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Abstract
The design for vaccines using in silico analysis of genomic data of different viruses has taken many different paths, but lack 
of any precise computational approach has constrained them to alignment methods and some alignment-free techniques. 
In this work, a precise computational approach has been established wherein two new mathematical parameters have been 
suggested to identify the highly conserved and surface-exposed regions which are spread over a large region of the surface 
protein of the virus so that one can determine possible peptide vaccine candidates from those regions. The first parameter, w, 
is the sum of the normalized values of the measure of surface accessibility and the normalized measure of conservativeness, 
and the second parameter is the area of a triangle formed by a mathematical model named 2D Polygon Representation. This 
method has been, therefore, used to determine possible vaccine targets against SARS-CoV-2 by considering its surface-
situated spike glycoprotein. The results of this model have been verified by a parallel analysis using the older approach of 
manually estimating the graphs describing the variation of conservativeness and surface-exposure across the protein sequence. 
Furthermore, the working of the method has been tested by applying it to find out peptide vaccine candidates for Zika and 
Hendra viruses respectively. A satisfactory consistency of the model results with pre-established results for both the test 
cases shows that this in silico alignment-free analysis proposed by the model is suitable not only to determine vaccine targets 
against SARS-CoV-2 but also ready to extend against other viruses.
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Introduction

Since time immemorial, epidemics and pandemics have 
ravaged the human race. Many of these have been identi-
fied with viruses and sometimes antidotes have been dis-
covered by keen observation as in the case of smallpox 
(Riedel 2005). The recent developments in immunogenet-
ics, information technology, immunoinformatics, artificial 
intelligence and other sciences, especially the success of 

the Human Genome Project, have emboldened scientists to 
seek a closer understanding of the functioning of viruses 
and designing of anti-viral therapeutics. Traditional vaccines 
that bolster a human body’s immune system are generally 
designed to be based on live attenuated, inactivated or sub-
unit vaccines. These have the problem of long and costly 
development process and sometimes the vaccines revert to 
the original viral form thus complicating the process (Chit 
et al. 2014; Li et al. 2014; Lo et al. 2013).

The advent of bioinformatics and enhanced knowledge of 
the immune response to an invading pathogen as in Tomar 
and De (2014) and Backert and Kohlbacher (2015) led to a 
different pathway to the development of anti-viral vaccines. 
B cells and T cells are responsible for facilitating adaptive 
immunity response in the human body by developing anti-
bodies. These cells only recognize the similar antigenic part 
of the pathogen. Surface-situated, antigenic parts or regions 
of the pathogen are called epitopes. So, it would be pru-
dent to determine such regions and design vaccines that can 
elicit anti-viral response. Such ideas led to the concept of 
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“reverse vaccinology” and “vaccinomics” as in Rappouli 
(2001) and Poland et al. (2011, 2016), and the develop-
ment of peptide vaccine models (Purcell et al. 2007; Nandy 
et al. 2018; Dudek et al. 2010). These advancements led to 
design of remote and individual specific vaccine that hold 
the promise of development of community-specific vaccines 
by discarding the “one size fits all” paradigm prevalent in 
current vaccine industry. Among several approaches, peptide 
vaccines have taken a leading role. The Zika virus pandemic 
of 2015–2016 gave added impetus to different studies for 
peptide vaccines. For example, Shawan et al. (2014) and 
Badawi et al. (2016) used the immunoinformatics approach 
to design peptide vaccines. Mirza et al. (2016) predicted 
antigenic epitopes of Zika viral proteins using immunoin-
formatics coupled with molecular dynamic simulations. Dar 
et al. (2016) used an in silico approach to predict promis-
cuous T-cell epitopes in the Zika polyprotein. Islam et al. 
(2012) identified conserved high-scoring epitopes in the 
Chikungunya virus using alignment techniques. Chakraborty 
et al. (2010) used sequence alignment methods to determine 
conserved segments for peptide vaccine design for all four 
types of the dengue virus. In the context of the currently 
raging pandemic caused by SARS-CoV-2, there is a huge 
demand placed on the production of vaccines on a very 
urgent basis. In this regard, many researchers have adopted 
approaches towards peptide vaccine design as in Abdelma-
geed et al. (2020), Slathia and Sharma (2020), Yazdani et al. 
(2020), Dagur et al. (2020), Kalita et al. (2020) and Durojaye 
et al. (2020).

Advancement of computer-assisted technologies and 
availability of viral sequence databases have paved the way 
for the design of peptide vaccines. In this context, different 
mathematical models and computational algorithms are used 
to study the appropriate proteins for their solvent exposure, 
their extent of mutation and other attributes. In our previ-
ous studies as in Dey et al. (2017, 2018, 2016) and Ghosh 
et al. (2012), graphical plots and manual observations have 
been relied upon to identify the regions of the virus, which 
have high surface exposure and low mutation probability 
i.e., more conserved. But there is need for a more robust 
and automated mathematical or computational approach 
that bypasses manual interventions so that the most highly 
conserved and surface accessible peptides can be figured 
out precisely through mathematical descriptors. This would 
be valuable for a quick response against newly emerging 
epidemics and pandemics. For this reason, in this article, 
a new computational approach has been introduced. The 
method begins with the definition of a new mathematical 
parameter—w parameter to rank all possible 12-length 
peptides from the full-length sequence of the target protein 
based on their surface exposure (ASA) and conservative-
ness (PV). The following step involves grouping the higher 
ranked 12-length peptides into different consolidated peptide 

zones based on their location and defining a new mathe-
matical model—the 2D Polygon Representation, which can 
assign a score to those consolidated zones by representing 
each of them with the help of a simple triangle constructed 
by three independent variables. Two of these variables are 
already known beforehand, that is, the surface accessibility 
and conservativeness, but on the other hand a third biophysi-
cal parameter has also been studied in this regard, that is, 
the length or span of the zones. Using this approach, the 
best peptide candidates for vaccine development have been 
determined with respect to the current pandemic caused by 
SARS-CoV-2, in a much more quick, precise and automatic 
way. Additionally, these regions have been verified not only 
using the older approach of manual estimation but also with 
the comparative analyses made by several other researchers 
working in this field, to see if there is any consistency in 
the results given by the analysis. Finally, the method has 
been applied to design peptide vaccine candidates for two 
other viruses—Hendra virus and Zika virus. The best pos-
sible peptide regions determined for either of the two cases 
were found to match with an established set of peptide vac-
cine candidates, showing that the method is consistent when 
applied for other viruses as well. Therefore, this effort pro-
vides a quick starting point for wet-lab experiments to begin 
with, cutting the lead-time and costs by a significant amount, 
for vaccine design against any virus.

Some comparative studies on peptide vaccine design 
against SARS-CoV-2 include (Durojaye et al. 2020), which 
has used the main proteinase of the SARS-CoV-2 virus as 
the target protein and (Abdelmageed et al. 2020 and Dagur 
et al. 2020) which have used the envelope E protein for the 
same. However, in the analysis presented here for SARS-
CoV-2, it is the surface-situated spike glycoprotein of SARS-
CoV-2 that has been exclusively studied. Similar studies on 
peptide vaccine design using this spike protein have been 
demonstrated in Slathia and Sharma (2020), Yazdani et al. 
(2020) and Kalita et al. (2020).

Materials and Methods

Prerequisites

The protein sequences of the surface-situated spike glyco-
protein of SARS-CoV-2 have been downloaded from the 
NCBI database (https://​www.​ncbi.​nlm.​nih.​gov/). They are 
now characterized numerically using the hypothetical 20D 
Coordinate representation of protein sequences (Nandy 
et al. 2009). Using the Graphical Sliding Window Method 
(GSWM) (Ghosh et al. 2012; Biswas et al. 2019), a measure 
of conservativeness of all possible 12-length peptides, i.e., 
a Protein Variability (PV) index, was evaluated. Here the 
length “12” has been considered because peptide candidates 

https://www.ncbi.nlm.nih.gov/
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selected for vaccine design against any virus are short in 
length and their number of constituent amino acids gener-
ally ranges from 10 to 15. So, the peptide lengths have been 
uniformly chosen as 12 as a rough average of the two num-
bers (10 and 15). The Average Solvent Accessibility (ASA) 
of each of these peptides was also obtained (on a scale of 
0–100) using the SABLE server (Porollo et al. 2003; Adam-
czak et al. 2004; Wagner et al. 2005).

