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Abstract: Over the past couple of decades, extensive research has been conducted on silicon (Si) based
solar cells, whose power conversion efficiency (PCE) still has limitations because of a mismatched
solar spectrum. Recently, a down-shifting effect has provided a new way to improve cell performances
by converting ultraviolet (UV) photons to visible light. In this work, caesium lead bromide perovskite
quantum dots (CsPbBr3 QDs) are synthesized with a uniform size of 10 nm. Exhibiting strong
absorption of near UV light and intense photoluminescence (PL) peak at 515 nm, CsPbBr3 QDs show
a potential application of the down-shifting effect. CsPbBr3 QDs/multicrystalline silicon (mc-Si)
hybrid structured solar cells are fabricated and systematically studied. Compared with mc-Si solar
cells, CsPbBr3 QDs/mc-Si solar cells have obvious improvement in external quantum efficiency (EQE)
within the wavelength ranges of both 300 to 500 nm and 700 to 1100 nm, which can be attributed to
the down-shifting effect and the anti-reflection property of CsPbBr3 QDs through the formation of
CsPbBr3 QDs/mc-Si structures. Furthermore, a detailed discussion of contact resistance and interface
defects is provided. As a result, the coated CsPbBr3 QDs are optimized to be two layers and the solar
cell exhibits a highest PCE of 14.52%.

Keywords: caesium lead bromide perovskite quantum dots (CsPbBr3 QDs); multicrystalline Si
(mc-Si); solar cell; down-shifting effect; anti-reflection property

1. Introduction

For the past few years, silicon (Si) based solar cells have become the most commonly-used
materials of photovoltaic devices because of its abundant and non-polluting properties with a mature
production process [1–3]. By virtue of its high efficiency and low cost, multicrystalline Si (mc-Si) solar
cells are produced most extensively among various solar cells [4]. However, crystalline Si solar cells
are limited in power conversion efficiency (PCE), as high-energy photons cannot fully be utilized and
photons whose energy is inferior to the bandgap of Si have transmission loss [5]. In order to obtain
better spectral response, one possible solution is to use luminescent materials converting ultraviolet
(UV) photons to visible light by means of a down-shifting effect [6,7]. Recently, multiple reports
have demonstrated that the down-shifting mechanism of nanomaterials can improve the PCE of solar
cells [8–12]. For example, van Sark et al. calculated in theory that Cd-based quantum dots (QDs), which
had an emission at 603 nm, led to an increase of around 10% in the short-circuit current of mc-Si solar
cells [13]. Pi et al. fabricated Si QDs on the surface of mc-Si solar cells via the inkjet printing method
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and found that solar cell exhibited a relative rise of 2% in PCE because of better spectral response
within a short wavelength range of 300 nm to 400 nm [14]. On one hand, however, conventional CdS or
CdSe QDs are faced with the problems of severe aggregation and photoluminescence (PL) quenching
in the process of film fabrication [15]. On the other hand, Si QDs fail to achieve high PL quantum yield
(QY) due to their indirect Si bandgap [16–18].

With a potential application in light emitting diodes [19–21], lasers [22–24], photodetectors [25–27]
and other optoelectronic devices, all inorganic lead halide perovskite QDs (IPQDs) could become
alternative materials for the down-shifting effect and photovoltaic applications due to their low cost
synthesis method, long-time stability, high optical absorption coefficient, as well as controllable and
high intensity PL [28–30]. Compared with a relatively low PL QY (<50%) in Si QDs [31,32], IPQDs
have PL QYs of 80%, 95%, 70%, for red, green, and blue emissions [33]. It has been reported that
the spectral response with near UV light range of 300–390 nm of a Cu(In,Ga)Se2 (CIGS) thin film
solar cell was improved by taking advantage of the down-shifting effect of IPQDs [34]. In the present
work, a colloidal approach is introduced to synthesize caesium lead bromide perovskite quantum dots
(CsPbBr3 QDs) that are cubic shaped with a mean size of 10 nm and whose room temperature PL peak
is observed at 515 nm. The colloidal CsPbBr3 QDs solution is then spin-coated onto the surface of
commercially produced mc-Si solar cells in order to obtain CsPbBr3 QDs/mc-Si hybrid structured solar
cells. It is found that CsPbBr3 QDs/mc-Si hybrid structured solar cells have an increase in external
quantum efficiency (EQE) within the wavelength ranges of both 300 to 500 nm and 700 to 1100 nm
compared with solar cells without CsPbBr3 QDs, demonstrating that the photovoltaic performances of
solar cells can be improved by the down-shifting effect and the anti-reflection property of CsPbBr3

QDs/mc-Si hybrid structures.

