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Abstract
The complex gut microbiota plays a key role in host metabolism and health. However, the core microbial communities in the 
different aged Bactrian camels remain totally unclear. We used high-throughput 16S rRNA gene sequencing to examine the 
temporal variability of the fecal microbiota in Bactrian camels. At 2 months of age, the fecal microbiota was composed of 
Firmicutes, Proteobacteria, and Actinobacteria. At 1 and 3 years of age, the fecal microbiota was dominated by Firmicutes, 
Bacteroidetes, and Verrucomicrobia. At the genus level, Blautia, Fusobacterium, and Bifidobacterium were more abundant at 
2 months of age, as well as Escherichia–Shigella. Ruminococcaceae_UCG​-005, Akkermansia, and Christensenellaceae_R-7_
group were the most abundant at 1 and 3 years of age. Diversity and stability of the gut microbiota increased with age. There 
was enrichment for genes associated with immune system diseases at 2 months of age. This study is the first to investigate 
the distribution of the gut microbiota in Bactrian camels with different ages and provide a baseline for future camel micro-
biology research.

Introduction

The establishment of a stable gut microbiota is closely cor-
related with host growth and immune development. The gut 
microbiota is an important factor for mammalian health, and 
plays a critical role in metabolism, immunity, and host devel-
opment [1, 2]. A stable commensal community protects the 
host against invasive pathogens [3]. Microbial colonization 
of the infant begins at birth and is impacted by lactation 
[4, 5]. The gut microbiota in the ruminants not only regu-
lates body health but also plays an important bridging role 
between diet and host [6]. It has demonstrated that rumi-
nants have unique digestive properties and microbial which 
can help host to adapt to high fiber content foods, but also 

can make ruminants susceptible to a variety of diseases and 
conditions [7]. The gut microbiota in ruminants play a more 
prominent role in various physiological states [8].

The Bactrian camel inhabits the cold deserts of south-
ern areas of central (Kazakhstan, Iran) and eastern (Russia, 
Mongolia, China) Asia [9]. The camel plays a vital role in 
the socio-economic of the region and is relied upon by mil-
lions of humans in both the semi-dry and arid areas. Previ-
ous studies also identified the species composition of the 
camel’s rumen microbiome [10] and a detailed profiling 
of the camel rumen’s carbohydrate-active enzymes [11]. 
Moreover, the gut microbiota may play a critical role in 
Bactrian camel health [12]. Microbial colonization begins 
at birth and is essential for the maintenance of host health. 
The composition of the early life microbiota has been stud-
ied in rats [13], cattle [14], and mice [15]. Furthermore, 
some potential links may also exist between age factors and 
intestinal microbiota. However, the dynamic shifts of the 
gut microbiota in Bactrian camels remain unclear. We used 
high-throughput 16S rRNA gene sequencing to investigate 
the microbiota composition of fecal samples from Bactrian 
camels. The results suggested that age is also important for 
shaping the Bactrian camel gut microbiota composition and 
contributing to its dynamic shifts.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0028​4-019-01689​-6) contains 
supplementary material, which is available to authorized users.

 *	 Rimutu Ji 
	 yeluotuo1999@vip.163.com

1	 Key Laboratory of Dairy Biotechnology and Bioengineering, 
Ministry of Education, College of Food Science 
and Engineering, Inner Mongolia Agricultural University, 
Hohhot 010018, Inner Mongolia, China

2	 Camel Research Institute of Inner Mongolia, Alxa 737300, 
Inner Mongolia, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00284-019-01689-6&domain=pdf
https://doi.org/10.1007/s00284-019-01689-6


811High‑Throughput Sequencing Reveals the Gut Microbiome of the Bactrian Camel in Different Ages﻿	

1 3

Materials and Methods

Animals and Sample Collection

Samples were collected from 18 Bactrian camels in Inner 
Mongolia Bayannaoer in the spring of 2018. There were 
three groups: 2-month-old camels that were fed breast milk 
(TM); 1-year-old camels that were fed a plant-based diet 
consisting of Chenopodiaceae, Compositae, and Legumi-
nosae (ON); and 3-year-old camels that were fed a plant-
based diet consisting of Chenopodiaceae, Compositae, and 
Leguminosae (TH). Fresh fecal samples were immediately 
frozen using liquid nitrogen and were stored at − 80 °C. The 
experiment was conducted according to the animal ethics 
guidelines of the Key Laboratory of Dairy Biotechnology 
and Bioengineering, and approved by the Animal Ethics 
Committee of Inner Mongolia Agricultural University.

