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MQuad enables clonal substructure discovery
using single cell mitochondrial variants
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Mitochondrial mutations are increasingly recognised as informative endogenous genetic
markers that can be used to reconstruct cellular clonal structure using single-cell RNA or
DNA sequencing data. However, identifying informative mtDNA variants in noisy and sparse
single-cell sequencing data is still challenging with few computation methods available. Here
we present an open source computational tool MQuad that accurately calls clonally infor-
mative mtDNA variants in a population of single cells, and an analysis suite for complete
clonality inference, based on single cell RNA, DNA or ATAC sequencing data. Through a
variety of simulated and experimental single cell sequencing data, we showed that MQuad
can identify mitochondrial variants with both high sensitivity and specificity, outperforming
existing methods by a large extent. Furthermore, we demonstrate its wide applicability in
different single cell sequencing protocols, particularly in complementing single-nucleotide
and copy-number variations to extract finer clonal resolution.
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dentification of clonal relationships in a population of single

cells is a major challenge of single cell data science!. Such

information is essential in recovering cell lineages, which can
have broad applications in developmental?3, stem cell* and
cancer biology’. In particular, deciphering intra-tumor genetic
heterogeneity and clonal mutations are cricitial for revealing their
evolutionary dynamics and drug resistance of cancers®. For-
tunately, recent advances in single-cell sequencing bring promises
to the identification of subclonal structure in tumors’® and
characterization of phenotypic impacts from single nucleotide
variations (SNVs) and copy number variations (CNVs)%10.
However, SNV-based lineage reconstruction remains a grand
challenge! partly due to the relatively small number of somatic
variants in the large nuclear genome!! and a high dropout rate!2,
especially for assays with low efficiency and limited coverage, e.g.,
Smart-seq2 for transcriptome!3. CNVs inferred based on single
cell transcriptomic data have been widely used!41, but subclonal
structures inferred from read-coverage-inferred CNVs might not
be as dynamic as subclones shown by the propagation of true
point mutations. It has been shown recently that mitochondrial
heteroplasmy serves as an excellent alternative to nuclear SNVs
for studying lineages®16-18 or human embryogenesis and
development?? due to the mitochondria’s large number of copies
and higher mutation rate (>10 fold of nuclear genome!?). Thanks
to its cost efficiency and high accessibility, mtDNA variations
have since attracted great attention, with further development of
novel droplet-based single-cell sequencing protocols to enrich
mitochondrial sequences in a highly multiplexed manner, such as
mtscATAC-seq!®.

However, it is highly challenging to differentiate between
clone-discriminative mtDNA mutations and non-inherited
mutations that are totally unrelated to the lineage structure.
Very few computational methods are available for analyzing
mitochondrial SN'Vs across different sequencing assays, especially
for conventional single-cell RNA sequencing (scRNA-seq) data.
Nuclear SNV callers such as Monovar?? and Conbase?!, assume a
diploid context which is violated in the mitochondrial genome.
MtDNA specific methods, EMBLEM?2 and mgatk!® were
designed primarily for single-cell assay for transposase-accessible
chromatin with sequencing (scATAC-seq) and the SNV quality
detected in other data types such as scRNA-seq remains to
be further evaluated. Combining with the long-standing
problem of sequencing errors, uninformative and noisy mtDNA
SNVs greatly confound clonal inference and biological
interpretation.

To address these limitations, we develop a computational
method called MQuad (Mixture Modeling of Mitochondrial
Mutations, M?) that effectively identifies informative mtDNA
variants in single-cell sequencing data for clonality inference.
Importantly, MQuad can be used in combination with two other
recently developed tools to form an integrated clonality discovery
pipeline, cellSNP-MQuad-VireoSNP, which provides a complete
analysis suite from single cell mtDNA genotyping to clonal
reconstruction. We demonstrate its usage on various single-cell
sequencing data sets to identify clones based on mtDNA muta-
tions. More importantly, our analysis reveals that mtDNA
mutations detected by MQuad can be used in complement with
nuclear SNVs and CNVs to achieve finer clonal resolution.

Results

MQuad is a robust statistical approach to identify informative
mtDNA variants. MQuad is a computational method for
detecting clone discriminative mitochondrial variants. It is tai-
lored to work seamlessly with cellsnp-lite?3 and vireoSNP24 to
create an automated end-to-end pipeline for single cell clonal

discovery using mitochondrial variants (Fig. la). Briefly, MQuad
fits the alternative and reference allele counts of each variant to a
binomial distribution with either one shared parameter (i.e., the
expected alternative allele frequency) across all cells under the
null hypothesis Hy or two different parameters in the cell
population as the alternative hypothesis H; (i.e., two-component
mixture; Methods). Instead of assuming a diploid context like in
the nuclear genome, the binomial parameter(s) here can range
from 0 to 1 for different levels of heteroplasmy. The difference of
the Bayesian Information Criterion scores of the fitted Hy or H;
models (ABIC = BIC(Hq)—BIC(H,)) is then used to prioritize the
candidate variants that are informative with respect to clonal
discovery, with a higher ABIC for stronger support of the alter-
native model that the variant is clonally informative. Then, a
cutoff on ABIC is determined automatically by the inflection
point (a knee point) in the cumulative distribution of ABIC
(Methods). With a highly discriminative set of mtDNA variants
identified by MQuad, vireoSNP clusters single cells to clones
based on their mtDNA mutation profiles.