2. Materials and Methods

CsPbBr3 QDs were synthesized with a colloidal approach. First, Cs2CO3 (99.9%, 2.5 mmol,
Sigma-Aldrich, St. Louis, MO, USA) was added to 40 mL of octadecene (ODE, 90%, Acros, Geel,
Belgium) with 2.5 mL of oleic acid (OA, 90%, Sigma-Aldrich) at 130 ◦C under N2 atmosphere for
30 min. The solution after reaction was naturally cooled to ambient temperature to obtain the Cs-oleate
solution. Second, PbBr2 (99.999%, 0.188 mmol, Sigma-Aldrich), 5 mL of ODE, 0.5 mL of OA, and 0.5 mL
of oleylamine (OLA, 90%, Acros) were mixed and dried at 120 ◦C under vacuum for 60 min. After
complete dissolution of PbBr2, the solution saw a rise of 150 ◦C in temperature under N2 atmosphere
and a quick injection of 0.4 mL of the prepared Cs-oleate solution. The mixture after reaction was
placed at this temperature for 5 s and cooled by an ice-water bath to ambient temperature. Finally, the
reaction solution was used to purify CsPbBr3 QDs by centrifugation at 12,000 rpm for 10 min and then
re-dispersed in n-hexane (99%, Sigma-Aldrich) to obtain a long-time stable colloidal solution.

The microstructures of CsPbBr3 QDs were characterized by means of transmission electron
microscopy (TEM) and X-ray diffraction (XRD) (MXP-III, Bruker, Inc., Leipzig, Germany). The diluted
and highly dispersed CsPbBr3 QDs solution was dropped onto a carbon-coated Cu grid and dried
at room temperature. TEM images were performed by Tecnai G2 operated at 200 kV. A UV-3600
spectrophotometer produced by Shimadzu was applied to measure the optical absorbance of CsPbBr3

QDs. Equipped with a synapse photomultiplier tube (PMT) detector, a system made by HORIBA
Jobin Yvon was used to measure PL spectra. The absorbance and PL spectra were measured at room
temperature in a fused silica cuvette using diluted solution of CsPbBr3 QDs in n-hexane.
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In this work, commercially produced mc-Si solar cells with texturized surface were fabricated
by Hareonsolar (Wuxi, China), including acid texturization, high temperature diffusion, SiNx film
deposition, and metal grid screen-printing. The mc-Si substrate was p-type (1~3 Ω·cm) with a thickness
of 200 ± 20 µm and the texturized surface had an average roughness of 0.8~1.6 µm. The surface of mc-Si
solar cells was spin-coated with the CsPbBr3 QDs/n-hexane solution at 2000 rpm for 1 min in a glovebox.
CsPbBr3 QDs have a concentration of 5 mg/mL and mc-Si solar cells have an active area of 4 cm2.
Here, layer-by-layer spin-coating process was used to fabricate CsPbBr3 QDs/mc-Si hybrid structured
solar cells. The layer number of CsPbBr3 QDs varied from one to four. A 610C electrometer made by
Keithley (Cleveland, OH, USA) was utilized to measure the current density-voltage (J-V) characteristics
of solar cells under the AM 1.5 (100 mW/cm2) illumination. A QEX10 quantum efficiency/spectral
response measurement system produced by PV Measurements (Point Roberts, WA, USA) was adopted
to measure the EQE spectra of mc-Si solar cells inclusive and exclusive of CsPbBr3 QDs within the
spectral range of 300 to 1100 nm. A standard Si solar cell was used for calibrating both J-V and
EQE measurements. Hall Effect was measured at room temperature by LakeShore 8400 with the use
of a coplanar van der Pauw (VDP) geometry and films with vacuum-evaporated Al electrodes. A
liquid He-cooled spectrometer produced by Bruker EMX (Karlsruhe, Germany) was utilized to obtain
low-temperature X-band electron spin resonance (ESR) spectra CsPbBr3 QD films.