DNA Extraction and 16S rRNA Gene Sequencing

Genomic DNA was extracted using the QIAamp DNA stool 
mini kit (QIAGEN, cat#51504), according to the manufac-
turer’s protocol. The V3–V4 hypervariable region of the 
16S rRNA gene was amplified using primers the 515F and 
806R primers (ACT​CCT​ACG​GGA​GGC​AGC​A and GGA​
CTA​CHVGGG​TWT​CTAAT, respectively). The reaction 
conditions were as follows: an initial denaturation at 98 °C 
for 2 min; followed by 30 cycles of denaturation at 98 °C for 
15 s, annealing at 55 °C for 30 s, extension at 72 °C for 30 s; 
and a final extension at 72 °C for 5 min. The concentration 
and purity of DNA were tested using the Quant-iTTMPico-
Green® dsDNA Assay Kit (Life Technologies, Grand Island, 
NY, USA). Library preparation and sequencing were con-
ducted by the Personal Biotechnology Co., Ltd. (Shanghai, 
China).

Data Analysis

The QIIME (Qiime1.8.0) was used for 16S rRNA data qual-
ity control and analysis [16]. We used the SILVA database 
(SILVA, Release 119) to analyze taxonomy [17]. The high-
quality sequences were used in the final analysis. Sequences 
were clustered into operational taxonomic units (OTUs) 
using the UCLUST algorithm (97% similarity) in QIIME 
v.1.8.0. The Ribosomal Database Program (RDP) clas-
sifier was used to assign taxonomic category to all OTUs 
at a confidence threshold of 0.8. Alpha (Shannon, Chao1, 
Simpson, ACE), and beta (Bray–Curtis, weighted UniFrac) 
diversity metrics were calculated in QIIME. A one-way 
analysis of similarity (ANOSIM) was used to determine 
differences between groups. Differences between the TM 

groups and the two other groups were calculated using 
STAMP [18]. Differences in alpha diversity and relative 
abundance of taxa among different groups were analyzed 
using the Kruskal–Wallis rank-sum test in R. Differences 
between all three groups were determined using Welch’s 
test corrected for a false discovery rate (FDR) according to 
Benjamini–Hochberg procedure. PICRUSt v.1.0.1 was used 
to assess the metabolic potential of the gut microbiota [19].

Results

Microbiota Diversity

We obtained a total of 766,114 high-quality sequences: 
between 33,247 and 47,873 valid sequences for each sam-
ple (Table S1). The rarefaction curves for the OTUs detected 
showed that the number of OTUs increased with the depth 
of sequencing. The final curve became stable, implying that 
the amount of sequencing data is somewhat reasonable (Fig. 
S1). Sequences were classified into 20 phyla, 43 classes, 67 
orders, 113 families, and 234 genera (Table S2). There were 
1470 OTUs shared by all three groups, and 1774, 949, and 
1200 unique OTUs in the OM, TH, and ON groups, respec-
tively (Fig. 1). The number of OTUs increased with age. The 
Prevotella, Butyrivirio, Clostridium.

There were significant differences in alpha diversity 
(ACE, Chao1, Shannon, and Simpson indices) between 
the TM and ON groups (P < 0.05), as well as the TM and 
TH groups (P < 0.05) (Fig. 2). There was not a significant 
difference in the alpha diversity of the ON and TH groups 
(P > 0.05). A principal coordinates analysis of the weighted 
Unifrac distance showed that samples clustered according 
to age. The ON and TH samples were more similar than the 
TM samples with any other groups (Fig. 3). The composition 
difference was also determined by Partial Least Squares Dis-
criminant analysis (Fig. S1) as well as analysis of similarities 
(ANOSIM) using weighted UniFrac distances (R = 0.5202, 
P = 0.001).

