers only in females [101].
Collectively, these results may suggest, at least partly, a different interaction between sex
and inflammation in the etiopathogenesis of MI [101].

The reports on MMP-8 (a.k.a. called neutrophil collagenase), which has specificity
towards type I, II, and III collagens, are few, and all found decreased levels of the enzyme
or no change in females suffering from thoracic aortic aneurysm [94] or in atherosclerotic
plaques [102,103], suggesting a protective effect of sex hormones in females, at least in
aneurysm [104].

MMP-9 is far, together with MMP-2, the most studied metalloprotease in all aspects
of CVDs, especially considering its connection with inflammation [105]. Most of the
studies present in the literature have found an increase in the ascending aorta of male
patients affected by aneurysms [90,93,106], with only one report finding the opposite result
in females [91]. The former results are in large agreement with the clinical observation
of a higher prevalence of aneurysms in males, making it a striking example of male
disadvantage in CVDs [104].

https://vizhub.healthdata.org/gbd-results/
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In MI, MMP-9 has been found to increase in the heart of male rats and mice when com-
pared to females [97,107] and is associated with increased rupture of the left ventricle [108].
Although the fibrotic event seems not associated with different levels of the enzyme be-
tween the sexes, only in females are high MMP-9 serum concentrations correlated with
markers of myocardial fibrosis [98].

Human coronary disease patients show contrasting results, with reports suggesting an
increase in serum of males [109,110], whereas others found the opposite in females [111,112].
Collectively, it is undoubted that MMP-9 plays a key role in the aetiology of several CVDs,
and it may point toward a different use of this protein as a sex-specific biomarker.

The preliminary results about MMP-13 and MMP-14 found in humans and confirmed
in rats suggest an increased activity and production of both proteins in males affected
by aneurism [94,113]. This is consistent with an increased ECM degradation and weak-
ened aortic wall that makes males more prone to rupture. Again, this confirms the male
disadvantage, present in certain cardiac conditions, over females.

The studies on sex-driven MMP expression in myocarditis are preliminary, and the
only work we found in mice observed an increase in MMP-8 expression in the heart
during myocarditis [114]. This may have an implication for myocardial remodelling and
fibrosis during this condition [114]. Regarding rheumatic heart disease, despite several
works found an increased expression of MMP-1 and MMP-9 in the mitral valve [115]
and/or serum [116–118] of patients compared to controls, correlated with the underlying
inflammation, there is currently no single study that explored a possible influence of sex
on MMP expression. Sex-related differences in MMPs in patients affected by CVDs are
summarized in Table 3.

Table 3. Sex-related differences in matrix metalloproteinases (MMP) in different cardiovascular
diseases (CVDs).

MMPs CVD Organism Male Female References

MMP-2

Aneurism Human/Mouse ↑ in aorta [90,91]

Thoracic aortic
aneurysm Human ↑ in aorta [93,94]

Acute MI Mouse ↑ in affected heart [97]

Heart failure Human ↓ in serum [119]

Hypertension Human No change No change [120]

Myocardial fibrosis Human
↑ serum concentration

associated with
LOWER fibrosis

[98]

MMP-3 MI Human
↓ in serum; positively

correlated with
inflammatory markers

[99–101]

MMP-8

Thoracic aortic
aneurysm Human ↓ in aorta [94]

Carotid
atherosclerosis Human No difference

No difference;
↓ in plaques. The

difference disappeared
in multivariate

correction

[102,103]
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Table 3. Cont.

MMPs CVD Organism Male Female References

MMP-9

Aneurism/Ascending
thoracic aortic

aneurysms
Human/Mouse ↑ in the ascending

aorta ↑ in aorta [90,91,93,106]

MI Mouse/Rat ↑ in heart ↓ in hearth [97,107]

post MI Human/Mouse

No
change/Positively

correlated with
inflammatory

markers; ↑ in Heart

No change [101,121]

Cardiac rupture
following MI Mouse ↑ in left ventricle [108]

Myocardial fibrosis Human
↑ serum concentration

associated with
HIGHER fibrosis

[98]

CAD/CHD Human ↑ in serum ↓ in serum [109–112]

Chest Pain Human
↑ in serum (patients

with non-calcified and
mixed plaques)

[122]

Hypertension Human No change No change [120]

MMP-13 Thoracic aortic
aneurysm Human/Rat ↓ in aorta [94,113]

MMP-14 Thoracic aortic
aneurysm Human ↑ in aorta [94]

CAD, coronary artery disease; CHD, coronary heart disease; MI, myocardial infarction; ↑ denotes an increase,
↓ a decrease.