We first benchmarked MQuad with simulated data that
mimicked scRNA-seq data generated from the Smart-seq2
protocol. To simulate three clonal populations, we separated the
dataset into three groups of cells and designated 5-50 clone-
specific mtDNA variants for each group (Supplementary Fig. 1
and Methods). On top of that, spontaneous mutations and
sequencing errors were generated at a low frequency across all
cells to simulate a noisy background (Methods).

We compared MQuad’s performance against two other single-
cell variant callers: mgatk!® and Monovar?). In an example
simulation with 50 variants per clone and all other default settings
(Methods; Fig. 1), MQuad has the best overall performance in
identifying ground truth clonal variants (area under precision
recall curve AUPRC = 0.976, Fig. 1b; area under receiver operator
characteristic curve AUROC = 1.00, Fig. 1c), outperforming both
mgatk (AUPRC=0.800, AUROC=0.999) and Monovar
(AUPRC = 0.147, AUROC =0.968). All tested tools have high
AUROC (>0.95) because there is an imbalance between the
number of clonal variants (15-150) and the number of true
negative variants (>16,000). The precision recall curve shows that
MQuad has a better control in false positive SNPs than other
tools, which demonstrates that it is non-trivial to detect
mitochondrial variants precisely. Monovar was designed for
detecting somatic variants in the nuclear genome instead of the
mitochondrial genome. The violation of diploid assumption is
probably the reason that Monovar poorly distinguishes technical
noises hence returning many false positives. For mgatk, we reason
that the variance mean ratio (VMR) used by the algorithm is
difficult to estimate correctly and may suffer from high
uncertainty, hence is not a robust predictor of informativeness
in scRNA-seq due to an abundance of low allele frequency
variants and sequencing errors. In contrast, our proposed metric,
ABIC, was sensitive to distinguish between informative variants
and noise, which made it more intuitive to place a cutoff at the
knee point with the sharpest increase of ABIC (Fig. 1d; circle on
blue PR curve in Fig. 1b, Recall = 0.93, Precision = 0.79).

We also varied several key simulation parameters to explore
the effect of dataset characteristics on clonal variant discovery,
including the number of informative variants per clone, the allele
frequency of clonal variants, the ratio of clone sizes, and
evolutionary models (Fig. le-h). Across almost all settings, we
found MQuad outperforms mgatk and Monovar by large gains in
AUPRGC, suggesting its enhanced performance in controlling false
positives. The only exception is when the allele frequency of
clonal variants is at or lower than 1%, in which case all tools
perform poorly (Fig. 1f). This is not surprising as such low allele
frequency is close to the level of technical noise (average allele
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Fig. 1 Overview of analysis pipeline and benchmark with simulated data. a Schematic for tailored analysis suite recommended to use alongside MQuad.
Precision-Recall (PR) curve (b) and Receiver Operating Characteristic (ROC) curve (c) for the detection of simulated variants in a simulation with all
default settings (see Methods) except 50 clonal variants per clone. Curve is generated by varying the cutoff on ABIC in MQuad, VMR in mgatk, and MPR in
Monovar. Black circle and triangle represent the default thresholds used to classify informative variants for MQuad and mgatk respectively. The threshold
for Monovar is not shown because there is no default threshold suggested. d Cumulative distribution function of ABIC with cutoff shown, based on the
same data in b, ¢. Changes in area under PR curve (AUPRC) and area under ROC curve (AUROC) when varying (e) number of variants per clone, (f) allele
frequency of clonal variants, (g) clone sizes, (h) evolutionary models. Asterisk indicates the default parameter.

frequency: 0.44%; Supplementary Fig. la). We also observed
that variants propagated through a linear evolution model are
the hardest to detect for all tools, since the clone sizes are
usually skewed and most variants are shared between multiple
clones.

Tumor cell populations are accurately inferred from infor-
mative mtDNA variants detected by MQuad. Next, we applied
MQuad to a clear cell renal cell carcinoma (ccRCC) scRNA-seq
dataset?” that contained a mixture of with three distinct source
populations of cells from the same patient: patient-derived
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xenograft of the primary tumor (PDX pRCC); patient-derived
xenograft of metastatic tumor (PDX mRCC); and metastatic
tumor directly from the patient (Pt mRCC).

MQuad detected 146 informative mtDNA variants from the
dataset. We observed heterogeneity in allele frequencies of these
variants with some being highly clonal-specific, e.g., 7207G>A
was mostly specific to PDX pRCC alone and not found in the
metastatic tumor populations (Fig. 2a). We also observed a sharp
increase in the cumulative distribution of ABIC (Fig. 2b) which
was consistent with simulated data, further justifying the rationale
behind determining the cutoff based on a knee point.
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Fig. 2 Distinct tumor populations inferred from heterogenous mtDNA variants. a Allele frequency heatmap showing the top 20 informative mtDNA
SNVs detected by MQuad ranked from highest to lowest ABIC. Each row is a variant, each column is a cell. b Cumulative distribution function of ABIC with
cutoff shown. ¢ (Left) Clonal assignment with mtDNA variants detected with MQuad. Each row is a cell, each column is a clone, heatmap color indicates
assignment probability. (Right) Confusion matrix between predicted mitochondrial clones and source labels. Numbers represent cells assigned. d
Confusion matrix between predicted clones based on mgatk variants and source labels.