Characterization of the Microbiota

At the phylum level, Gut bacterial communities showed 
clear age differences in the Firmicutes (TH 59.27%, ON 
60.62%, TM 56.39%), Bacteroidetes (TH 24.03%, 19.45%, 
TM 11.60%), Verrucomicrobia (TH 8.09%, ON 14.18%, 
TM 1.85%), and Proteobacteria (TH 3.22%, 2.39%, TM 
17.28%) abundances (Fig.  4a, Table  S3). The relative 
abundance ratios of Proteobacteria and Actinobacteria 
were higher in the 2-month-old group than other groups 
(P < 0.05). The microbiota of the ON and TH groups was 
dominated by Firmicutes, Bacteroidetes, and Verrucomicro-
bia (P < 0.05). At the genus level, the relative abundances 
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of Escherichia–Shigella (13.45%), Blautia (5.43%), and 
Alistipes (5.0%) were highest in the TM group; while Rumi-
nococcaceae_UCG​-005 (ON 12.8%, TH 10.0%), Akkerman-
sia (ON 13.9%, TH 7.7%), and Christensenellaceae_R-7_
group (ON 10.5%, TH 8.3%) were the most abundant in 
the TM and ON groups (Fig. 4b, Table S4). One sample 
in the TM group, TM5, had a markedly different commu-
nity structure from the rest of the samples in that group 
(Fig. 5). Community structure in the ON group was similar 
to that of the TH group. In comparison with TM group, 
Christensenellaceae_R-7_group, Ruminococcaceae_UCG​
-005, Ruminococcaceae_UCG​-010, Akkermansia, and 
Prevotellaceae_UCG​-003 increased significantly in the 
ON and TH groups (P < 0.05). However, The relative abun-
dances of Streptococcus, Blautia, Fusobacterium, and Bifi-
dobacterium were lower in the ON and TH groups than in 
the TM group (P < 0.05) (Fig. 6, Table S5).

Predicted Functions of Microbiota

To estimate changes in the metabolic potential of the gut 
microbiota with age, we applied the PICRUSt algorithm. 

The metabolic capacities of the ON and TH groups were 
similar, while the TM group was distinct from the other two 
groups (Fig. S3). There were significant differences between 
the TM and TH groups in the predicted abundance of path-
ways related to immune system; folding, sorting, and deg-
radation; replication and repair; and translation and immune 
system diseases (P < 0.05). The mean relative abundance of 
immune system disease-related pathways was higher in the 
TM group; while the relative abundance of immune system 
related pathways was lower in the TM group (Fig. 7).

Discussion

Previous studies have described the longitudinal segregation 
of the gut microbiota in Bactrian camel [12]; however, the 
core gut microbiome of the Bactrian camel in different ages 
still remain unclear. To the best of our knowledge, in this 
study, we analyzed the bacterial diversity and abundance 
of fecal contents of Bactrian camel in different ages with 
high-throughput sequencing. In mammals, the distribution 
of microbes is influenced by host genotype, gender, and age 

Fig. 1   Venn diagram showing 
the overlap of OTUs across 
groups. ON 1 year old, TH 3 
years old, TM 2 months old
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[20, 21]. In this study, we show that the composition of the 
fecal microbiota changes during different ages. Firmicutes, 
Bacteroidetes revealed the most abundant taxa in the fecal 
microbiota. The abundance of these two major phyla was 
largely consistent with mature camel rumen [10]. At the 
genus level, Prevotella, Butyrivirio, Spriochaetes, Verru-
comicrobia, Succinivibria, Clostridium were common in the 
core microbiome of camel rumen [10, 22]. However, the tax-
onomic groups represented within the Bactrian camel feces 
were not similar to those previously observed in the rumen 
of camels. Ruminococcaceae_UCG​-005, Akkermansia, and 
Christensenellaceae_R-7_group were the most abundant in 
the mature fecal microbiota.

The richness and diversity of the microbiota increase with 
age [23, 24]. We observed differences in microbiota compo-
sition between the TM and ON/TH groups. By 1 year of age, 
the α-diversity (total OTU counts) approached adult levels 
and the β-diversity was similar to the TH group (Figs. 1, 2, 
4). It is an indication that as Bactrian camel reached 1 year 
of age the microbiota gradually stabilized towards an adult-
like state, which suggests that the 1-year-old Bactrian camel 

gut microbiome has many functional attributes of the adult 
microbiome.