3. Results

3.1. Structural Characterizations of CsPbBr3 QDs

Figure 1a shows that CsPbBr3 QDs prepared in the current experiment present cubic shapes
with a uniform size. The high-resolution TEM (HRTEM) image of one CsPbBr3 QD is presented in
Figure 1b. The prepared CsPbBr3 QDs have a crystalline interplanar spacing of 0.29 nm relative to
the (200) crystalline planes of cubic CsPbBr3. The distribution of CsPbBr3 QDs sizes is demonstrated
in Figure 1c. The quantum confinement effect of CsPbBr3 QDs is expectable since their mean size
(about 10 nm) approaches the Bohr diameter (7 nm) that was predicted by the Wannier-Mott excitons
of bulk CsPbBr3 perovskites [35]. The pattern of XRD presented in Figure 1d further confirms the
cubic crystalline structures of prepared CsPbBr3 QDs. Characteristic diffraction peaks at 15.2◦, 21.5◦,
30.6◦, 34.3◦, 37.7◦, and 43.8◦ can be allocated to diffractions from (100), (110), (200), (210), (211), and
(202) crystalline planes of cubic CsPbBr3 (JCPDS Card No. 54-0752), respectively, which is aligned with
TEM results.

3.2. Optical Properties of CsPbBr3 QDs

It can be seen in Figure 2 that CsPbBr3 QDs have quite high absorbance in the region of short
wavelength and the absorption edge locates at 520 nm (2.38 eV), suggesting that the blue-shift of the
bandgap corresponds to bulk CsPbBr3 with 2.25 eV [36], which accords with the quantum confinement
effect. In addition, the PL spectrum of CsPbBr3 QDs excited by a He-Cd laser of 325 nm is also
presented in Figure 2, showing an intense peak at 515 nm with width as narrow as 20 nm at half height.
The observed high intensity and color purity PL can be attributed to the uniform size distribution of
CsPbBr3 QDs, as identified by TEM measurements. Moreover, the PL QY is measured to be as high
as 80%, by using standard fluorescence dye as a reference. It is demonstrated that CsPbBr3 QDs can
strongly absorb the near UV photons and then efficiently emit visible light, indicating their suitable
down-shifting applications.
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Figure 2. Optical absorption (blue line) and PL (green line) spectra of CsPbBr3 QDs.

3.3. Photovoltaic Properties of CsPbBr3 QDs/mc-Si Hybrid Structured Solar Cells

CsPbBr3 QDs/mc-Si hybrid structured solar cells were fabricated after spin-coating the colloidal
CsPbBr3 QDs solution onto the surface of mc-Si solar cells. Measurements were carried out for the J-V
characteristics of solar cells under the AM 1.5 illumination. Figure 3a shows the illuminated J-V curves
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of mc-Si solar cells inclusive and exclusive of CsPbBr3 QDs. The photovoltaic parameters, including
short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), and PCE, are summarized
as shown in Figure 3b–e. To simplify statement, the CsPbBr3 QDs/mc-Si hybrid structured solar cells
are named as 1_L_mc-Si cell, 2_L_mc-Si cell, 3_L_mc-Si cell, and 4_L_mc-Si cell corresponding to the
layers of spin-coated CsPbBr3 QDs. Besides, the mc-Si solar cell without CsPbBr3 QDs is named as
ref_mc-Si cell for reference.
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(e) power conversion efficiency (PCE) of solar cells.