To further validate the accuracy of MQuad, we used the
detected variants as an input to vireoSNP for clonal assignment.
We found that most cells were confidently assigned to their
respective origins with high concordance (Fig. 2c). Our assign-
ment achieved 93% concordance with the source labels, which is
consistent with earlier reports on this dataset that cells from
different sources display distinct copy number variations?> and
nuclear SNVs2°, Therefore, it implies that genetic heterogeneity
in the mitochondrial genome can indeed be leveraged for
reconstruction of tumor clonal subpopulations. Admittedly, the
source labels here are only a coarse annotation of the tumor
clonality, as it is generally challenging to obtain a detailed
ground truth.

We also assigned clones based on variants detected by mgatk
(Supplementary Fig. 3a). While mgatk detected more than double
the number of variants (312 mtSNVs), the clonal assignment was
less concordant (64%) with the source labels (Fig. 2d). The two
metastatic tumor populations were less distinguishable from each
other, possibly due to a large number of false positive mtSNVs
that mgatk failed to filter out.

MQuad identifies mtDNA-based clonal structure that com-
plements clones inferred from nuclear SNVs. We further
applied MQuad to a recent scRNA-seq dataset that characterized

the somatic clones in healthy fibroblast cell lines. The fibroblast
cell line used, joxm, was from a white female aged 45-49. We
observed even in cells that were not known to be tumorigenic, a
substantial level of mitochondrial genetic heterogeneity could be
detected. MQuad detected 24 SNVs with which we assigned the
77 cells into 3 clones (Fig. 3a). Not only did we observe distinct
mutations in specific clones (e.g., 11196G>A, Fig. 3a and Sup-
plementary Fig. 4), we also identified random genetic drift events
that lead to different heteroplasmy levels between clones (e.g.,
2619A>T, Fig. 3a and Supplementary Fig. 4).

Comparing our clonal assignment to the clones inferred from
nuclear mutations, mtDNA clones showed partial but consistent
concordance with nuclear clones (Fig. 3b). In particular, nuclear
clone 3 was completely identical to mitochondrial clone 2, while
nuclear clones 1 and 2 were more ambiguous in terms of mtDNA.
Using our MQuad-identified mtDNA variants, our pipeline
discovered two subclones MT0 and MT1 within nuclear clone 1
that had distinct mtDNA mutation profiles (Fig. 3c). Next, we
tested if MTO and MT1 could indeed be biologically and clonally
distinct cell populations. Differential expression (DE) analysis
between cells from the two subclones of nuclear clone 1
(clonel.MTO & clonel.MT1) identified 847 DE genes (two-sided
edgeR QL F-test; FDR <0.1; Fig. 3d). A large number of highly
expressed DE genes in clonel. MTO were enriched for cell
proliferation27-28 (gene sets MYC targets, E2F targets, G2M
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clones from Cardelino. € (Top) Clonal tree inferred from nuclear SNVs alone. (Bottom) Clonal tree inferred from both nuclear and mtDNA SNVs. (Nu
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checkpoint, Reactive Oxygen Species (ROS) Pathway; two-sided
camera test; FDR <0.05; Fig. 3e). The original study which
published this dataset identified cells in clone 1 has a higher
proliferation rate than clone 2. Using MQuad, our results further
discovered that a specific subclone MTO within clone 1 is likely
the main contributor of the elevated proliferation rate.

MQuad identifies subclonal structure in a gastric cell line with
scDNA-seq. We further asked if mitochondrial mutations could
be used in conjunction with copy number variations (CNVs) to
infer clonal evolution in tumors. We first examined the applic-
ability of MQuad on a barcode-based single-cell whole genome
sequencing (scDNA-seq) dataset, e.g., 10x Genomics, as it had
attracted a lot of attention recently owing to its accuracy of
identifying CNVs and clonal structure despite its low
coverage??30. By re-analyzing a publicly available gastric cancer
cell line MKN-45 (scDNA-seq in 10x Genomics) with both cell-
ranger and our own B-allele frequency (BAF) clustering, we
identified two distinct CNV clones (Fig. 4a, Supplementary Fig. 3;
Methods), which was in agreement with the original analysis2.
Both clones shared multiple CNVs, e.g., copy loss on chr4p, but
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clone 1 represented a small population of cells (7%) having a
unique copy loss on chr4q.

By applying MQuad to MKN-45 scDNA-seq, we detected 24
clone discriminative mitochondrial mutations even with a
relatively low sequencing depth and were able to infer 5 clones
with vireoSNP (Fig. 4c). Comparing the clone assignment to
CNV profiles, we observed a high degree of overlap between the
CNV clone 1 and mitochondrial clone 0 (Fig. 4b, c). Based on the
raw allele frequencies of mtDNA variants (Fig. 4c), we discovered
the most distinctive clone of MTO0 is marked by the presence of
2393C>T and 8368G>A, which were largely absent in all other
clones (Fig. 4c). There are also a few common mutations (either
germline or early somatic mutations) with varying VAF detected
across clones (4184T>C, 16286C>T, 1841T>C, 15894A>G,
11166G>A, 14552G>A), showing the effect of random genetic
drift between clones. As there is no tailored method for linear tree
inference based on mtDNA variants, we used SCITE3!, a nuclear
SNV-based method, to construct a lineage tree using mtDNA
SNVs, then incorporated CNV information into the phylogeny
manually (Fig. 4d). It should be noted that SCITE only uses the
presence and absence of a mutation (mean AF > 0.01 for presence
here) as input. We reason that mtDNA SNVs have a higher
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variability than large-scale chromosome level aberrations, thus
providing a finer resolution on clones that are not easily
distinguishable with CNVs alone.