Interestingly, at the phylum level, the increase in the rela-
tive abundance of Firmicutes, Bacteroidetes, and Verrucomi-
crobia that we observed, along with the decline in Proteo-
bacteria and Actinobacteria and increase in Firmicutes and 
Bacteroidetes, is in agreement with previous studies [25, 
26]. Microbiota diversity was primarily driven by diet. The 
dominant taxa in the TM group were Firmicutes and Proteo-
bacteria, compared to Firmicutes, Bacteroidetes, and Ver-
rucomicrobia for the ON and TH groups. Previous study 
has been reported that the Firmicutes/Bacteroidetes ratio 
changes with age [27]; Microbiota diversity was primarily 
driven by diet. The dominant taxa in the TM group were Fir-
micutes and Proteobacteria, compared to Firmicutes, Bac-
teroidetes, and Verrucomicrobia for the ON and TH groups. 
Previous studies have reported that the ratio of Firmicutes/
Bacteroides changes with age [28], which is consistent with 
this report. Interestingly, the relative abundance ratios of 
Proteobacteria and Actinobacteria were higher in the TM 
group. Proteobacteria is one of the earliest colonizers and 

Fig. 2   Differences in alpha diversity between the three groups. *P < 0.05, **P < 0.01
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main members in the neonatal. It is conductive to homeo-
stasis of the anaerobic environment of the GI tract gut [29]. 
Moreover, Actinobacteria coordination with one partner or 
host can easily be translated into pathogenic interactions 
with another [30].

At the genus level, Escherichia–Shigella, Blautia, and 
Alistipes were the abundant microbiota in the TM group. 
It has recently been reported that Blautia can exhibit ben-
eficial anti-inflammatory effects [31]. Previous studies 
have described the dominance of Escherichia–Shigella in 

young calves and first-day human meconium [14, 24]. In 
addition to Escherichia–Shigella, Streptococcus, Blautia, 
and Fusobacterium had increased abundances in the TM 
group (P < 0.05) (Fig. 5). The proportion of some intestinal 
microbiota changes with age. Compared with camel calves, 
the proportion of the ratio of Christensenellaceae_R-7_
group, Ruminococcaceae_UCG​-005, Ruminococcaceae_
UCG​-010, were dominant in adult camels. Ruminococ-
caceae and Christensenellaceae regarded as potential 
beneficial bacteria because they participated in the positive 

Fig. 3   Principal coordinates 
analysis of weighted UniFrac 
distances. ON 1 year old, TH 3 
years old, TM 2 months old

Fig. 4   Microbial composition of different samples. a Taxa assignments at phylum level. b Taxa assignments at genus level. ON 1 year old, TH 3 
years old, TM 2 months old
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Fig. 5   Heatmap of genus level 
relative abundances. ON 1 
year old, TH 3 years old, TM 2 
months old

Fig. 6   An extended error bar plot indicating the differences in mean abundance of taxa in the three groups. ON 1 year old, TH 3 years old, TM 2 
months old
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regulation of the intestinal environment and linked to 
immunomodulation and healthy homeostasis [32, 33]. It 
suggests that health state is also related to ages. The sig-
nificant differences for some KEGG categories, such as 
Immune system and immune system diseases, were also 
higher in the 2-month-old compared with other camels. 
The composition of the microbial community at 2 months 
of age may be heavily influenced by weaning, in which 
diarrhea is easy to occur. This shift from a milk- to a plant-
based diet could also explain the differences in metabolic 
potential. The intestinal mucosal developmental immaturity 
and the external environment may make the camel calves 
more susceptible to pathogen invasion [34]. Previous study 
has showed that intestinal microflora was closely related to 
diarrhea [35].

In conclusion, our data suggest that microbiota compo-
sition may be due to changes in the diet and/or physiologi-
cal changes associated with age. Gut microbiota structure 
is similar between the ON and TH groups, suggesting that 
maturation may occur by 1 year of age. However, we do 
not have enough time points to determine precise popula-
tion dynamics. Bacterial colonization starts at birth and 
plays important roles in host growth and immune develop-
ment [36]. A stable commensal community protects the 
host from invasive pathogens [3]. The establishment of 
stable microbial communities has an important role in the 
induction of homeostatic mechanisms [37]. Future work 
should examine the development of an adult microbiota 
as a basis for understanding how diet and host microbiota 
impact the development of the Bactrian camel.
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