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Abstract: This work proposes a green light-sensitive acrylate-based photopolymer. The effects of
the preparation conditions for the waveguide applied volume holographic gratings (VHGs) were
experimentally investigated. The optimum preparation conditions for holographic recording were
revealed. After optimization, the peak of VHG diffraction efficiency reached 99%, the diffractive
wavelength bandwidth increased from 13 nm to 22 nm, and the corresponding RIM was 0.06. To prove
the wide application prospect of the acrylate-based photopolymer in head-mounted augmented
reality (AR) displays, green monochromatic volume holographic waveguides were fabricated. The
display results showed that the prototype was able to achieve a 28◦ diagonal FOV and possessed a
system luminance of 300 cd/m2.

Keywords: photopolymer; gratings; optical waveguides; holography

1. Introduction

Volume holographic waveguide is considered to be a potential optical solution for
augmented reality (AR) glasses because of its high optical efficiency, low cost, small size
and light weight [1–4]. Traditional holographic interferometry is used to fabricate the
volume holographic waveguide for head-mounted AR display [2]. According to the vector
circle analysis method, volume holographic gratings (VHGs) with different parameters can
be prepared by adjusting the angles between the object light beam and the reference light
beam [5,6], which requires the dynamic response range and refractive index modulation
(RIM) of the holographic recording materials to be large enough [7]. Additionally, the
field of view (FOV) and light efficiency of the volume holographic waveguide are also
dependent on the RIM of the holographic recording materials [8–10].

Currently, there are many kinds of holographic recording materials, including dichro-
mate gelatin, silver salt, photoresist, photopolymer, etc. [11]. Among them, photopolymer
is widely used in holographic waveguide displays [12–15], optical holographic storage [16],
holographic anti-counterfeiting [17], optical communication [18], holographic solar concen-
trators [19], and holographic beam-shaping diffractive diffusers [20] due to its advantages,
which include high diffraction efficiency, high sensitivity, low price and easy preparation.
To date a variety of photopolymers (PQ/PMMA, PVA/AA, etc.) with excellent properties
have been proposed and studied [21–23]. The host material of PQ/PMMA photopolymer
is methyl methacrylate (MMA), which is not easy to shrink in volume following polymer-
ization, so PQ/PMMA-based photopolymer is suitable for optical holographic storage [24].
Additionally, the host material of PVA/AA-based photopolymer is polyvinyl alcohol,
which has the advantages of good film-forming ability, high photosensitivity, and good
diffraction efficiency (up to 100%) [21]. However, the material is soluble in deionized water
and susceptible to moisture. To maintain excellent holographic performance, it needs to be
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encapsulated after exposure. The film-forming materials of acrylate-based photopolymers
are generally soluble in organic solvents, and are thus not easily affected by damp, giving
them the advantage of environmental stability. Therefore, acrylate-based photopolymers
are one of the most promising holographic recording materials that are suitable for the
waveguide display [25].

To date, the influences of preparation conditions on the holographic properties of
acrylate-based photopolymers have not been systematically studied. Therefore, it is urgent
to develop an optimized preparation method for fabricating holographic waveguides with
acrylate-based photopolymers for waveguide display.

Erythrosin B (EB) is an excellent photosensitizer and is commonly used in photopoly-
merization initiation systems of photopolymer [26,27]. In this paper, we studied the
holographic recording characteristics of green sensitive acrylate photopolymers doped
with EB. To optimize the holographic performance of the waveguide applied VHGs, the
effects of preparation conditions on the peak diffraction efficiency, diffractive wavelength
bandwidth and RIM were studied in this paper. Monochromatic green holographic waveg-
uide samples were also fabricated by means of laser exposure method, which proves that
the acrylate photopolymer has a broad application prospect in the field of holographic
waveguide display.