Ranking the 12‑Length Peptides Based on Surface 
Exposure and Conservativeness

The purpose of this approach described here is to filter out 
those peptide stretches from the target protein sequence, 
which have high surface-exposure and are conserved that 
is, having low chances of mutation. As explained before, 
the value of ASA gives the level of surface-exposure of the 
selected peptide. On the other hand, the magnitude of PV 
index denotes the extent to which the region is conserved in 
the face of mutation. As concluded in Nandy et al. (2009), 
the lower the value of PV, the higher is the level of conser-
vation, and so, the lower is the chance of mutation. Thus, in 
order to serve the desired purpose, the peptide stretches hav-
ing high ASA and low PV  such that they are highly surface 
exposed and less vulnerable to mutation respectively, need 
to be determined first. For the purpose of simplification, the 
value 1∕PV  has been considered instead of PV  , such that 
both ASA and 1∕PV can be treated in the same way, that is, to 
have them as high as possible, so that, the peptide becomes 
suitable for vaccine design.

Now, for each 12-length peptide, the ASA and 1∕PV  val-
ues are not in the same range, although they are equally 
important in this aspect. The range of ASA value is from 0 to 
100, whereas for 1∕PV  , it is from 0 to 1. Hence it is impera-
tive to normalize both the parameters before their use for the 
analysis. In this regard, we define two parameters:

Here, (ASA)n = normalized version of ASA in a scale of 
0–10. (1∕PV)n = normalized version of 1∕PV  in a scale of 
0–10.

Having obtained both the values of (ASA)n and (1∕PV)n , 
for each 12-length peptide, a new parameter w has been 
defined as:

It is obvious that, since it is required to have high ASA 
and high 1∕PV  , so in this regard, w must also be high. So, 

(ASA)n =
ASA −min(ASA)

max(ASA) −min(ASA)
∗ 10

(1∕PV)n =
(1∕PV) −min(1∕PV)

max(1∕PV) −min(1∕PV)
∗ 10

w = (ASA)n + (1∕PV)n

all the 12-length peptides considered from the primary tar-
get protein sequence, have been first ranked based on this 
w parameter. Consequently, the top ranks will be occupied 
by those peptides which have higher w value than the rest.

2D Polygon Representation

The rank list, therefore, sorts the 12-length peptides in 
descending order of their w value. Now, from this rank list, 
the top ranks have been filtered and grouped into zones 
based on their location in the sequence. For this analysis, we 
have restricted ourselves to the top 100 ranks for sequence 
length greater than 1000, top 75 ranks for sequence length 
in between 500 and 1000 and top 50 ranks for length below 
500.

The grouping of the 12-length peptides is an impor-
tant step in our approach. To explain this, we represent a 
12-length peptide as (f , f + 11) where, f  gives the starting 
amino acid position of the 12-length peptide. Obviously, 
f + 11 becomes the ending position. We consider a similar 
12-length peptide (f0, f0 + 11) . It is to be noted that the afore-
mentioned representation of the 12-length peptides does not 
indicate any coordinate point but simply an understanding 
of a 12-length peptide by its starting and ending positions. 
Since the representations for both the 12-length peptides 
depend on the starting position only, so here we can repre-
sent the position of the two 12-length peptides to be on a 
single straight line. As a result, we can define a quantity � 
to be the difference in their positions. It is easy to see that 
� = ||f − f0

|| . � will definitely be of the form of a natural num-
ber ( � cannot be 0 as two 12-length peptides cannot occur at 
the same position). Now if, � is a low value, then that means 
the 12-length peptides are lying very close to one another. 
Therefore as � increases, the two 12-length peptides become 
more and more distant from each other. Now for these two 
peptides, the process of grouping refers to the process of 
designing a representation that can fully contain the repre-
sentations of both the 12-length peptides. This representa-
tion denotes nothing but a new peptide of length r , given as (
min

(
f , f0

)
, max

(
f + 11, f0 + 11

))
= (min

(
f , f0

)
, max

(
f , f0

)
) 

and

So, to group n number of 12-length peptides represented 
as  

(
f1, f1 + 11

)
,
(
f2, f2 + 11

)
,……… , (fn, fn + 11) ,  t he 

grouped interval will be given as

Now the criteria for grouping lies in how close these n 
number of 12-length peptides are, that is, how small value 
of � is mutually between each of these n 12-length pep-
tides. If the regions are far off from one another and then 

r = max
(
f , f0

)
−min

(
f , f0

)
+ 1

(min
(
f1, f1,…… , f1

)
, max

(
f1, f1,…… , f1

)
)
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on top of that, if they are grouped together, then not only 
it overlooks the variation in surface accessibility and con-
servation in between them, but it also generates a smaller 
number of options to choose from when we finally design 
our shortlist of vaccine candidates. So, the above method of 
grouping is only done when the 12-length peptides are close 
to one another. As a boundary condition, we have consid-
ered any two 12-length peptides to fall in the same group if 
𝜀 = ||f − f0

|| < 12, that is, the distance between their starting 
positions can be atmost 11, that is, the starting position of 
one cannot be greater than the ending position of the other.

After the grouping has been done, we define the ASA 
value of each of these grouped zones as the average of 
the ASA values of all the 12-length peptides which consti-
tute that zone. It is to be noted that the ASA values of the 
12-length peptides that we have considered over here are 
the original ASA values that were obtained from the SABLE 
server. Similarly, we define the PV  value for each grouped 
peptide zone as the average of the PV  values of its constitu-
ent 12-length peptides. The modified peptide stretches thus 
enlisted, must also have high ASA and low PV  . To math-
ematically describe these definitions, we consider a case 
where we end up with ‘ k ’ number of peptide zones after 
grouping. The ASA values of the zones can be represented 
of the form, (ASA)g,i , where i = 1, 2,…… ., k . The suffix ‘ g ’ 
denotes that here the representation is being made for the 
grouped zones. In a similar way, the PV values of the ‘ k ’ 
peptide zones can be shown as (PV)g,1, (PV)g,2,… , (PV)g,k . 
However, just like before, in order to have both the param-
eters to be treated in the same way, the value 1∕(PV)g,i has 
been considered in place of (PV)g,i for the ith peptide zone. 
Just like before, the parameters (ASA)g,i and 1∕(PV)g,i cur-
rently are not normalized and they belong to different range 
of values. So, on a scale of 0–10, both of their normalized 
versions can be defined as:

Tentatively, therefore we have two mathematical values to 
describe the ‘ k ’ number of grouped peptide zones—(ASA)g,n,i 
and (1∕(PV)g,i)n where i represents the ith peptide zone.

But there is one more characteristic which needs to be 
studied in particular for this case—the length of the grouped 
peptide zone, or in other words, the span across which it is 
spread out. Thus, if a peptide zone has a greater length, that 
means, it is much more spread out on the target protein. Now, 
this characteristic is of great importance for peptide vaccine 
design, primarily for two reasons. Firstly, such a peptide zone 

(ASA)g,n,i =
(ASA)g,i −min((ASA)g,i)

max
(
(ASA)g,i

)
−min((ASA)g,i)

∗ 10

(1∕(PV)g,i)n =
1∕(PV)g,i −min(1∕(PV)g,i)

max
(
1∕(PV)g,i

)
−min(1∕(PV)g,i)

∗ 10

with a larger length means that it is highly conserved and sur-
face-exposed over a wide region. So, if in case, a part of that 
zone gets affected by any mutation in future, then the remain-
ing portion of that zone, if it remains conserved, can continue 
to be used for vaccine design. Secondly, if a portion of such 
a peptide zone turns to be perfectly matching with a human 
sequence, then designing a peptide vaccine based on the entire 
zone may cause complications related to auto-immunity. In 
that situation, if the zone has a large length, then even after 
removing the matching portion, we will be still left with a 
peptide region that has a length optimal enough to generate a 
sufficient immune response.

Hence, it is safe to comment that although initially, the rank 
list of all possible 12-length peptides was prepared based on 
only (ASA)n and (1∕PV)n values because all of them were of 
the same length (that is, 12) but now for each of the ‘ k ’ num-
ber of grouped peptide zones, we are taking into account their 
length, defined as hi , along with the other two values (ASA)g,n,i 
and (1∕(PV)g,i)n where, i = 1, 2…… , k . Here, again, the 
length value hi has been normalized on the same scale of 0–10, 
just like the other two parameters. We define the normalized 
version of it as (hi)n.