Next, we downsampled the data into various depths to quantify
the effect of sequencing depth on mtDNA variant calling and
clonal assignment (Fig. 4e). Compared to the full dataset, we
observed a linear drop in number of cells with assignable clones,
number of informative mtDNA detected, and clonal assignment
concordance as the number of reads per cell decreases. Although
MQuad and vireoSNP are robust against missing data, to
maximize the proportion of assignable cells, we recommend a
minimum of 3,000 mitochondrial reads per cell for applying
MQuad to perform adequately on scDNA-seq data, assuming that
the reads were distributed evenly along the mitochondrial genome.

6 NATURE COMMU

MQuad can detect mtDNA variants near captured sites in
UMI-based scRNA-seq. One of the most widely used platforms
for scRNA-seq is droplet-enabled UMI-based scRNA-seq, such as
those generated by the 10x Genomics platform. One of the main
limitations of using such data for variant calling is that the reads
are typically only enriched for the 3’ or 5’ end of a transcript, and
hence resulting in reads that have highly non-uniform coverage.
To test the performance of MQuad and the clonal assignment
pipeline, we evaluated its application on three 3’-biased scRNA-
seq datasets generated by the 10x Genomics platform from triple
negative breast cancer samples (TNBC1, TNBC2 and TNBC5)!4,
Unsurprisingly, even with a comparable number of mitochondrial
reads, 10x scRNA-seq performed significantly worse than other
sequencing protocols. Only a small number of mtDNA variants
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Fig. 5 Analysis of mtDNA variants on 10x scRNA-seq datasets. a Coverage comparison between 3 TNBC 10x scRNA-seq datasets and fibroblast Smart-
seq2 dataset. UMI-based scRNA-seq shows uneven distribution of reads across the mitochondrial genome while Smart-seq2 is generally more well-
covered. b Clonal assignment and mean allelic ratio of 1097 cells from TNBC1. ¢ Confusion matrix between CNV subclones and confidently assigned
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(Tumor & MTT1). Significant DE genes (Adjusted p-value < 0.01) highlighted in red. DE genes that are associated with breast cancer are labeled.

were found and the numbers of clones identified were small
across all datasets (Supplementary Table 1). Coverage analysis
showed this might be due to the highly uneven coverage of
mitochondrial reads in this 3’-biased 10x Genomics scRNA-seq
dataset (Fig. 5a). No or low number of cells can be confidently
assigned to a clone in TNBC2 and TNBCS5. Similarly, limited
power is observed in a 5'-biased 10x Genomics scRNA-seq data

(Supplementary Table 1), confirming the limited performance
due to the uneven read coverage.

Nonetheless, MQuad detected two informative variants in the
TNBC1 dataset and assigned 1097 cells (95.8%) with probability
>0.8 into two clones (Fig. 5b). In this case, the identified mtDNA
variants were located close to the 3’ end of some genes. We found
that the small mitochondrial clone 1 almost exclusively (51 out 54
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cells) came from the tumor portion and showed a significant
enrichment compared to mitochondrial clone 0 (p=6 x1072,
Fisher’s exact test; Fig. 5c). Moreover, mitochondrial clone 1
highly overlapped with CNV subclone B identified from the
original paper’® (Fig. 5d), indicating the presence of a small
subclone within a CNV clone. By examining the differentially
expressed genes between the two mtDNA clones, we identified 57
up-regulated genes in subclone 1 (Adjusted p-value < 0.01, Seurat
FindMarkers function with DESeq2 model; Fig. 5e), many of
which are known to be associated with breast cancer, ie,
SEC61G>? and RPL3933. High level of SETD5 expression is also
related to poor prognosis in breast cancer34, providing additional
evidence for the biological significance of mitochondrial clone 1.

Taken together, this analysis demonstrated the ability of
MQuad to identify informative mtDNA variants to identify
biologically meaningful cell subclonal structure, even in 3’ bias
10x Genomics data, suggesting that clonally informative variants
can be detected if they are close to the capture sites, which opens
up a wide possibility to re-analyze a large volume of UMI-based
scRNA-seq data in the public domain.

Moreover, the technical issue of low read count and uneven
coverage may be overcome by using emerging protocols for
mitochondrial sequence enrichment3>. As an indirect reference,
when applying MQuad to a barcode-based single-cell ATAC-seq
(mtscATAC) dataset from colorectal cancer!®, MQuad in general
returned strong evidence (high /AABIC) for clonal variants and
identified a set of clonal variants with high consistency to the
original report (Supplementary Fig. 7). Overall, it shows the need
for a highly effective computational method for detecting
mitochondrial variants like MQuad, ideally with optimized
sequencing coverage, and using such variants to detect the fine
clonal structure in the cell population.