2. Experimental Setup
2.1. Preparation of the Photopolymer

The acrylate-based photopolymer consisted of four main components, polyvinyl
acetate, N-vinyl carbazole (NVC), tetrahydrofurfuryl acrylate, 2-phenoxyethy acrylate
purchased from Wraio, Guangzhou, China, which are the key components for polymer-
ization in the photo-initiation process. (2,2′-bis(2-dichlorophenyl)-4,4′,5,5′-tetraphenyl-
1,2′-biimidazole (BCIM)) purchased from Tronly, Changzhou, China served as the free
radical photo-initiator, which is related to the monomers. The dye EB purchased from
Sigma-Aldrich, Burlington, MA, USA, is sensitive to green wavelength bands and has an
absorption peak at 533 nm. The concentration ratios of the components are listed in Table 1.

Table 1. Composition of the acrylate photopolymer in wt%.

Component Concentration (wt%)

polyvinyl acetate 55.4
NVC 23.5

tetrahydrofurfuryl acrylate 9.8
2-phenoxyethy acrylate 6.1

BCIM 5.14
EB 0.02

After weighing all the components listed above, they were mixed in a glass beaker
using a magnetic stirrer at a rate of 1000 r/min for about 1 h, mixing the components thor-
oughly to form a uniform solution. Then, the dissolved photopolymer solution was coated
onto a 1-mm-thick BK7 transparent glass plate using an electric wet film coater (AB4120
AFA, TQC, The Netherlands). The glass plate coated with the wet photopolymer solution
was dried in a dark clean room for several hours to obtain a 12-um-thick photopolymer
holographic dry plate. Since all the components were evenly dispersed in the solvent, the
photopolymer holographic dry plate samples appeared clear without any impurities under
the red safety light.

2.2. Holographic Setup for Fabricating the Holographic Waveguide

The holographic setup for the waveguide applied VHGs is shown in Figure 1. The light
beams coming from the single longitudinal solid-state lasers (532 nm, Cobolt Corporation,
Norway, Sweden) firstly pass through the electric shutter (GCI-7101M) and neutral density
filter (GCO-0701M, Daheng Optics, Beijing, China). The shutter is used to control the
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switching on and off of the optical path. The total light intensity of the reference and
object light beams were adjusted by the neutral density filter, and the exposure dosage was
adjusted by varying the exposure time. Firstly, the light beams were filtered and expanded
using a spatial filter (GCO-0112M, Daheng Optics, Beijing, China) and collimated with the
double-glued achromatic lens (GCL-010615, Daheng Optics, Beijing, China). The apertures
were used to adjust the spot size and shape of the light beams. To ensure the consistency of
the reference light beam and the intensity ratio and polarization state of the object light
beam, two half wave plates H1, H2 (GCL-0607, Daheng Optics, Beijing, China) and a
polarization beam splitter (GCC-402103, Daheng Optics, Beijing, China) were used. The
angle between the reference beam and the object beam was changed using mirrors M1 and
M2. Two K9 trapezoid prisms were used to couple the interference of the reference and
object light beams and export them for recording by VHG-couplers. Specifically, firstly, the
reference light beam was normally incident to the right angle plane of the prism, and the
object beam was incident to the prism’s hypotenuse, then both of them were incident to
the photopolymer. Considering that the photopolymer has a similar refractive index to the
prism, the angle of the reference and object light beams was set as 60◦. To avoid the air gap
between the prism and photopolymer, refractive index matching oil (n = 1.52) was used to
fill the gap.
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Figure 1. Experimental setup for fabricating the holographic waveguides. S: shutter; NDF: neutral
density filter; M: mirror; SF: spatial filter; L: lens, A: aperture; PBS: polarization beam splitter; H: half
wave plate.

The in-coupling and out-coupling VHGs for the holographic waveguide were mirror
symmetrical [4]. When the first grating was done, the second grating was recorded on the
other end of the photopolymer sample using a mirror operation. To analyze the influences
of exposure parameters on holographic characteristics of the acrylate-based photopolymer,
we fabricated waveguide applied VHG samples under different exposure conditions.