In this regard, for each ith peptide zone, we define a triangle 
ABC as shown in Fig. 1. A point O is located inside the triangle 
such that ∠AOB = ∠BOC = ∠COA = 120◦ and

length of OA = |OA| = (ASA)g,n,i,

length of OB = |OB| = (1∕(PV)g,i)n,

Fig. 1   Pictorial representation of the 2D Polygon model. 
Here,OA = (ASA)g,n,i,OB = (1∕(PV)g,i)n,OC = (hi)n . Also, 
∠AOB = ∠BOC = ∠COA = 120◦
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Therefore, it is clear that |OA| , |OB| and |OC| all must be 
high for the peptide to be suitable for selection. Now, if |OA| , 
|OB| and |OC| need to be high, then area of ΔABC for that 
peptide zone must also be high. Thus, if a particular pep-
tide zone has to be suitable for selection compared to other 
zones, then its area of ΔABC must be larger in comparison 
with that of the other ones.

Therefore, the area of the triangle can be determined as:

where,

Using this mathematical approach, defined as the “2D 
Polygon Representation”, the area of the triangle for each 
grouped peptide zone has been calculated. For a safe 
assumption, peptide zones in the top 50th percentile have 
been considered for the further analyses and the remaining 
ones have been discarded.

Further Analysis

The peptide zones in the top 50th percentile as per the 2D 
Polygon model score have been tested further for their 
epitope potential. For this purpose, the Immune Epitope 
Database Analysis Resource (IEDB-AR) (Vita et al. 2018) 
has been used. The list of possible epitopes from the full-
length sequence of the spike protein were obtained from the 
database and matched with the peptide zones to screen those 
which had sufficient epitope potential.

The ones which showed good binding capacity have 
been considered for the final step of the analysis—to check 
their capacity to generate any autoimmune threats. This has 
been accomplished using the Basic Local Alignment Search 
Tool (BLAST) as in Altschul et al. (1990), by aligning them 
with the corresponding matches found for Homo sapiens. 
Significant matching means that the peptide region has the 
possibility of autoimmune threat and has to be discarded. In 
this way, a final shortlist for the conserved surface protein 

length of OC = |OC| = (hi)n =
10 ∗ (hi −min(hi))

max
(
hi
)
−min(hi)

area(ΔABC) =
√
s(s − a)(s − b)(s − c)

a =

√
|OB|2 + |OC|2 + |OB|.|OC|

b =

√
|OC|2 + |OA|2 + |OC|.|OA|

c =

√
|OA|2 + |OB|2 + |OA|.|OB|

s =
a + b + c

2

is obtained. For spike glycoprotein of SARS-CoV-2, a pre-
liminary analysis was previously done using this computa-
tional model based on a smaller number of sequences (72) 
as in Biswas et al. (2020). But as many as 2812 amino acid 
sequences (available in the database as on 8 May, 2020) have 
been considered here and a detailed analysis pertaining to 
the selection of the most suitable peptide regions have been 
performed, resulting in a more comprehensive analysis.

Verification of the Entire Approach

The entire approach described so far, for determining the 
best peptide vaccine candidates, should not be limited to 
the case of only SARS-CoV-2. Rather, it should be such that 
its application can be extended to the purpose of any other 
virus as well. Hence, to verify this, the same approach as 
described before has been used to determine peptide vac-
cine candidates for Zika and Hendra viruses as well. For the 
Zika virus, the candidates were selected based on its surface-
situated E protein. The final shortlist of candidates obtained 
have been matched with an already established set of results 
given for the Zika virus E protein in Dey et al. (2017). In 
the same way, for Hendra virus, the surface situated G gly-
coprotein was chosen and thereby, suitable peptide vaccine 
stretches obtained using our analysis were compared with 
similar established results for the G glycoprotein given in 
Dey et al. (2018). Consequently, a majority of the stretches 
matched with the published results for both the cases, show-
ing that this method, overall, can be utilized for peptide vac-
cine design for any virus in general.

Results

Accordingly, 2812 full-length protein sequences of spike 
glycoprotein of SARS-CoV-2 were obtained from the 
NCBI database, which have been extensively used by this 
new method for determining the suitable peptide vaccine 
targets for SAR-CoV-2. The spike glycoprotein is a 1273 
amino acid long sequence. Therefore, the top 100 ranks have 
been selected from the rank list given by the w parameter 
for spike glycoprotein, out of which the top 10 peptides of 
length 12 have been shown in Table 1. All of these 100 
peptides of 12-length have been grouped based on their loca-
tion in the sequence. In this way, 16 highly surface exposed 
and conserved peptide zones in the spike glycoprotein of 
SARS-CoV-2 have been figured out, which have been shown 
in Table 2. Figure 2 shows the superimposed ASA and PV 
profiles for the spike protein of SARS-CoV-2. For show-
ing the constituent amino acids within the regions indicated 
by the study, here, the sequence BCF79924.1 (Japan, 2020) 
(https://​www.​ncbi.​nlm.​nih.​gov/​prote​in/​18421​03922) has 
been used as reference. In order to verify whether the results 

https://www.ncbi.nlm.nih.gov/protein/1842103922
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are satisfactory, eye-estimation method of the ASA-PV pro-
files of the spike protein based on the same 2812 sequences 
has been employed in the current analysis as well. This eye-
estimation gave 14 peptide regions (listed in Table 2), out 
of which, 12 were found to be intersecting or lying in the 
close neighbourhood of the 16 regions obtained by grouping 
the top ranks.

Out of these 16 peptide regions obtained using the impro-
vised method discussed here, 8 zones fell in the top 50th 
percentile based on the score generated by the 2D Polygon 
model. Therefore, as per the definition of the 2D Polygon 
representation, these zones were not only highly conserved 
and surface accessible but also large enough in length. Now 
these 8 zones have been tested for their epitope potential 
using the IEDB-AR server. The analysis was made for both 
the T-cell and B-cell immune responses. For the T-cell 
epitope analysis, we have used only the MHC II binding 
predictions from the IEDB-AR web server because here the 
focus is on antibody production against specific antigenic 
sites on the outer surface of the spike protein. The HLA DP/
DQ and HLA DRB alleles chosen for this purpose cover a 
major part of the world population (Paul et al. 2015). Two 
separate analyses were made, one for HLA DP/DQ and the 
other for HLA DRB, and accordingly, for each of the two 
cases, two different lists of all possible epitopes of length 15, 
from the full-length sequence, were obtained from IEDB-
AR. Now for a particular peptide zone enlisted as per the 2D 
Polygon model, each of the two lists of epitopes was matched 
with it. Thus, from each of the two lists, one epitope of 
length 15 was suggested for that zone such that the starting 
and ending positions of both the 15-length peptides more or 
less matched with the original zone, keeping the percentile 
rank as minimum as possible, with 10 as a safe threshold for 
the percentile rank. In this way, for every peptide zone deter-
mined by the 2D model, we determined two best matches, 
one as per the HLA DP/DQ analysis and another as per the 

HLA DRB analysis. However, those peptide zones for which 
neither of the two best possible 15-length epitopes from the 
two lists had percentile rank below 10, were discarded. We 
found that the zones 329–345 (FPNITNLCPFGEVFNAT), 
414–440 (QTGKIADYNYKLPDDFTGCVIAWNSNN) and 
386–400 (KLNDLCFTNVYADSF) had none of the 2 per-
centile values below 10, so they could not be considered for 
the next step of the analysis. On the contrary, the remaining 
5 zones had at least one of the 2 percentile ranks to be below 
10. So, for those 5zones, the two best-matching 15-length 
epitopes were compared with one another and the one hav-
ing a lesser percentile rank, was compared once again with 
the parent peptide zone. The part which was found to be 
intersecting after comparison was figured out. This exercise 
has been done for all the 5 zones, in the end giving us 5 cor-
responding intersection regions which will be considered for 
the BLAST analysis.

Additionally, out of these 5 intersection zones, two 
of them namely—SNLKPFERDIST and PKKSTN-
LVKNKCVNF and were found to be present among the lin-
ear and discontinuous B-cell epitopes for the spike protein 
obtained from the predictions made by the IEDB-AR Ellipro 
server (Ponomarenko et al. 2008). The lists of all discontinu-
ous and linear B-cell epitopes have been shown in Tables 3 
and 4 respectively. In Table 5, the IEDB-AR results have 
been listed and summarized for all the 5 grouped peptide 
zones, wherein, the best possible percentile ranks along with 
the corresponding HLA alleles for each zone have also been 
mentioned. The starred marks for each case in the table indi-
cates the best out of the two 15-length peptides chosen for 
determining the intersecting zone for the next and final step, 
that is, BLAST.