In general, cell performances strongly depend on the layer number of CsPbBr3 QDs. As shown in
Figure 3b, CsPbBr3 QDs/mc-Si hybrid structured solar cells have higher Jsc compared with ref_mc-Si
solar cell when the layer number of CsPbBr3 QDs is one to three. In particular, Jsc increases from
36.14 mA/cm2 to 37.48 mA/cm2 when the layer number is two, which is considered to result from better
spectral utilization. However, the Jsc of 4_L_mc-Si cell drops to 33.76 mA/cm2, even below that of mc-Si
solar cell without CsPbBr3 QDs. In principle, the significant reduction of Jsc can be explained by the
following two reasons. The first reason should be the induced contact resistance in CsPbBr3 QDs layers.
As we know, undoped CsPbBr3 QDs have poor electrical conductivity. Through the room temperature
Hall Effect measurement, the CsPbBr3 QDs film has a dark conductivity of about 3.6 × 10−7 S/cm, which
is very low in the order of magnitude according to the previous reports of metal halide perovskite
materials [37–39]. In this study, Jsc drops off due to the increase of contact resistance, which deteriorates
the carrier collection efficiency. The other reason is the defect in hybrid structures which acts as a
non-radiative recombination center and results in thermal energy loss. In order to confirm the existence
and study the behavior of defects in hybrid structures, a liquid He-cooled spectrometer of Bruker EMX
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10/12+ whose center field is 3342.5 G is used to obtain the low-temperature X-band ESR spectrum of
CsPbBr3 QDs/mc-Si structure, as shown in Figure 4. The X-band ESR spectrum at 4 K shows an ESR
signal with g = 2.006. In previous works, this signal was usually observed in disordered materials and
corresponding to the dangling bond defects derived from the chemical synthesis and spin-coating
process, and poor adhesion of coating films on substrates [40–42]. It is worth noting that no ESR signal
can be detected in the ref_mc-Si solar cell. As a result, the ESR signal here results from the lone-pair
electrons (like dangling bonds defects) on the surface and interfaces of CsPbBr3 QDs layers. The
density of induced surface and interface defects increases with the increasing layer number of CsPbBr3

QDs, indicating a decline in the Jsc of solar cells because of the enhanced carrier recombination.
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As shown in Figure 3c, the change of Voc with the layer number of CsPbBr3 QDs tends to be linear.
When the layer number increases, Voc decreases slightly from 612.1 to 608.5 mV because of the surface
and interface defects induced by CsPbBr3 QDs layers. As shown in Figure 3d, FF declines obviously
when the layer number increases to four, which may be owing to an increase in series resistance (Rs). A
negative correlation is found between FF and Rs. Equation (1) below displays the relationship between
the voltage and current density of a single-diode model:

J = J0

(
exp

(
q(V −Rs J)

nkBT

)
− 1

)
+

V −Rs J
Rsh

− Jp (1)

wherein, J0 and Jp are saturation current density and photocurrent density, respectively, Rs represents
series resistance, Rsh represents shunt resistance, n refers to ideality factor, q is electron charge, kB is
Boltzmann constant and T is temperature. The Rs values of ref_mc-Si and 4_L_mc-Si cells extracted by
a fit to the illuminated J-V curves are 1.2 and 2.8 Ω, respectively. As discussed before, contact resistance
increases with the increasing layer number of CsPbBr3 QDs, which in turn give rise to an obvious
decline in FF. Finally, the optimal mc-Si solar cell coated with two layers of CsPbBr3 QDs leads to the
best PCE of 14.52%, as shown in Figure 3e.

The EQE spectra of mc-Si solar cells inclusive and exclusive of CsPbBr3 QDs layers were measured
to further study the down-shifting mechanism of CsPbBr3 QDs/mc-Si hybrid structured solar cells. As
observed in Figure 5, the EQE of CsPbBr3 QDs/mc-Si hybrid structured solar cells has a great increase
within the spectral range of 300 to 500 nm when the layer number of CsPbBr3 QDs is 1 to 3, which
should be attributed to the formation of CsPbBr3 QDs, as discussed before. It suggests that CsPbBr3

QDs are capable of absorbing the near UV light and emitting photons in the region of visible light,
which could enhance the spectral response in the region of short wavelength through the re-absorption
of mc-Si substrates. When the layer number increases to 4, nevertheless, EQE decreases obviously
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almost in the whole spectral range, even below that of ref_mc-Si cell, which agrees with the J-V results.
Another interesting finding is that the EQE of CsPbBr3 QDs/mc-Si hybrid structured solar cells also
increases within the spectral range of 700 to 1100 nm, which will be discussed below. Based on EQE
results, Jsc contributed from the spectral response of solar cells in different wavelength ranges can be
calculated according to Equation (2) as follows:

Jsc =

∫ λ2

λ1

F(λ)·EQE(λ)
E(λ)

dλ (2)

wherein, F(λ) and E(λ) are incident light flux and energy of photons with the wavelength of λ,
respectively. Compared with ref_mc-Si cell, the Jsc of 2_L_mc-Si cell contributed from spectral response
within spectral range of 300 to 500 nm and 700 to 1100 nm increases from 5.98 mA/cm2 to 6.79 mA/cm2

and 14.15 mA/cm2 to 14.52 mA/cm2, respectively. As reported by the work of Pi et al., the anti-reflection
of prepared porous Si QDs films improved the efficiency of crystalline Si (c-Si) solar cells [43]. In this
study, the reflection characteristics of mc-Si solar cells inclusive and exclusive of CsPbBr3 QDs layers
must be taken into consideration.
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CsPbBr3 QDs layers.