2.3. Post-Treatment Process for Fabricating Holographic Waveguide

As shown in Figure 2, post-treatment must be carried out after holographic recording.
To ensure that the monomers reacted completely and polymerized, the samples were
placed for a period of 1 to 5 min in a dark room. Then the samples were illuminated under
365 nm ultraviolet (UV) light to fix the internal grating fringes. Finally, in order to achieve
higher optical efficiency of waveguide applied VHGs, we placed the samples in a vacuum
drying chamber and heated them for a period of time at a certain temperature.
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2.4. Holographic Characterization Methods of Waveguide Applied VHGs

Both the exposure parameters (exposure dosage, exposure intensity, the intensity
contrast of reference and object light beams) and post-treatment parameters (dark reaction
time, UV curing time, baking temperature and time) have a significant effect on the perfor-
mance of holographic optical elements (HOEs) prepared by the photopolymer. Therefore,
we analyzed the diffraction efficiency, diffractive wavelength bandwidth, and RIM evolu-
tion of waveguide applied VHGs under different combinations of the above-mentioned
preparation conditions. The diffraction efficiency plays an important role in describing the
holographic performance, which was investigated first. In Figure 3, the incident intensity
Iin and the transmitted intensity Io of the probe beam were measured using a laser power
meter (OPHIR Vega, Jerusalem, Israel). The diffraction efficiency was calculated as

η = (1 − Io/Iin) × 100%. (1)
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Figure 3. Measurement of the optical path in order to calculate the maximum diffraction efficiency of
the waveguide applied VHGs. The light intensity was measured using a laser power meter (OPHIR
Vega). The actual diffraction phenomena of the waveguide applied VHG are also shown in the figure.

The diffractive efficiency curve under different wavelengths ranging from 450 nm
to 600 nm was obtained using a visible ultraviolet spectrophotometer (TU-1901, Persee
Corporation, Beijing, China). On the basis of the designed grating parameters, the measured
peak diffraction efficiency and the diffraction efficiency curve, we were able to deduce
the RIM of the samples using the rigorous finite element method (FEM) model for the
VHGs. The FEM model setup was introduced in our previous work [4]. The refractive
index distribution equation of the VHGs was calculated as

n = n0 + ∆ncos
[

2π
Λ

(xsin(ϕ) + ycos(ϕ)
]

, (2)

where n0 represents the average refractive index of the volume grating, ∆n is the RIM of
the holographic recording material, Λ is the grating period, and ϕ is the grating slanted
angle of VHG.

3. Results and Discussion
3.1. Holographic Performances Influenced by Exposure Parameters

Firstly, we examined the influences of exposure dosage on the holographic properties
of the VHG samples. To compare the holographic performances under different exposure
dosages, the photopolymer was illuminated under the same light intensity and prepared
under similar post-treatment conditions. The exposure intensity was set at 10 mW/cm2,
and the dark reaction time, UV curing time, baking time and temperature were 4 min,
3 min, 5 min and 100 ◦C, respectively. With the increment of exposure dosage, all the
peak diffraction efficiencies of samples underwent an obvious promotion, as shown in
Figure 4. In particular, when the exposure dosage reached the initial exposure thresholds,
the measured diffraction efficiency increased rapidly. When the diffraction efficiency
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reached over 60%, the growth slowed down until reaching the maximum value. Finally,
the peak diffraction efficiency remained almost the same, even if the exposure dosage kept
increasing.
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The photo-polymerization reaction mechanism was well demonstrated by the experi-
mental results. At initial exposure, the photosensitizer was continuously consumed, initiat-
ing monomer polymerization. The concentration of the photosensitizers and monomers
in the bright region decreased continuously, forming a huge concentration difference be-
tween bright and dark regions. Due to the concentration gradient, the photosensitizers
and monomers in the dark regions form a refractive index modulation, so the diffraction
efficiency increased rapidly. With the progress of the reaction and polymerization, concen-
tration differences of components between bright and dark regions decreased gradually,
thus slowing down the increase in diffraction efficiency.