Discussion

To date, mitochondrial sequences are often overlooked in single
cell sequencing data analysis. We demonstrate here a tailored
analytical suite that can harness these mitochondrial sequences to
discover clone-discriminative genetic variants using standard
single cell sequencing data. Without requiring additional mito-
chondrial enrichment steps, our pipeline is applicable to most
existing single-cell data with a sufficient sequencing depth and
even coverage (see Supplementary Table 1 for reference). This
means that cell lineage information can be discovered with vir-
tually no additional experimental cost. We make the MQuad
source code and tool publicly available, and the program is
designed to work seamlessly with other recently published tools,
cellsnp-lite?? and vireoSNP?4. Our analysis shows that leveraging
mtDNA mutations can decipher not only tumor clonal dynamics
but also resolve clonal substructure that may not be detectable
based on nuclear DNA alone.

The key strength of MQuad is that it adopts a model selection
approach in evaluating the informativeness of each variant, which
is more robust than considering the raw allele frequencies alone.
Especially in deeply sequenced data with a lot of read counts (e.g.,
Smart-seq2), this approach is more effective in reducing false
positives compared to existing methods. With the emergence of
massively parallel sequencing protocols that enriches mitochon-
drial reads, dealing with noise will be inevitable and MQuad
serves as a flexible option to filter for useful mtDNA variants.
Here we show that MQuad can be applied to sequencing data of
various nature and we anticipate that it can adapt well to future
sequencing technologies and datasets.

With the possibilities enabled by mtDNA lineage reconstruc-
tion, dealing with different types of genomic alterations occurring
in the same cell remains an open challenge and there is a high

demand for effective computational methods for this purpose. In
this study, we repeatedly observed partial co-occurrence between
mitochondrial mutations with other types of genomic alterations
such as CNVs and nuclear SNVs nuclear mutations, suggesting
the uniqueness of mtDNA variants in identifying subclones and
its role as an additional fingerprint of crucial mutation events.
With MQuad, it is now possible to take mtDNA variations into
account during retrospective lineage tracing, hence a more
sophisticated model for the integration of CNV, mtDNA and
nuclear SNVs will be highly beneficial for clonal analysis and
lineage reconstruction.

Additionally, other biological or technical factors should be
considered to further enhance the effectiveness of MQuad in
detecting clonally informed variants. For example, the strand
specific allele information, like the strand correlation metric
proposed in mgatk, may potentially filter out some low-quality
variants presumably caused by technical reasons, hence worth
further incorporation in a coherent way. Also, identifying variants
that may be caused by post-transcriptional RNA editing may
further enrich for variants arising from actual genetic variants or
RNA editing events that are indeed (sub)clone specific. However,
separating clone-specific RNA editing events and clonal genetic
mutations is highly challenging. We anticipate that systematic
characterization of RNA editing in a population scale can serve as
a blacklist when detecting clonal mutations.

To conclude, the methods presented here unlock the untapped
potential of existing single-cell sequencing data and provide an
effective approach in lineage reconstruction with mtDNA var-
iants alone or together with nuclear SNVs and/or CNVs. As new
sequencing technologies are evolving, MQuad opens up a para-
digm of analysis for a variety of single-cell sequencing datasets.

Methods
Variant detection pipeline. The tailored variant detection pipeline can be briefly
divided into 3 major steps:

Firstly, raw reads from BAM files are piled up using cellSNP-lite (v1.2.1)23. This
generates a SNP-by-cell matrix in the form of a VCF file or sparse matrices of each
cell’'s AD and DP at each variant position. The output includes every SNP found in
the mitochondrial genome, which contains a large amount of noise and
uninformative variants. MQuad (v0.1.6) takes this output and selects high quality
informative variants with a binomial mixture model (explained in the next section).
Lastly, vireoSNP (v0.5.3)24 uses variational inference to reconstruct clonal
populations based on the selected SNPs from MQuad.

MQuad model. MQuad assesses the heteroplasmy of mtDNA variants with a
binomial mixture model. Compared to the Gaussian mixture model, the binomial
mixture model considers the heteroplasmy as a proportional value and can directly
exploit the raw read counts. In this model, it is assumed that the number of reads
(or UMIs) for alternate allele (AD) for a SNP follow a binomial distribution with
total trials as the depth of both alleles (DP) and success rate depending on the
presence or absence of a variant:

Binom(AD|DP, 90) forT=0 (absence of variant)

. . ®
Binom(AD|DP, 0, ) forI = 1(presense of variant)

P(AD|DP,0,1) = {
Assuming there are M cells in the sample, and the proportion of cells carrying a
certain SNP is 7, the likelihood can be estimated by:

L(m, 0) = H}‘_‘i] {Binom(AD;|DP;, 6, + Binom(AD;|DP;, 6,)(1 — m)}  (2)

This likelihood of a 2-component binomial mixture model (M1) can be
maximized using an expectation-maximization algorithm (pseudo code in
Supplementary Algorithm 1) in order to get a maximum-likelihood estimation of n
and 0. The same is done on a 1-component model (MO; i.e., 1= 0) via direct
maximization. For each fitted model, the Bayesian Information Criterion (BIC) can
be calculated with the obtained likelihood (L) and the penalty on the number of
parameters (1 for MO versus 3 for M1) by