Finally, each of the 5 intersecting regions was aligned 
with all possible human sequences in the Non-redundant 
Protein Database of the BLAST server. Any significant 
match between an intersecting zone and a human sequence 
meant that the former can cause autoimmunity in the human 
host. The significance of the match was studied based on 
the E values obtained for each alignment for a particular 
intersecting zone. A low E value indicated that the strength 
of the match was high (Kerfeld et al. 2011). Therefore, the 
strongest match for every intersecting zone was the one that 
gave the least E value. For a safe assumption, we chose 1 
as a threshold for the E value. If for any intersecting zone, 
the corresponding best match had an E value below 1, then 
those regions have been discarded, as they have a greater 
chance of causing an autoimmune disease in the human host. 
As such, the region LLTDEMIAQYTSALL was eliminated 
because it gave 0.37 as its best possible E value. Table 6 
gives a summary of the 4 remaining intersecting zones and 
their corresponding best matches as per the BLAST analysis.

In the end, the remaining 4 intersecting zones that satis-
fied the BLAST analysis, have been considered as potential 

Table 1   Top 10 peptides of length 12 for spike glycoprotein of 
SARS-CoV-2 given by w parameter

Rank Starting position 
of the peptides

Score PV Peptide (Length = 12)

1 1027 19.27289 1 TKMSECVLGQSK
2 1026 18.86894 1 ATKMSECVLGQS
3 1030 18.82406 1 SECVLGQSKRVD
4 1028 18.62657 1 KMSECVLGQSKR
5 334 18.39318 1 NLCPFGEVFNAT
6 982 18.35727 1 SRLDKVEAEVQI
7 1031 18.17774 1 ECVLGQSKRVDF
8 1029 18.03411 1 MSECVLGQSKRV
9 985 18.00718 1 DKVEAEVQIDRL
10 1023 17.98025 1 NLAATKMSECVL
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candidates for vaccine design against SARS-CoV-2. These 
4 regions have been obtained after IEDB-AR and BLAST 
analyses of the peptide zones derived from the 2D Polygon 
model. Now, that we have obtained our shortlist for SARS-
CoV-2 using the new method, we have also performed the 
same analyses on the 14 peptide zones obtained from eye-
estimation to check whether the results are consistent or not. 
The 2D Polygon representation filtered out 7 peptide zones 
out of all the 14 ones (marked with star in Table 2), based 
on their span, conservativeness and surface exposure, just 
like before. Analysis using the MHC II DRB and MHC II 
DP/DQ alleles from the IEDB-AR showed that all 7 zones 

had really good binding capacity. The 7 zones were matched 
individually and the intersecting zone for each of them was 
figured out, in the same way as it has been done in the previ-
ous case. These 7 intersecting zones being tested using the 
BLAST server showed only one region—YSVLYNSASFST-
FKC that could cause any autoimmune disease. Therefore, 
the remaining 6 intersecting zones formed the final shortlist 
based on the eye-estimation method. These were now com-
pared with the previously obtained 4 intersecting regions, 
which showed three cases where a good match was obtained. 
The comparison between the two shortlists obtained using 

Table 2   Peptide zones for spike glycoprotein of SARS-CoV-2 predicted using the 2D model and comparison with the eye-estimated regions for 
the same, using all the 2812 full-length sequences of the protein used in the current analysis

Double asterisks refer to those peptide regions which fell in the top 50th percentile as per the 2D Polygon score for SARS-CoV-2, Hendra and 
Zika viruses respectively

As per 2D Polygon Representation model, using the currently available 2812 
sequences (as of 8 May, 2020)

As per eye-estimation of the ASA and PV profiles, using the 
same 2812 sequences

Start–End position of the 
region based on 2D Polygon 
Representation

Peptide Stretch (based on the 
2D model)

2D Polygon Score Start–End position of the 
region based on eye-esti-
mation

Peptide Stretch (based on eye-
estimation)

1021–1046** SANLAATKMSECVL-
GQSKRVDFCGKG

66.20194 1019–1049** RASANLAATKMSECVL-
GQSKRVDFCGKGYHL

329–345** FPNITNLCPFGEVFNAT 30.595 323–347** TESIVRFPNITNLCPF-
GEVFNATRF

975–1004** SVLNDILSRLDKVEAEV-
QIDRLITGRLQSL

64.50292 953–1007** NQNAQALNTLVKQLSS-
NFGAISSVLNDILSRLD-
KVEAEVQIDRLITGRLQS-
LQTY

458–470** KSNLKPFERDIST 17.15506 456–475** FRKSNLKPFERDISTEIYQA
414–440** QTGKIADYNYKLPDDFT-

GCVIAWNSNN
65.6183 412–448** PGQTGKIADYNYKLPDD-

FTGCVIAWNSNNLD-
SKVGGN

523–546** TVCGPKKSTN-
LVKNKCVNFNFNGL

39.63615 523–551** TVCGPKKSTNLVKNKCVN-
FNFNGLTGTGV

386–400** KLNDLCFTNVYADSF 22.54376 349–399** SVYAWNRKRISNCVADYS-
VLYNSASFSTFKCYGVS-
PTKLNDLCFTNVYADS

373–386 SFSTFKCYGVSPTK 11.57532 349–399** SVYAWNRKRISNCVADYS-
VLYNSASFSTFKCYGVS-
PTKLNDLCFTNVYADS

860–878** VLPPLLTDEMIAQYT-
SALL

36.08575 858–877 LTVLPPLLTDEMIAQYTSAL

289–300 VDCALDPLSETK 14.40109 – –
1088–1108 HFPREGVFVSNGTHW-

FVTQRN
17.0471 – –

660–671 YECDIPIGAGIC 13.04917 655–671 HVNNSYECDIPIGAGIC
901–917 QMAYRFNGIGVTQNVLY 11.67947 907–923 NGIGVTQNVLYENQKLI
1148–1161 FKEELDKYFKNHTS 16.8394 1145–1161 LDSFKEELDKYFKNHTS
316–335 SNFRVQPTESIVRFP-

NITNL
13.16672 – –

782–793 FAQVKQIYKTPP 7.009527 779–795 QEVFAQVKQIYKTPPIK
– – – 1168–1185 DISGINASVVNIQKEIDR
– – – 195–209 KNIDGYFKIYSKHTP
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the older and the newer methods have been shown in Table 7 
(the 3 matching regions have been highlighted).

The 4 shortlisted candidates, predicted using the cur-
rent approach, have been marked by green horizontal lines 
whereas the zones suggested by eye-estimation have been 
marked by black lines in Fig. 2. The comparative study 
therefore shows that this new approach is well consistent 
when applied to determine peptide candidates for SARS-
CoV-2. But it also needs to be seen whether it is able to 
maintain the consistency for other viruses as well.

Comparison of the results obtained here for spike gly-
coprotein of SARS-CoV-2 with the other equivalent analy-
ses made by several other researchers on the same protein 
has also shown consistency to a good extent. In Slathia and 
Sharma (2020), several MHC II based epitopes for peptide 
vaccine design have been listed. On comparison, the short-
listed zone 987–1001 suggested in our analysis was found 
among the list. Similarly, a zone 505–534 was suggested in 
Yazdani et al. (2020) that intersects with the finally predicted 
peptide zone 527–541 mentioned in our analysis.

An interesting result was observed in Di Paola et al. 
(2020) where few residues on the surface-situated spike 
protein of SARS-CoV-2 were mentioned which, on a gen-
eral basis, could function as specific sites called as allos-
teric modulation regions which in turn could allow allosteric 
drugs to function on the areas where the incoming SARS-
CoV-2 virus interact with the ACE2 receptor of the human 
host. Therefore, it will be of great importance if the finally 
shortlisted regions predicted using our new method contain 
those residues. In Di Paola et al. (2020), the amino acid 
numbering convention that was used was to indicate the first 

amino acid position as the 0th index. Here, we have used the 
convention of denoting the first aa position as the 1st index. 
As per the convention in Di Paola et al. (2020), there were 
three classes of allosteric modulation regions (AMR); the 
first class of moderate dynamical effect on other allosteric 
regions included 320Q, 321P, 322 T, 323E, 539 N, 548 T 
and 578P; the second class of large intermolecular allos-
teric effect in the receptor binding domain (RBD) included 
531 N and 532L and the third class of moderate to high 
dynamical effect on the AMRs, RBD and ACE2 include 
only 580 T. Therefore, as per our convention of naming the 
amino acid positions, all the aforementioned residues will 
be 321Q, 322P, 323T, 324E, 540N, 549T, 579P, 532N, 533L 
and 581T. Out of these, the residues 532 N, 533L and 540N 
are well included in our finally shortlisted peptide zone 
PKKSTNLVKNKCVNF (527–541). This shows the region 
527–541 in particular, as predicted by our new method, 
contains certain sites using which the binding between the 
SARS-CoV-2 and the ACE2 receptor can be easily con-
trolled, using allosteric drugs.