4.2. Sex Differences in MMPs and CNS Disorders

Sex differences in the CNS are quite evident and touch several aspects of the brain.
For instance, sex hormones affect brain anatomy in a region-specific manner, by influ-
encing neuronal growth and development [123]. The brain is also affected at the bio-
chemical/neurochemical level. As an example, females synthesize far less serotonin than
their male counterparts, making them more susceptible to depression [124]. In addition,
metabolic differences between males and females have been found in several regions of
the brain [125]. Finally, various psychological and cognitive processes can be influenced as
well [126].

The fundamental sex differences found in the anatomy, biochemistry, and genetics
of a healthy brain translate also into a sex-driven disparity in susceptibility, progression,
symptom severity, and pathology of disorders affecting the CNS [127]. This is clear also by
looking at Figure 4. Indeed, most neurological conditions are characterized by a female-
shifted disease burden, underlying an increased prevalence of neurological diseases in this
sex. The only exceptions appear to be PD, epilepsy, haemorrhagic stroke, and ALS, where a
male prevalence is documented [128–131]. Of note, the apparent counterintuitive lack of
difference in neurological conditions shown in Figure 1 is mainly due to the inclusion of
stroke-related diseases in this group. In fact, by leaving stroke within the CVDs, the sex bias
in neurological conditions appears to be more evident (DALYs*100,000 population (95%
Uncertainty Level), males: 413 (251–646); females: 565 (303–953)). For this reason, it is of
paramount importance that the effect of sex is evaluated also in each condition separately
to avoid possible misinterpretations driven by grouping variables.
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cal conditions. AD & Dement, Alzheimer’s disease AND other dementias; PD, Parkinson’s disease;
MS, multiple sclerosis; St, stroke; N-M Head, non-migraine headache; Other, other neurological
conditions. Source: (https://vizhub.healthdata.org/gbd-results/, accessed on 12 July 2022).

From the data reported in the literature, it seems clear that one of the major impli-
cations of MMPs in CNS disorders occurs at the level of regulation of the BBB [10]. It is
interesting to highlight how previous studies have demonstrated the ability of the hor-
mone 17β-oestradiol to reduce the degradation of tight junction proteins by suppressing
the upregulation of MMP expression [74], thus making oestrogens play a protective role
towards the degradation of BBB [132]. From a clinical point of view, a growing number of
articles are highlighting the existence of a sexual dimorphism in the CSF protein content
resulting in higher levels in men than in women regardless of age [133,134]. The cause
of this dimorphism seems to be attributable to a greater permeability to plasma proteins,
especially albumin and IgG, of the blood–CSF barrier (BCSFB), as has been shown in pa-
tients with MS and patients with other inflammatory and non-inflammatory neurological
disorders [135], in psychiatric patients [136], in subjects to whom lumbar puncture was
performed for diagnostic purposes, and in healthy subjects [137].

A difference between sexes in BBB permeability was also confirmed using dynamic
contrast-enhanced (DCE)-magnetic resonance imaging (MRI) [138]. In that study, the
authors demonstrated a better BBB integrity in cingulate and occipital cortices in females
than in male non-demented elderly subjects. They also found that this sex-related difference
in BBB integrity was attenuated by aging or when cognitive decline occurred, but the
difference remained in the occipital cortex independently of these two factors [138].

Although currently few studies in the literature have analysed MMPs as a func-
tion of sex in patients affected by neurological disorders, some interesting data have
already emerged.

Reduced serum levels of MMP-1 were found in PD patients in comparison to controls,
and this difference was more evident in females [139]. On the contrary, CSF levels of MMP-1
were higher in females than in males in people with MS and neurological controls [140].

While high levels of MMP-3 appear to be more associated with male sex in AD patients
in two studies [141,142], an increase in MMP-3 was associated with greater cognitive
impairment in females [141]. Moreover, serum levels of MMP-3 were higher in male
subjects with epilepsy with respect to females [143].

https://vizhub.healthdata.org/gbd-results/
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High levels of serum MMP-9 were more likely found in male subjects during the acute
phase of ischemic stroke and were associated with an increased risk of major disability and
death [144].