BIC = Mparameters x log(ncells) - 210g(1‘) (3)

Consequently, the difference in Bayesian Information Criterion (ABIC) between
models M1 and MO can be calculated by ABIC = BIC (M0)—BIC(M1). The ABIC
is further used as an indicator of clonal informativeness for each SNP with higher
ABIC being more informative.
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Finally, a ABIC cutoff for selection of SNPs is determined using the Kneedle
algorithm3%, from a Python package kneed (v0.7.0). Briefly, Kneedle defines the
curvature of any continuous function f as a function of its first and second
derivative:

'
5
+f")
The algorithm aims to locate the ‘knee’ point by finding the point where Ki(x) is
maximum. This corresponds to our aim to find a point where the ABIC sharply

increases to identify outlier SNPs which are most likely to be clonally
discriminative.

Ky = )

Data preprocessing. The scRNA-seq data (Kim and fibroblast datasets; both
Smart-seq2) was preprocessed largely based on the guidelines from GATK: (https://
gatk broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-processing-for-
variant-discovery). Specifically, FASTQ files were first aligned to the reference
genome downloaded from UCSC (hg19 for human, mm10 for mouse) using STAR
aligner (v2.7.2a)37 with default parameters. Then, duplicates were marked and
removed from the raw BAM files using MarkDuplicates from Picard (v2.18.9),
resulting in analysis-ready BAM files for variant detection.

For 10x data (MKN-45 scDNA-seq & TNBC scRNA-seq), analysis read BAM
files are directly downloaded and used. It should be noted that they are aligned to
the hg38 reference, different from our processed data.

The mtscATAC-seq data (CRC dataset) was preprocessed with CellRanger-
ATAC v1.2.0 with suggested modifications from the original paper. Briefly, NUMT
regions from the standard hgl9 reference were masked as suggested by Lareau
et al.16, followed by standard CellRanger-ATAC pipeline processing. We also
explicitly removed frequent false positive variants occurring in error prone regions
as described by Xu et al.?2, including rCRS 302-315, 513-525, 3105-3109.

Simulation. Mitochondria reads were synthesized in silico with NEAT-genReads
v3.038 and SomatoSim (v1.0.0)3°. The parameters for simulation were estimated
from a primary haematopoiesis scRNA-seq dataset analyzed by Lareau et al.le.
Briefly, pair-end aligned reads were generated for 90 simulated cells using NEAT.
The empirical fragment length distribution was computed from the aforemen-
tioned dataset using the compute_fraglen.py function from NEAT. To simulate the
uneven coverage observed in real datasets, positions with mean coverage higher
than median were compiled up into a BED file, which was used in the -tr option in
NEAT. These regions will have a coverage of 1000x while the off-target regions will
only have 2% of the target coverage.

The simulation was performed based on the standard hgl9 reference genome,
with a read length of 152 bp. The mutation rate and error rate were set to 0 in this
step as the simulator was not designed specifically for the mitochondrial genome
hence not very flexible in simulating noisy variant allele frequencies.

To solve this problem, SomatoSim was used to simulate background noise
instead. Firstly, we ran cellsnp-lite on the hematopoietic colony scRNA-seq dataset
(536 cells) to get a cell-by-SNP matrix of VAF. Then, we selected variants that are
1) deeply covered with average depth >50 and 2) heteroplasmic (VAF > 1%) in
more than 5% of the total cells, which totals up to around 3500 SNPs. Lastly, for
each selected SNP, we randomly sampled the VAF to 90 cells, resulting in a smaller
cell-by-SNP matrix that is used as simulation parameters.

For the simulation of clonal mutations, each clone has M informative variants
(M € {5, 10, 25, 50}). The allele frequency of the clone-specific variants is sampled
from a log-normal distribution of Lognormal(y, 0.005) (4 € {0.01, 0.05, 0.1}). The
clones are distributed in a ratio r (r € {1:1:1, 2:4:4, 2:2:6, 1:1:8}) and have a lineage
tree t (t € {linear’, ‘mixed’, ‘branched’}, Supplementary Fig. 1c). Each parameter
was varied to simulate different contexts (Fig. le-h). When varying parameters, all
other parameters were set to default (M = 10, 4 = 0.1, r = 1:1:1, t = ‘branched’).

Comparison with other tools. We compared MQuad with mgatk on the simulated
dataset with ground truth (results in Fig. 1b-h) and Kim dataset with tumor source
labels (Fig. 2). We ran mgatk (v0.6.2) with default settings on both datasets. For the
simulated dataset, we only varied the log;o(VMR) to call variants and obtained the
PR and ROC curves in Fig. 1b-h, while the strand information is not used, as it is
not supported by the simulator. On the Kim dataset, we used the suggested cutoffs
to call variants: log;o(VMR) > —2 and strand correlation coefficient >0.65, which
returns 312 variants.

For comparison with Monovar on the simulated dataset, we ran Monovar with
recommended parameters. As Monovar was not designed specifically to only detect
clonally informed variants, there is no direct metric that can be evaluated.
However, the MPR field describes the ‘Log Odds Ratio of maximum value of
probability of observing non-ref allele to the probability of observing zero non-ref
allele’, which is the most relevant parameter in Monovar’s output. PR and ROC
curves were then obtained by varying the MPR statistic.