Verification of the Approach Using the Case of G 
Glycoprotein of Hendra Virus

The first test case that we chose was to predict suitable vac-
cine candidates using this method for the Hendra virus. The 
surface-situated G glycoprotein has been considered in this 
case, which is a 604 amino acids (aa) long sequence. The 
finally shortlisted peptide stretches obtained based on this 
G glycoprotein have been matched with the established 
results given for the same in Dey et al. (2018). There were 

Fig. 2   ASA and PV profiles of the full-length sequence of spike gly-
coprotein of SARS-CoV-2: The components shown in the figure are: 
ASA profile (blue), PV profile (red), predicted peptide stretches using 

the new approach (green) and peptide stretches determined using eye-
estimation (black). (Color figure online)
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15 full-length sequences of G glycoprotein that were ana-
lysed in Dey et al. (2018) for obtaining the suiable peptides 
regions. Therefore, in this analysis, we have used the exact 
same 15 sequences to determine similar peptide candi-
dates before they are being compared. Figure 3 shows the 
ASA-PV  profile for the G glycoprotein. Here the sequence 
AEB21198.1 (https://​www.​ncbi.​nlm.​nih.​gov/​nucco​re/​
AEB21​198.1) from the NCBI database has been utilized as 
reference to represent the sequences in the tables and figures.

In a similar way as before, in the first step, a ranking 
list of all possible 12-length peptides retrieved from the 

full-length G protein sequence has been obtained using 
the w parameter. Since the sequence is only 604 aa long, 
so we preferred to consider only the top 75 ranks from 
the ranking list. The top 75 ranks have been then grouped 
into peptide zones based on their location in the sequence. 
This gave 8 consolidated peptide zones which were now 
analysed using the 2D Polygon model Table 8 shows the 
8 consolidated regions obtained after grouping of the top 
75 ranks.

Based on the 2D Polygon model score obtained, 
the regions YGTMDIKKINDGLLDSKILGA (29–49), 

Table 3   Discontinuous epitopes of spike glycoprotein of SARS-CoV-2 based on the analysis using IEDB-AR Ellipro

Residues Number 
of resi-
dues

Score

A:Y707, A:S708, A:N709, A:N710, A:S711, A:I712, A:A713, A:I714, A:P715, A:T716, A:N717, A:F718, A:A783, 
A:Q784, A:V785, A:K786, A:Q787, A:I788, A:Y789, A:K790, A:T791, A:P792, A:P793, A:I794, A:K795, A:D796, 
A:F797, A:G798, A:G799, A:F800, A:P863, A:L864, A:L865, A:E868, A:M869, A:Q872, A:Y873, A:S875, A:A876, 
A:A879, A:G880, A:I882, A:T883, A:S884, A:G885, A:W886, A:T887, A:F888, A:G889, A:A890, A:G891, A:A892, 
A:A893, A:L894, A:Q895, A:I896, A:P897, A:F898, A:A899, A:M900, A:Q901, A:M902, A:A903, A:Y904, A:F906, 
A:N907, A:G908, A:I909, A:G910, A:V911, A:T912, A:Q913, A:N914, A:V915, A:L916, A:Y917, A:E918, A:N919, 
A:Q920, A:K921, A:L922, A:I923, A:A924, A:N925, A:L1034, A:G1035, A:Q1036, A:Q1071, A:E1072, A:K1073, 
A:N1074, A:F1075, A:T1076, A:T1077, A:A1078, A:P1079, A:A1080, A:I1081, A:C1082, A:H1083, A:D1084, 
A:G1085, A:K1086, A:A1087, A:H1088, A:F1089, A:P1090, A:R1091, A:E1092, A:G1093, A:V1094, A:F1095, 
A:V1096, A:S1097, A:N1098, A:G1099, A:T1100, A:H1101, A:W1102, A:F1103, A:V1104, A:T1105, A:Q1106, 
A:R1107, A:N1108, A:F1109, A:Y1110, A:E1111, A:P1112, A:Q1113, A:I1114, A:I1115, A:T1116, A:T1117, A:D1118, 
A:N1119, A:T1120, A:F1121, A:V1122, A:S1123, A:G1124, A:N1125, A:C1126, A:D1127, A:V1128, A:V1129, 
A:I1130, A:G1131, A:I1132, A:V1133, A:N1134, A:N1135, A:T1136, A:V1137, A:Y1138, A:D1139, A:P1140, A:L1141, 
A:Q1142, A:P1143, A:E1144, A:L1145, A:D1146, A:S1147

164 0.751

A:R328, A:F329, A:P330, A:N331, A:I332, A:T333, A:N334, A:L335, A:C336, A:P337, A:F338, A:G339, A:E340, 
A:V341, A:F342, A:N343, A:A344, A:T345, A:R346, A:F347, A:A348, A:S349, A:V350, A:Y351, A:A352, A:W353, 
A:N354, A:R355, A:K356, A:R357, A:I358, A:S359, A:N360, A:C361, A:V362, A:A363, A:D364, A:V367, A:L368, 
A:S371, A:A372, A:S373, A:F374, A:S375, A:T376, A:Y380, A:T393, A:N394, A:V395, A:Y396, A:A397, A:D398, 
A:S399, A:F400, A:V401, A:I402, A:R403, A:G404, A:D405, A:E406, A:V407, A:R408, A:Q409, A:I410, A:A411, 
A:P412, A:G413, A:Q414, A:T415, A:G416, A:K417, A:I418, A:A419, A:D420, A:Y421, A:N422, A:Y423, A:K424, 
A:L425, A:P426, A:D427, A:D428, A:F429, A:V433, A:I434, A:A435, A:W436, A:N437, A:S438, A:N439, A:N440, 
A:L441, A:D442, A:N448, A:Y449, A:N450, A:Y451, A:L452, A:Y453, A:R454, A:L455, A:F456, A:R457, A:K458, 
A:S459, A:N460, A:L461, A:K462, A:P463, A:F464, A:E465, A:R466, A:D467, A:I468, A:S469, A:T470, A:F490, 
A:P491, A:L492, A:Q493, A:S494, A:Y495, A:G496, A:F497, A:Q498, A:P499, A:T500, A:N501, A:V503, A:G504, 
A:Y505, A:Q506, A:P507, A:Y508, A:R509, A:V510, A:V511, A:V512, A:L513, A:S514, A:E516, A:L517, A:L518, 
A:H519, A:A520, A:P521, A:A522, A:T523, A:V524, A:C525, A:G526, A:P527, A:K528, A:K529, A:S530, A:T531, 
A:N532, A:L533, A:V534, A:K535, A:N536, A:K537, A:N544, A:T553, A:E554, A:S555, A:N556, A:K557, A:F559, 
A:L560, A:P561, A:F562, A:Q563, A:V576, A:D578, A:P579, A:Q580, A:T581, A:L582, A:E583, A:I584, A:L585

182 0.735

A:A27, A:Y28, A:T29, A:N30, A:S31, A:F32, A:F59, A:S60, A:N61, A:V62, A:T63, A:W64, A:F65, A:H66, A:A67, A:I68, 
A:H69, A:P82, A:V83, A:L84, A:P85, A:N87, A:F92, A:A93, A:S94, A:T95, A:E96, A:K97, A:S98, A:N99, A:I100, 
A:I101, A:R102, A:G103, A:W104, A:I105, A:F106, A:G107, A:T108, A:T109, A:L110, A:D111, A:S112, A:K113, 
A:S116, A:L117, A:L118, A:I119, A:V120, A:N121, A:N122, A:A123, A:T124, A:N125, A:V126, A:V127, A:I128, 
A:K129, A:V130, A:C131, A:E132, A:F133, A:Q134, A:F135, A:C136, A:N137, A:D138, A:P139, A:F140, A:L141, 
A:G142, A:V143, A:C166, A:T167, A:F168, A:E169, A:Y170, A:V171, A:S172, A:F186, A:K187, A:N188, A:L189, 
A:R190, A:E191, A:F192, A:G199, A:I203, A:S205, A:K206, A:H207, A:T208, A:P209, A:I210, A:N211, A:L212, 
A:V213, A:R214, A:D215, A:L216, A:P217, A:Q218, A:G219, A:L223, A:L226, A:V227, A:L229, A:P230, A:I231, 
A:G232, A:I233, A:N234, A:I235, A:T236, A:R237, A:F238, A:Q239, A:T240, A:L241, A:L242, A:A263, A:A264, 
A:Y265, A:Y266, A:V267