In addition, the exposure dosage that resulted in the peak diffraction efficiency of the
VHGs was only 30 mJ/cm2, which means that the light sensitivity of acrylate photopolymer
is very high. We can also see that the peak diffraction efficiency reached 92%, the maximum
diffractive wavelength bandwidth reached around 13 nm, and the corresponding RIM
was 0.03.

Similarly, samples were illuminated under the same exposure dosage (30 mJ/cm2)
and post-treatment with different light intensities, as shown in Figure 5. As is illustrated,
the diffraction efficiency was enhanced with the increase of exposure intensity (from
0.1 mW/cm2 to 8 mW/cm2). However, the peak diffraction efficiency changed significantly
when the light intensity was below 1 mW/cm2. In general, photo-polymerization occurs
only when the recording light intensity reaches a certain threshold [8]. This is because
the photosensitizer has a strong absorption at 533 nm when the incident light intensity
is too low, and most of the light will be absorbed by the material. Only when the light
intensity exceeds a certain threshold (1 mW/cm2), will the material be photoinduced to
polymerize. On the other hand, low light intensity means that it is necessary to extend the
exposure time, and then the environmental vibration and temperature changes will affect
the exposure quite a lot. Additionally, the higher the intensity of the light exposure, the
more photons enter the materials within a certain period of time, leading to an increase in
the photoinduced reaction rate and mutual diffusion rate between the photosensitizers and
the monomers. Therefore, the light intensity also affects the polymerization speed of the
photopolymers. After further optimizing the light intensity, the peak diffraction efficiency,
diffractive wavelength bandwidth and RIM increased to about 94.4%, 15 nm and 0.035, as
shown in Figure 5.
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3.2. Holographic Performances Influenced by Post-Treatment

In addition to the exposure parameters, the post-treatment process also has a great
impact on the holographic performance of the VHGs. When the exposure process is over,
the photopolymerization and diffusion process do not stop immediately, and some reacted
monomers will continue transferring, polymerizing and diffusing [28,29]. Therefore, in
order to ensure the monomers fully polymerize and diffuse, the material needs to be placed
in a dark room for a period of time after exposure. From the figure, it can also be seen that
dark reaction time had a significant effect on the improvement of the grating diffraction
efficiency within the first 2 min. When the dark reaction time exceeded 3 min, the dark
reaction did not significantly improve the holographic performance of the VHG. As shown
in Figure 6, with the increase in dark reaction time, the grating peak diffraction efficiency
increased from 37% to 96.5%, the diffractive wavelength bandwidth also expanded to
around 17 nm and the corresponding RIM reached 0.0425.
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According to the Ref. [30], the UV curing should consume the unreacted monomers.
In this section, we characterize the influence of UV curing time on the holographic perfor-
mance of VHG. On the basis of the above analysis, the exposure intensity and dosage were
4 mW/cm2 and 30 mJ/cm2. The dark reaction time was controlled at 3 min, the UV curing
time was changed from 0.5 min to 5 min, and the other post-treatment parameters remained
the same. As shown in Figure 7, the change in UV curing time had no significant effect on
the peak diffraction efficiency. Considering the preparation efficiency of the holographic
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waveguide applied VHGs, we decide to decrease the UV curing time from 3 min to 2 min,
under the premise of ensuring grating diffraction efficiency.
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After UV curing, a baking process is usually applied to the sample to enhance the peak
diffraction efficiency and RIM of the photopolymer [30]. To investigate the effects of baking
temperature on the RIM, we treated samples at several baking temperatures (from 70 ◦C to
120 ◦C, in interval of 10 ◦C) for baking times of 5 min. Figure 8a shows the experimental
results of peak diffraction efficiency, and thus the RIM, as a function of baking temperature
for a baking time of 5 min. In general, the optimum baking temperature was 90 ◦C, and the
peak diffraction efficiency increased from 83.02% to 99.1%.