Analysis of copy number variations on scDNA-seq data. For the MKN-45
scDNA-seq dataset, we first explored the copy number variation profile by Cell-
Ranger, a build-in software from 10x Genomics (Supplementary Fig. 3a). The
CellRanger calling result shows a potentially interesting clonal structure with a

unique small clone (node ID: 10050) carrying CN loss on chr4q, while a substantial
fraction of cells and genomic regions may suffer from high error rate due to the
high genomic variability in cancer cell line and the lack of allelic information.
Therefore, we first confirmed that there is a genuine CN loss on chr4q in this group
of cells by presenting its averaged B-allele frequency with comparison to the
remaining cells (Supplementary Fig. 3b). In order to identify a cleaner clone
assignment, we further used the read counts for both alleles on chr2 and chr4 to
cluster cells into two clones with a binomial mixture model implemented in Vir-
eoSNP (Fig. 4a; Supplementary Fig. 3c). We noticed that with such BAF infor-
mation, a two-cluster structure can be easily identified as suggested in the original
study??, which is also well concordant to the cellranger detected clusters (Sup-
plementary Fig. 3d).

In order to visualize smoothed BAFs in single-cells, we used a three-level
phasing strategy to aggregate multiple SNPs, as introduced in CHISEL3?. First,
allelic read counts were summed up for SNPs in a 50 Kb block by reference-based
phasing with Sanger Imputation server. Second, we combined 100 blocks into a
5Mb bin by a shared allelic ratio. Third, the B alleles in near bins were flipped
using a dynamic programming algorithm to achieve a minimal BAF discrepancy
with neighbor bins. It should be noted that procedures of the aggregation across
blocks (step 2) and allele flipping across bins (step 3) only contribute to the
visualization in Fig. 4a, but do not affect the clustering of cells into CNV clones as
they were directly based on the aggregated SNPs in a 50 Kb window from
reference-based phasing (step 1).

Gene expression analysis. Differential expression analysis on the fibroblast
dataset was performed using the quasi-likelihood F-test function from edgeR*0. To
test for statistically significant differences in gene expression between clonel.MTO
and clonel.MT1, we fit a generalized linear model for single-cell gene expression
with cellular detection rate, plate, and assigned mitochondrial clones as predictor
variables.

Gene set enrichment analysis was performed using the camera function from
limma*!#2. Using 50 Hallmark gene sets from Molecular Signatures Database
(MsigDB)*3, we tested for their enrichment using the log2-fold-change from the
previous edgeR model as input.

Both DE analysis and gene set enrichment steps were adjusted for multiple
testing by FDR estimation using independent hypothesis weighting from IHW*4.
The independent covariate used was average gene expression.

Differential expression analysis on the TNBCI1 dataset was performed using the
FindMarkers function from Seurat?> using the DESeq2 model#°.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets used are all publicly available, through the NCBI Gene Expression Omnibus
(GEO) portal or ArrayExpress database at EMBL-EBI, with accession numbers
GSE73121 (Kim dataset), GSE148673 (TNBC datasets), GSE148509 (CRC dataset), E-
MTAB-7167 (Fibroblast dataset).

MKN-45 scDNA-seq and the melanoma 5’ scRNA-seq datasets, in bam format, are
both downloaded from 10X Genomics website.

Code availability

MQuad is an open-source Python package available at https://github.com/single-cell-
genetics/MQuad. All the analysis notebooks and intermediate files for reproducing the
results are available on https://doi.org/10.5281/zenodo.6054476.

Received: 14 April 2021; Accepted: 14 February 2022;
Published online: 08 March 2022

References

1. Lihnemann, D. et al. Eleven grand challenges in single-cell data science.
Genome Biol. 21, 31 (2020).

2. Park, S. et al. Clonal dynamics in early human embryogenesis inferred from
somatic mutation. Nature 597, 393-397 (2021).

3. Coorens, T. H. H. et al. Extensive phylogenies of human development inferred
from somatic mutations. Nature 597, 387-392 (2021).

4. Wei, W, Gaffney, D. J. & Chinnery, P. F. Cell reprogramming shapes the
mitochondrial DNA landscape. Nat. Commun. 12, 5241 (2021).

5. Moore, L. et al. The mutational landscape of human somatic and germline
cells. Nature 597, 381-386 (2021).

6. Schwartz, R. & Schiffer, A. A. The evolution of tumour phylogenetics:
principles and practice. Nat. Rev. Genet. 18, 213-229 (2017).
Kim, C. et al. Chemoresistance evolution in triple-negative breast cancer
delineated by single-cell sequencing. Cell 173, 879-893.e13 (2018).

| (2022)13:1205 | https://doi.org/10.1038/s41467-022-28845-0 | www.nature.com/naturecommunications 9


https://gatk.broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-processing-for-variant-discovery
https://gatk.broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-processing-for-variant-discovery
https://gatk.broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-processing-for-variant-discovery
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73121
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148673
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148509
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7167/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7167/
https://github.com/single-cell-genetics/MQuad
https://github.com/single-cell-genetics/MQuad
https://doi.org/10.5281/zenodo.6054476
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Filbin, M. G. et al. Developmental and oncogenic programs in H3K27M
gliomas dissected by single-cell RNA-seq. Science 360, 331-335 (2018).
McCarthy, D. J. et al. Cardelino: computational integration of somatic clonal
substructure and single-cell transcriptomes. Nat. Methods 17, 414-421 (2020).
Campbell, K. R. et al. clonealign: statistical integration of independent single-cell
RNA and DNA sequencing data from human cancers. Genome Biol. 20, 54 (2019).
Acuna-Hidalgo, R., Veltman, J. A. & Hoischen, A. New insights into the
generation and role of de novo mutations in health and disease. Genome Biol.
17, 241 (2016).