125 0.732

A:E702, A:N703, A:S704, A:V705, A:A706 5 0.613
A:N801, A:F802, A:S803, A:Q804, A:I805, A:L806, A:P807, A:D808, A:P809, A:S810, A:K811, A:S813, A:K814, A:R815 14 0.554
A:D985, A:P986, A:P987 3 0.548
A:T747, A:E748, A:S750, A:N751, A:L754, A:Q755, A:G757, A:S758 8 0.546

https://www.ncbi.nlm.nih.gov/nuccore/AEB21198.1
https://www.ncbi.nlm.nih.gov/nuccore/AEB21198.1


2266	 International Journal of Peptide Research and Therapeutics (2021) 27:2257–2273

1 3

Table 4   Linear epitopes of 
spike glycoprotein of SARS-
CoV-2 based on the analysis 
using IEDB-AR Ellipro

Start–End position of the linear epitopes 
predicted by Ellipro

Peptide stretch Score

1071–1147 QEKNFTTAPAICHDG……PELDS 0.882
92–192 FASTEKSNIIRGWIFG……NLREF 0.811
433–537 VIAWNSNNLD……KSTNLVKNK 0.767
328–364 RFPNITNLCPFGEVF……NCVAD 0.754
236–267 TRFQTLLALHRSYL……AAYYV 0.728
553–564 TESNKKFLPFQQ 0.728
393–428 TNVYADSFVIRGDE……KLPDD 0.718
60–86 SNVTWFHAIHVSGT……PVLPF 0.699
203–219 IYSKHTPINLVRDLPQG 0.686
702–718 ENSVAYSNNSIAIPTNF 0.678
576–585 VRDPQTLEIL 0.674
879–925 AGTITSGWTFGAGAA……KLIAN 0.629
783–815 AQVKQIYKTPPIKDFGG……SKR 0.622
371–376 SASFST 0.575
226–234 LVDLPIGIN 0.507

Table 5   Summary of the IEDB-AR analysis of the 5 grouped peptide zones obtained for spike protein of SARS-CoV-2, which had good binding 
capacity

The star mark indicates 15-length adjusted peptide that has been chosen to form the intersecting zone corresponding to the particular peptide 
zone
The single asterisk marks represent the 15-length epitope chosen out of the two choices for every grouped peptide zone, such that the chosen 
ones form intersecting zones with the grouped peptide regions for SARS-CoV-2, Hendra and Zika viruses respectively

Start–End Grouped peptide zone MHC II DP/DQ MHC II DRB

Score Adjusted peptide Allele Score Adjusted peptide Allele

1021–1046 SANLAATKMSECV-
LGQSKRVDF-
CGKG

5* SANLAATKM-
SECVLG

HLA-DQA1*01:02/
DQB1*06:02

14 MSECVL-
GQSKRVDFC

HLA-DRB1*03:01

975–1004 SVLNDILSRLD-
KVEAEVQIDR-
LITGRLQSL

3.8 SRLDKVEAEV-
QIDRL

HLA-DQA1*03:01/
DQB1*03:02

1.1* VEAEVQIDRLIT-
GRL

HLA-DRB1*03:01

458–470 KSNLKPFERDIST 14 SNLKPFERDISTEIY HLA-DQA1*03:01/
DQB1*03:02

1.8* SNLKPFERDISTEIY HLA-DRB3*01:01

523–546 TVCGPKKSTN-
LVKNKCVNFN-
FNGL

16 NLVKNKCVNFN-
FNGL

HLA-DPA1*02:01/
DPB1*05:01

5.1* PKKSTN-
LVKNKCVNF

HLA-DRB1*13:02

860–878 VLPPLLTDEMI-
AQYTSALL

12 LLTDEMIAQYT-
SALL

HLA-DPA1*02:01/
DPB1*01:01

1.6* LLTDEMIAQYT-
SALL

HLA-DRB1*15:01

Table 6   Best possible BLAST matches and their corresponding E values for the 4 intersecting peptide zones finally shortlisted as peptide vac-
cine candidates for SARS-CoV-2

Intersecting peptide zone Best BLAST match E value of the 
match

Accession/PDB ID

SANLAATKMSECVLG Crystal structure of influenza A NS1A protein in complex with F2F3 frag-
ment of human cellular factor CPSF30, Northeast Structural Genomics 
Targets OR8C and HR6309A

22 2RHK_C

VEAEVQIDRLITGRL Chromosome 14 open reading frame 103 3.9 EAW81633.1
SNLKPFERDIST Rho-associated, coiled-coil containing protein kinase 1 variant 9.1 AAI13115.1
PKKSTNLVKNKCVNF Chromosome 17, hCG 2,045,508 15 EAW89537.1
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Table 7   Comparison of the 
final shortlists obtained from 
the newer and older approaches 
showed that there were 3 
instances where a good level 
of matching was observed, 
thus, indicating that our new 
approach is indeed consistent 
in terms of determining peptide 
candidates for SARS-CoV-2

The matching peptide zones have been placed side-by-side for easy comparison

Eligible vaccine candidates selected as per the new 
approach using the 2D Polygon model

Eligible vaccine candidates selected as per the 
older method of eye-estimation

Start–End position Peptide stretch Start–End position Peptide stretch

1021–1035 SANLAATKMSECVLG 1019–1033 RASANLAATKMSECV
– – 959–973 LNTLVKQLSSNFGAI
527–541 PKKSTNLVKNKCVNF 537–551 KCVNFNFNGLTGTGV
459–470 SNLKPFERDIST 460–474 NLKPFERDISTEIYQ
– – 431–445 GCVIAWNSNNLDSKV
– – 323–337 TESIVRFPNITNLCP
987–1001 VEAEVQIDRLITGRL – –

Fig. 3   ASA and PV profiles of the full-length sequence of G glyco-
protein of Hendra virus: The components shown in the figure are: 
ASA profile (blue), PV profile (red), predicted peptide stretches using 

the new approach (green) and peptide stretches determined in Dey 
et al. (2018) (black). (Color figure online)

Table 8   The 8 grouped peptide 
zones obtained after grouping 
of the top 75 ranks for G 
glycoprotein

The zones marked with star indicate the ones which fell into the top 50th percentile as per the 2D Polygon 
analysis
Double asterisks refer to those peptide regions which fell in the top 50th percentile as per the 2D Polygon 
score for SARS-CoV-2, Hendra and Zika viruses respectively

Starting position Ending position Consolidated Peptide stretch

29 49 YGTMDIKKINDGLLDSKILGA**
11 28 NNNLSGKIKDQGKVIKNY**
370 400 LPRTEFQYNDSNCPIIHCKYSKAENCRLSMG**
297 313 VSHVGDPILNSTSWTES
122 154 ANIGLLGSKISQSTSSINENVNDKCKFTLPPLK**
84 110 KESLQSVQQQIKALTDKIGTEIGPKVS
548 564 QVPLAEDDTNAQKTITD
593 604 FAVKIPAQCSES
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NNNLSGKIKDQGKVIKNY (11–28), LPRTEFQYND-
SNCPIIHCKYSKAENCRLSMG (370–400)  and 
ANIGLLGSKISQSTSSINENVNDKCKFTLPPLK 
(122–154) fell into the top 50th percentile, meaning that 
they not only had high surface exposure and were conserved 
but also, they had a large length, quite favourable for vaccine 
design. These 4 regions have been marked in star in Table 8.

Using the 4 grouped peptide zones obtained, we now 
performed the IEDB-AR study with the help of the MHC 
II DRB and DP/DQ alleles based on the three affected 
countries India, Bangladesh and Malaysia, as per Dey et al. 
(2018). The study confirmed that there were two regions 
that did not show sufficient epitope potential—11–28 and 
29–49. For both these cases, neither of the DRB or the DP/
DQ analyses gave any 15-length epitope with percentile rank 
within 10. Hence both these regions have been discarded. 
The summary of the IEDB-AR study of the 4 grouped pep-
tide zones has been shown in Table 9.