Polymers 2021, 13, x FOR PEER REVIEW 7 of 11 
 

 

effect on the peak diffraction efficiency. Considering the preparation efficiency of the hol-
ographic waveguide applied VHGs, we decide to decrease the UV curing time from 3 min 
to 2 min, under the premise of ensuring grating diffraction efficiency. 

 

(a) 

 

(b) 

Figure 7. Holographic properties influenced by UV curing time. (a) Peak diffraction efficiency and RIM evolution curves 
of gratings; (b) Optimized diffraction efficiency curves. 

After UV curing, a baking process is usually applied to the sample to enhance the 
peak diffraction efficiency and RIM of the photopolymer [30]. To investigate the effects of 
baking temperature on the RIM, we treated samples at several baking temperatures (from 
70 °C to 120 °C, in interval of 10 °C) for baking times of 5 min. Figure 8a shows the experi-
mental results of peak diffraction efficiency, and thus the RIM, as a function of baking tem-
perature for a baking time of 5 min. In general, the optimum baking temperature was 90 °C, 
and the peak diffraction efficiency increased from 83.02% to 99.1%. 

 

(a) 

 

(b) 

Figure 8. Peak diffraction efficiency and RIM evolution curves of gratings influenced by (a) baking temperature and (b) 
baking time. 

On the other hand, we also treated samples at several different baking times (from 1 
min to 6 min, at intervals of 1 min) at a baking temperature of 90 °C. Figure 8b shows the 
experimental results of peak diffraction efficiency, and thus the RIM, as a function of bak-
ing time at the optimum baking temperature. It can be seen that the baking time has a 
great influence on the experimental results. Finally, when the baking time was below 2 
min, the peak diffraction efficiency increased rapidly from 39% to 80%, and the corre-
sponding RIM also improved from 0.01 to 0.025. At baking times of more than 2 min, alt-

Figure 8. Peak diffraction efficiency and RIM evolution curves of gratings influenced by (a) baking temperature and (b)
baking time.

On the other hand, we also treated samples at several different baking times (from
1 min to 6 min, at intervals of 1 min) at a baking temperature of 90 ◦C. Figure 8b shows
the experimental results of peak diffraction efficiency, and thus the RIM, as a function of
baking time at the optimum baking temperature. It can be seen that the baking time has a
great influence on the experimental results. Finally, when the baking time was below 2 min,
the peak diffraction efficiency increased rapidly from 39% to 80%, and the corresponding
RIM also improved from 0.01 to 0.025. At baking times of more than 2 min, although the
peak diffraction efficiency continued to increase, the speed of increase was significantly
slower. Until a baking time of 5 min, the results remained almost unchanged. Therefore,
the best baking time was determined to be 5 min for a baking temperature of 90 ◦C.
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On the basis of the above optimization process, we prepared the monochromatic green
holographic waveguide using the optimum exposure and post-treatment parameters (the
exposure intensity was set as 4 mW/cm2, the dark reaction time, UV curing time, baking
time and temperature were 3 min, 2 min, 5 min and 90 ◦C). After testing, the diffraction
efficiency and diffractive wavelength bandwidth of the waveguide applied VHGs reached
99% and 22 nm, and the corresponding RIM reached 0.06, as shown in Figure 9.
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preparation conditions.

On the basis of the experimental results, it was found that exposure dosage deter-
mines the degree of polymerization in the process of holographic recording, leading more
monomers with small molecular weight to polymerize into chains. Exposure intensity
determines the consumption rate of photosensitizer and polymerization rate of monomers,
improving the speed of the VHG formation. By analyzing the effects of the post-treatment
process, we found that the excited writing monomers could completely diffuse and poly-
merize into chains during the dark reaction time. In addition, UV curing irreversibly
bleached the residual initiator dyes and cured binders, which helped to fix the formed
grating structure. Then, the polymerized monomers needed to be cured by baking, form-
ing a refractive index modulation between the light curing and the thermosetting of the
monomers.