Sex-specific patterns of MMP expression were described in the days following intrac-
erebral haemorrhage; in particular, MMP-3 and MMP-10 acted as predictors of long-term
functional outcomes in male and female patients, respectively [145].

Finally, higher CSF MMP-10 levels were found in female than in male MS patients [140].
Sex-related differences in MMPs in patients affected by CNS disorders are summarized

in Table 4.

Table 4. Sex-related differences in matrix metalloproteinase (MMP) levels in different conditions of
the central nervous system.

MMPs CNS Conditions Male Female References

MMP-1
PD ↓ in serum [139]

MS and neurological
controls ↑ CSF levels [140]

MMP-3

AD, MCI, and cognitively
normal individuals

↑ frontal cortex protein
levels [142]

↑ plasma levels ↑ levels associated to
greater cognitive decline [141]

Epilepsy ↑ serum levels [143]

ICH associated to long-term
functional outcomes [145]

MMP-9 Ischemic stroke ↑ serum levels in acute
phase [144]

MMP-10
ICH Associated to long-term

functional outcomes [145]

MS ↑ CSF levels [140]

CNS, central nervous system; AD, Alzheimer’s disease; CSF, cerebrospinal fluid; ICH, intracerebral haemor-
rhage; MCI, mild cognitive impairment; MS, multiple sclerosis; PD, Parkinson’s disease; ↑ denotes an increase,
↓ a decrease.

5. Conclusions

The importance of studying sex differences lies in the fact that they are an important
factor contributing to individual differences. This stemmed from several epidemiological
and observational studies, including those on cardiovascular and neurological disorders.
For instance, males have a higher incidence of stroke across much of their lifespan, but
after 80 years of age, the situation is reversed, disadvantaging females. Keeping stroke as
an example, symptoms might be sex-specific, and the type of stroke might occur with a sex
bias. Therefore, in this current era of precision medicine, it is of paramount importance to
consider sex differences not only related to aetiology but also at the biomarkers’ level.

In fact, from what we found (see Figure 5 for a summary), there is a clear disparity
between males and females in MMP levels in several disorders. However, it is important
to acknowledge that in a large part of the studies, sex has typically been considered a
confounding factor used to correct statistical models to solely relate the biomarkers to
the disease. As such, sex-specific differences have not been examined, eliminating part
of the biological information that might help in identifying novel disease patterns or new
sex-specific disease biomarkers. Therefore, it is compelling to evaluate sex differences in
each study, especially considering that just because a difference is not apparent, it does not
mean that is not visible. More importantly, sex differences should be studied across the
lifespan of individuals.
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Figure 5. Summary of the main changes in MMPs separated by sex and pathology. As pictured, on
the top are represented the diseases more frequent in females, while on the bottom are listed those
with an increased prevalence in males. To make the summary clearer, neurological conditions (right
side, light salmon colour sector) are separated by CVDs (left side, light green sector). For instance, MS
and AD, which are neurological conditions more frequent in females than males, are localized in the
top right of the picture. While females with MS demonstrated to have increased levels of both MMP-1
and MMP-10, females with AD have lower levels of MMP-3. On the contrary, males with PD, stroke,
and epilepsy (right bottom side), have higher levels of MMP-1, MMP-9, and MMP-3, respectively. The
situation is different for CVDs, where there is a more male-driven sex disparity, with aneurysm, MI,
and CAD more frequent in this sex (left bottom). As such, several MMPs have been found to increase
in males affected by these conditions. Finally, although HHD and RHD seem to be more frequent
in females (top left side), results about MMP levels are still lacking (question mark symbol). HHD,
hypertensive heart disease; RHD, rheumatic heart disease; MS, multiple sclerosis; AD, Alzheimer’s
disease; PD, Parkinson’s disease; CAD, coronary heart disease; MI, myocardial infarction.

Thus, the consideration of sex differences in MMPs and more in general in biofluid-
based biomarkers is important and timely for their future application to clinical practice.

Therefore, a systematic disaggregation and analysis of data by sex may shed light on
the possible use of MMPs as sex-specific biomarkers of disease prognosis and progression.
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