So now, we are left with only two grouped peptide regions 
with have been matched with the IEDB-AR table to obtain 
their corresponding intersection zones. These intersection 
zones have been tested using the BLAST server to check 
whether there is any case of autoimmunity or not. Table 10 
shows the summary of the BLAST analysis for these two 
intersecting zones. Fortunately, none of the regions gave E 

value below 1, showing that they have negligible chances of 
causing autoimmune threats.

Therefore, the two peptide stretches EFQYNDSNCPII-
HCK and VNDKCKFTLPPLKIH form the final shortlist of 
peptide vaccine candidates for Hendra virus. We have com-
pared these regions with the same given in Dey et al. (2018) 
for each of the three affected countries—India, Bangladesh 
and Malaysia. Table 11 gives this comparison. From the 
comparative analysis, we can easily infer that the two regions 
we predicted were found among the published results show-
ing that our model was indeed consistent in this test case.

Additionally, the two regions predicted by the current 
method have been depicted in green horizontal lines in 
Fig. 3 whereas, the shortlisted regions listed in Dey et al. 
(2018) have been marked in black horizontal lines, for better 
understanding.

Verification of the Approach Using the Case of E 
Protein of Zika Virus

The second test case that we chose was to predict suitable 
vaccine candidates using this method for the Zika virus. The 
surface-situated E protein has been considered in this case, 
which is naturally a 504 amino acids (aa) long sequence. 
Here for verification, we have taken the reference of Dey 

Table 9   Summary of the IEDB-AR study for G glycoprotein where the best possible 15-length epitopes for both the MHC II DRB and DP/DQ 
analyses have been listed

The starred regions were chosen to form the intersecting zone corresponding to the particular peptide zone
The single asterisk marks represent the 15-length epitope chosen out of the two choices for every grouped peptide zone, such that the chosen 
ones form intersecting zones with the grouped peptide regions for SARS-CoV-2, Hendra and Zika viruses respectively

Start–End Grouped peptide zone MHC II DP/DQ MHC II DRB

Score Adjusted peptide Allele Score Adjusted peptide Allele

29–49 YGTMDIKKINDG-
LLDSKILGA

13 KINDGLLDSKIL-
GAF

HLA-DQA1*01:02/
DQB1*06:02

14 KINDGLLDSKIL-
GAF

HLA-DRB1*03:01

11–28 NNNLSGKIKDQGK-
VIKNY

37 LSGKIKDQGK-
VIKNY

HLA-DPA1*02:01/
DPB1*05:01

12 LSGKIKDQGK-
VIKNY

HLA-DRB3*01:01

370–400 LPRTEFQYND-
SNCPIIHCKYS-
KAENCRLSMG

28 PRTEFQYNDSNCPII HLA-DQA1*01:01/
DQB1*05:01

6.1* EFQYNDSNCPII-
HCK

HLA-DRB3*02:02

122–154 ANIGLLGSKISQST-
SSINENVNDKCK-
FTLPPLK

4.8* VNDKCKFTLP-
PLKIH

HLA-DPA1*02:01/
DPB1*14:01

5.8 ANIGLLGSKISQSTS HLA-DRB1*15:01

Table 10   Best possible BLAST matches and their corresponding E values for the 2 intersecting peptide zones finally shortlisted as peptide vac-
cine candidates for G protein of Hendra virus

Intersecting zone Best BLAST match E value of the 
match

Accession/PDB ID

EFQYNDSNCPIIHCK Immunoglobulin light chain junction region in Homo sapiens 9.1 MCC90139.1
VNDKCKFTLPPLK Coxsackievirus and adenovirus receptor isoform 4 precursor in Homo 

sapiens
45 NP_001193994.1
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et al. (2017). In Dey et al. (2017), the analysis considered 
25 full-length E protein sequences of 504 aa length and 35 
fragments of E protein of 251 aa length. The portion of the 
full-length sequence represented by the 251 aa fragments 
was retrieved from each of the 25 full-length sequences. This 
gave 60 251 aa fragments in total, based on which the vac-
cine candidates were shortlisted in Dey et al. (2017). We 
considered the same 60 fragment proteins of the E protein 
and derived the relevant peptide candidates before compari-
son with the shortlist given in Dey et al. (2017). Figure 4 
shows the ASA-PV profile for the E protein. Here the protein 
sequence AHL43501.1 (https://​www.​ncbi.​nlm.​nih.​gov/​prote​
in/​AHL43​501.1) from the NCBI database has been used to 
represent the regions in the corresponding tables and figures 
for our Zika virus analysis.

At first, a ranking list of all possible 12-length peptides 
retrieved from the 251 aa fragment protein sequence has 
been obtained using the w parameter. Since the sequence is 
only 251 aa long, so we preferred to consider only the top 
50 ranks from the ranking list. The top 50 ranks have been 
then grouped into peptide zones based on their location in 
the sequence. This gave 9 consolidated peptide zones which 
were now analysed using the 2D Polygon model Table 12 
shows the 9 consolidated regions obtained after grouping 
of the top 50 ranks.

Using the 2D Polygon model score, there were 5 pep-
tide zones that were screened from the 9 regions. This 
means, these 5 zones had high solvent accessibility, high 
conservation from mutation and a broad span, thus mak-
ing them suitable for vaccine design. These 5 regions have 

Table 11   Comparison of the final shortlist for peptide candidates for G protein of Hendra virus obtained from the new approach with that given 
in Dey et al. (2018), after the IEDB-AR and BLAST analyses

The comparison shows that all the regions we predicted were present among the published results in Dey et al. (2018)

Final shortlist for G protein of 
Hendra virus as per the new 
method

Final shortlists obtained for G protein of Hendra virus for each of the three affected countries as per Dey 
et al. (2018)

India Bangladesh Malaysia

EFQYNDSNCPIIHCK (374–388) PIAECQYSKPENCRL (383–397) FKYNDSNCPIAECQY 
(375–389)

PITKCQYSKPENCRL (383–397)

VNDKCKFTLPPLK (142–154) VNEKCKFTLPPLKIH (142–156) VNEKCKFTLPPLKIH (142–156) NVNEKCKFTLPPLKI (141–155)
– KKINEGLLDSKILSA (35–49) KINEGLLDSKILSAF (36–50) YGTMDIKKINEGLLD (29–42)
– AVSVVGDPILNSTYW 

(296–310)
VVGDPVLNSTYWSNS 

(299–313)
PILNSTYWSGSLMMT (303–317)

Fig. 4   ASA and PV profiles of the 251 aa fragment sequence of E 
protein of Zika virus: The components shown in the figure are: ASA 
profile (blue), PV profile (red), predicted peptide stretches using the 

new approach (green) and peptide stretches determined in Dey et al. 
(2017) (black). (Color figure online)

https://www.ncbi.nlm.nih.gov/protein/AHL43501.1
https://www.ncbi.nlm.nih.gov/protein/AHL43501.1
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been highlighted in star in Table 12. Considering the 5 
grouped peptide zones obtained, we now performed the 
IEDB-AR study with the help of the MHC II DRB and 
DP/DQ alleles as mentioned in Paul et al. (2015), which 
can cover a majority of world population. Table 13 gives 
the results given by IEDB-AR analysis regarding the best 
possible 15-length epitopes for each corresponding pep-
tide zone for both the cases of DRB and DP/DQ alleles. 
Accordingly, all the zones exhibited sufficient epitope 
potential as for each zone, we were able to find at least 
one 15-length epitope for either of the two types of alleles 
or both to have percentile rank below 10. As such, none 
of the 5 grouped peptide zones were rejected. In a similar 
way as before, we determined the corresponding inter-
secting zone for each of the 5 consolidated zones. Using 
the BLAST server, we once again checked whether any 
of these 5 intersecting zones show any kind of autoim-
munity. Table 14 gives the best BLAST matches for each 
of the intersecting zones along with the E value of that 
match. All of the regions gave the minimum possible E 

Table 13   Summary of the IEDB-AR study for the E protein where the best possible 15-length epitopes for both the MHC II DRB and DP/DQ 
analyses have been listed

The starred regions were chosen to form the intersecting zone corresponding to the particular peptide zone
The single asterisk marks represent the 15-length epitope chosen out of the two choices for every grouped peptide zone, such that the chosen 
ones form intersecting zones with the grouped peptide regions for SARS-CoV-2, Hendra and Zika viruses respectively