Figure 6 shows the optical reflection (R) spectra of mc-Si solar cells and CsPbBr3 QDs/mc-Si
hybrid structured solar cells. Obviously, CsPbBr3 QDs layers lead to the decrease of reflection within
the spectral ranges of both 300 to 500 nm and 700 to 1100 nm. The reduction of reflection in long
wavelength region is mainly induced by the nanostructure of CsPbBr3 QDs layers. Meanwhile, a
greater decline in reflection in short wavelength region should be ascribed to the anti-reflection property
of nanostructures and the absorption of CsPbBr3 QDs themselves, as shown in Figure 2.

In order to evaluate the contributions from the down-shifting and anti-reflection effect, an
enhancement factor (EF) is defined for both the EQE and absorption results:

EFEQE =
EQEwith QDs − EQEwithout QDs

EQEwithout QDs
(3)

EFA =
Awith QDs −Awithout QDs

Awithout QDs
(4)

wherein, A is the optical absorption of hybrid structures, which can be deduced by A = 1 − R. Figure 7
shows the EF of 2_L_mc-Si cell as a function of wavelength. It can be clearly seen that the decrease of
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reflection (which means the enhancement of absorption) improves EQE within the wavelength range of
700 to 1100 nm. However, in wavelength range of 300 to 450 nm, the anti-reflection effect cannot overlap
with all the enhancement of EQE result. For example, at 320 nm, the EQE enhancement is 27% while
the absorption enhancement is only 4%, which indicates that the down-shifting effect of CsPbBr3 QDs
dominates the improving spectral response in the short wavelength region. In contrast, at 480 nm, the
CsPbBr3 QDs/mc-Si structures show the strongest anti-reflection property. The enhancements of EQE
and absorption are almost the same. Hence, the EQE enhancement is mainly due to the anti-reflection
of hybrid structures. In a word, we conclude that the improved photovoltaic performances can be
attributed both to the down-shifting effect and the anti-reflection property of CsPbBr3 QDs by forming
CsPbBr3 QDs/mc-Si hybrid structures. Furthermore, for future photovoltaic application, in order to
avoid the environmental pollution caused by lead, a protected layer will be introduced into the hybrid
structures to reduce the lead leakage [44,45].
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4. Conclusions

In conclusion, CsPbBr3 QDs are fabricated with a colloidal synthesis approach. TEM and XRD
measurements reveal that cubic CsPbBr3 QDs are formed with an average size of 10 nm. It is observed
that CsPbBr3 QDs can strongly absorb the near UV light and present a room temperature PL peak at
515 nm, suggesting their typical down-shifting mechanism. Moreover, CsPbBr3 QDs/mc-Si hybrid
structured solar cells containing CsPbBr3 QDs of different layers are fabricated. According to the
findings, the EQE of CsPbBr3 QDs/mc-Si hybrid structured solar cells is increased within the wavelength
ranges of both 300 to 500 nm and 700 to 1100 nm compared with mc-Si solar cells without CsPbBr3

QDs, which should be attributed to the broadband anti-reflection characteristics of nanostructures
and the additionally improved down-shifting effect of CsPbBr3 QDs. However, the higher contact
resistance and density of surface and interface defects resulting from the increasing layer number of
CsPbBr3 QDs deteriorate cell performances due to the reduction of carrier collection efficiency. As a
result, the optimal mc-Si solar cell coated with two layers of CsPbBr3 QDs contributes to achieving the
best PCE of 14.52%. It is worth noting that all inorganic CsPbBr3 QDs have better stability than the
organic-inorganic (MAPbBr3) perovskite materials. Our experimental results indicate a promising way
to exploit CsPbBr3 QDs for future photovoltaic devices.
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