3.3. Display Results of Monochromatic Green Holographic Waveguides

As shown in Figure 10, the green monochromatic holographic waveguide display
module consisted of three components: a single green micro-OLED display (0.39′, Guozhao
Optoelectronics Corporation, Nanjing, China), our own designed and fabricated collima-
tion lens, and a holographic waveguide. In this compact display module, the micro-OLED
provides a bright green image source, and the collimation lens is used to collect and colli-
mate the lights emitted from the micro-OLED into the in-coupling VHG of the holographic
waveguide. The holographic waveguide performed the role of diffraction imaging. The
in-coupling VHGs diffract the collimating lights into the waveguide under the total inner
reflection(TIR )condition, and then the diffracted lights propagate in the waveguide and
diffract again through the out-coupling VHG into the human eyes.

The luminance of the micro-OLED and the holographic waveguide display module
are around 10,000 cd/m2 and 300 cd/m2, respectively, and were measured using a point
luminance meter CS 200, so the optical efficiency of the whole system is about 3%. The
diagonal FOV and the eye relief were designed to be 28◦ and 15 mm. The display results
are shown in Figure 10b and Video S1; it can be seen that the holographic waveguide is
able to display green images very well in the real world after optimizing the preparation
parameters.
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display images.

To verify the thermal stability of the prepared holographic waveguide, we baked three
samples in an oven at a constant temperature of 60 ◦C for 2.5 h. The experimental results
show that the diffraction efficiency of the VHGs remained almost unchanged, as shown in
Figure 11.
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4. Conclusions

In this paper, we investigated the optimal conditions of a green light-sensitive acrylate-
based photopolymer, and a monochromatic green holographic waveguide was fabricated
to verify its potential application in an AR diffractive waveguide.

In the optimization research, the influence of the exposure parameters and post-
processing conditions on the diffraction performance were investigated. We successfully
increased the polymerization speed and degree of photopolymerization by adjusting the
exposure intensity, exposure dosage, baking time, and baking temperature.

We found that, as the exposure dosage increased, the diffraction efficiency quickly
increased to 60%, then the increasing speed of diffraction efficiency became slow, although
the exposure dosage was continually increasing. On the other hand, we studied the
threshold of exposure intensity and found that when the light intensity was lower than
1 mw/cm2, a higher diffraction efficiency could not be achieved.

Additionally, in the post-processing stage, proper dark-reaction and UV curing were
able to effectively improve the holographic performances of VHGs. A dark reaction of
2 min was able to improve the diffraction efficiency significantly. Compared with the
other preparation parameters, the UV curing time had no obvious effect on the peak
diffraction efficiency. The peak diffraction efficiency increased slowly with the increment
of baking temperature, and when the baking temperature was 90 ◦C, the efficiency reached
a maximum of 99.1%. A baking time of 2 min was able to rapidly increase the diffraction
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efficiency from 39% to 80%, while the corresponding RIM also improved from 0.01 to 0.025.
After 2 min, the growth slowed down until reaching its maximum value.

It was also found that when the diffraction efficiency reached its maximum value of
99%, the diffractive wavelength bandwidth still continuously increased with increasing
RIM. When the RIM of VHGs reached 0.06, with an exposure dosage of 30 mJ/cm2, the
corresponding diffractive wavelength bandwidth reached around 22 nm, proving that
the acrylate-based photopolymer had a good capacity with wide FOV and high optical
efficiency for holographic waveguide display.

To verify the application potential of this material in waveguide displays, we prepared
a monochromatic green holographic waveguide and further developed a compact AR
display system. A monochromatic green near-eye display with FOV 28◦ was achieved, and
the display results proved that this photopolymer can be regarded as a high-performance
holographic recording material that could find wide application in the field of waveg-
uide display.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073
-4360/13/6/936/s1, Video S1: Monochromic green imaging results of holographic waveguide
display system.
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