Start–End Grouped peptide zone MHC II DP/DQ MHC II DRB

Score Adjusted peptide Allele Score Adjusted peptide Allele

212–233 PAQMAVDMQTLT-
PVGRLITANP

20 VDMQTLTPVGR-
LITA

HLA-DPA1*02:01/
DPB1*14:01

8.3* PAQMAVDMQTLT-
PVG

HLA-DRB4*01:01

120–145 AKRQTVVVLG-
SQEGAVHTALA-
GALEA

2* SQEGAVHTALA-
GALE

HLA-DQA1*05:01/
DQB1*03:01

7.7 SQEGAVHTALA-
GALE

HLA-DRB1*09:01

102–114 GTPHWNNKEALVE 7.4* TGTPH-
WNNKEALVEF

HLA-DQA1*03:01/
DQB1*03:02

25 TGTPH-
WNNKEALVEF

HLA-DRB1*13:02

53–66 FGSLGLDCEPRTGL 44 FGSLGLDCEPRT-
GLD

HLA-DQA1*03:01/
DQB1*03:02

5.1* ATLGGFGSLGLD-
CEP

HLA-DRB1*15:01

113–130 VEFKDAHAKRQT-
VVVLGS

7.9* DAHAKRQTV-
VVLGSQ

HLA-DPA1*02:01/
DPB1*14:01

21 VEFKDAHAKRQT-
VVV

HLA-DRB5*01:01

Table 14   Best possible BLAST matches and their corresponding E values for the 5 intersecting peptide zones to be finally shortlisted as peptide 
vaccine candidates for E protein of Zika virus

Intersecting zone Best BLAST match E value of the 
match

Accession/PDB ID

PAQMAVDMQTLTPVG MON1 homolog A (yeast), isoform CRA_a in Homo sapiens 2.7 EAW65037.1
SQEGAVHTALAGALE Protein PEAK3 in Homo sapiens 22 NP_940934.1
GTPHWNNKEALVE Tumor protein p63-regulated gene 1-like protein in Homo sapiens 11 NP_877429.2
FGSLGLDCEP Immunoglobulin heavy chain junction region in Homo sapiens 5.3 MBN4382203.1
DAHAKRQTVVVLGS Immunoglobulin heavy chain junction region in Homo sapiens 2.8 MOP52445.1

Table 12   The 9 grouped peptide zones obtained after grouping of the 
top 50 ranks for E protein of Zika virus

The zones marked with star indicate the ones which fell into the top 
50th percentile as per the 2D Polygon analysis
Double asterisks refer to those peptide regions which fell in the top 
50th percentile as per the 2D Polygon score for SARS-CoV-2, Hendra 
and Zika viruses respectively

Starting 
position

Ending position Consolidated Peptide stretch

212 233 PAQMAVDMQTLTPVGRLITANP**
120 145 AKRQTVVVLGSQEGAVHTALA-

GALEA**
102 114 GTPHWNNKEALVE**
53 66 FGSLGLDCEPRTGL**
113 130 VEFKDAHAKRQTVVVLGS**
139 158 LAGALEAEMDGAKGRLFSGH
68 79 FSDLYYLTMNNK
38 51 EVTPNSPRAEATLG
188 201 PAETLHGTVTVEVQ
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value greater than 1, showing that they have negligible 
chances of causing autoimmune threats. So, the 5 inter-
secting zones, all of which passed both the IEDB-AR and 
BLAST tests, finally form the shortlist of possible vac-
cine candidates against Zika virus based on its E protein. 
On comparison of these regions with the ones given in 
Dey et al. (2017), it was observed that two of them were 
found among the established regions, showing there was 
a decent level of consistency between the two approaches 
for this test case. The above comparison has been shown 
in Table 15.

Moreover, the five regions predicted by the current 
method have been depicted in green horizontal lines in 
Fig. 4 whereas, the shortlisted regions listed in Dey et al. 
(2017) have been marked in black horizontal lines for bet-
ter representation of the comparison. Also, in the figure, 
the regions 117–130 and 130–144 have been depicted as a 
single uniform horizontal stretch.

Conclusion

The main objective of the research reported in this paper 
is the development and applications of a new quantitative 
approach for the formulation of peptide vaccine libraries for 
the surging SARS-CoV-2 virus. So far, regarding our earlier 
approach towards rational peptide vaccine design against dif-
ferent viruses, eye-estimation of the superimposed graphical 
profiles for ASA and PV of the viral sequence was employed 
to find surface-exposed and conserved peptide regions of 
the viral sequence for further analysis to prescribe the most 
suitable peptide regions for vaccine design. But this manual 
method often incorporates bias and a slight deviation from 
precision, which is not desirable. In this perspective, the 
two-stepped approach presented in this article turns out to be 
useful in replacing the tedious manual intervention for scan-
ning through the graphical profiles, with this new precise 
computational model by automating the search procedure for 

suitable peptide candidates. Along with this, the robust and 
simple nature of the approach makes it easier to execute it 
through various programming platforms. In the analysis pre-
sented here, the most conserved and surface-exposed peptide 
regions in the spike glycoprotein of SARS-CoV-2 have been 
identified for in silico peptide vaccine design against the 
virus, with the help of this newly devised approach. Finally, 
4 peptide regions have been shortlisted for SARS-CoV-2 
using this model. A similar study for determining possible 
vaccine candidates for SARS-CoV-2 has also been done 
using the older method of eye-estimation in the current anal-
ysis using the same sequences as used for the 2D model. A 
good level of matching among both the results shows that the 
new approach is indeed consistent in predicting the peptide 
vaccine candidates for SARS-CoV-2. Further comparison 
was also made with results given by other researchers using 
the same spike protein of SARS-CoV-2. As such, some of 
our zones matched with these analyses as well.

However, the design of the approach doesn’t end here. 
We still need to see whether this method is applicable for 
other viruses as well. In that case, the method will be able 
to predict vaccine candidates for any other virus in general. 
For this verification with other viruses, we chose two test 
cases—the first one was to predict vaccine candidates for 
Hendra virus using its surface-situated G glycoprotein, and 
the second test case was to perform the same for Zika virus 
using its surface-situated E protein. For the analysis on Hen-
dra virus, the new method yielded two peptide regions as the 
finally shortlisted candidates, both of which matched with a 
pre-established set of vaccine candidates for Hendra virus. 
Again, for Zika virus E protein, we obtained 5 finally short-
listed peptide stretches, out of which two regions matched 
with a similar pre-established set of peptide vaccine candi-
dates for Zika virus. This shows that the method was also 
able to predict peptide vaccine candidates with a decent level 
of consistency for other viruses as well.

Thus, it can be said that this new computational 
approach has paved way for a much improvised in silico 

Table 15   Comparison of 
the final shortlist for peptide 
candidates for E protein of Zika 
virus obtained from the new 
approach with that given in Dey 
et al. (2017), after the IEDB-AR 
and BLAST analyses

The comparison shows that two of the five regions we predicted were present among the published results 
in Dey et al. (2017)

Finally shortlisted regions for E protein of Zika virus using 
the new approach

Finally shortlisted peptide regions for E pro-
tein of Zika virus listed in Dey et al. (2017)

Start–End position Peptide Stretch Start–End position Peptide stretch

212–226 PAQMAVDMQTLTPVG 215–223 MAVDMQTLT
130–144 SQEGAVHTALAGALE – –
102–114 GTPHWNNKEALVE 97–106 AGADTGTPHW
53–62 FGSLGLDCEP – –
117–130 DAHAKRQTVVVLGS – –
– – 43–50 SPRAEATL
– – 180–190 AAFTFSKVPAE
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and alignment-free technique to design peptide vaccines 
not only with respect to the current pandemic caused by 
SARS-CoV-2, but for any other new virus in future as well. 
Regarding the current situation where the pandemic is tak-
ing a toll on many lives, by automating the selection of the 
best peptide candidates, this approach will help to generate 
a much more rapid solution to the issue of vaccine design.

The software application that we have prepared for the 
execution of the entire analysis described in this article can 
be obtained by downloading the relevant installation setup 
given in the following GitHub repository link: https://​github.​
com/​Subha​moyBi​swas/​Insta​llati​on-​Setup-​for-​Pepti​de-​Vacci​
ne-​Analy​sis-​Tool-​PVAT.
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