Oota, S. Somatic mutations—Evolution within the individual. Methods 176,
91-98 (2020).

Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in
single cells. Nat. Methods 10, 1096-1098 (2013).

Gao, R. et al. Delineating copy number and clonal substructure in human
tumors from single-cell transcriptomes. Nat. Biotechnol. 39, 599-608 (2021).
Serin Harmanci, A., Harmanci, A. O. & Zhou, X. CaSpER identifies and
visualizes CNV events by integrative analysis of single-cell or bulk RNA-
sequencing data. Nat. Commun. 11, 89 (2020).

Lareau, C. A. et al. Massively parallel single-cell mitochondrial DNA
genotyping and chromatin profiling. Nat. Biotechnol. 39, 451-461 (2021).
Ludwig, L. S. et al. Lineage tracing in humans enabled by mitochondrial
mutations and single-cell genomics. Cell 176, 1325-1339.e22 (2019).

Velten, L. et al. Identification of leukemic and pre-leukemic stem cells by clonal
tracking from single-cell transcriptomics. Nat. Commun. 12, 1366 (2021).
Wallace, D. C. & Mitochondrial, D. N. A. sequence variation in human
evolution and disease. Proc. Natl. Acad. Sci. USA 91, 8739 (1994).

Zafar, H., Wang, Y., Nakhleh, L., Navin, N. & Chen, K. Monovar: single-
nucleotide variant detection in single cells. Nat. Methods 13, 505-507 (2016).
Hard, J. et al. Conbase: a software for unsupervised discovery of clonal somatic
mutations in single cells through read phasing. Genome Biol. 20, 68 (2019).
Xu, J. et al. Single-cell lineage tracing by endogenous mutations enriched in
transposase accessible mitochondrial DNA. Elife 8, e45105 (2019).

Huang, X. & Huang, Y. Cellsnp-lite: an efficient tool for genotyping single
cells, Bioinformatics 37, 4569-4571 (2021).

Huang, Y., McCarthy, D. J. & Stegle, O. Vireo: Bayesian demultiplexing of pooled
single-cell RNA-seq data without genotype reference. Genome Biol. 20, 273 (2019).
Kim, K.-T. et al. Application of single-cell RNA sequencing in optimizing a
combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome
Biol. 17, 80 (2016).

Poirion, O., Zhu, X., Ching, T. & Garmire, L. X. Using single nucleotide
variations in single-cell RNA-seq to identify subpopulations and genotype-
phenotype linkage. Nat. Commun. 9, 4892 (2018).

Schulze, A., Oshi, M., Endo, I. & Takabe, K. MYC targets scores are associated
with cancer aggressiveness and poor survival in ER-positive primary and
metastatic breast cancer. Int. J. Mol. Sci. 21, 8127 (2020).

Santos, M. et al. In vivo disruption of an Rb-E2F-Ezh2 signaling loop causes
bladder cancer. Cancer Res. 74, 6565-6577 (2014).

Andor, N. et al. Joint single cell DNA-seq and RNA-seq of gastric cancer cell
lines reveals rules of in vitro evolution. NAR Genom. Bioinform. 2, lqaa016
(2020).

Zaccaria, S. & Raphael, B. J. Characterizing the allele- and haplotype-specific
copy number landscape of cancer genomes at single-cell resolution with
CHISEL. Nat. Biotechnol. 39, 207-214 (2021).

Jahn, K., Kuipers, J. & Beerenwinkel, N. Tree inference for single-cell data.
Genome Biol. 17, 86 (2016).

Reis-Filho, J. S. et al. EGFR amplification and lack of activating mutations in
metaplastic breast carcinomas. J. Pathol. 209, 445-453 (2006).

Dave, B. et al. Role of RPL39 in metaplastic breast cancer. J. Natl. Cancer Inst.
109, djw292 (2017).

Liu, L., Kimball, S., Liu, H., Holowatyj, A. & Yang, Z.-Q. Genetic alterations of
histone lysine methyltransferases and their significance in breast cancer.
Oncotarget 6, 2466-2482 (2015).

Miller, T. E. et al. Mitochondrial variant enrichment from high-throughput
single-cell RNA-seq resolves clonal populations. Nat. Biotechnol. (2022).
Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a ‘Kneedle’ in a
haystack: detecting knee points in system behavior. In: 2011 31st International
Conference on Distributed Computing Systems Workshops (2011) https://
doi.org/10.1109/icdcsw.2011.20.

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29,
15-21 (2013).

Stephens, Z. D. et al. Simulating next-generation sequencing datasets from
empirical mutation and sequencing models. PLoS One 11, €0167047 (2016).

39. Hawari, M. A,, Hong, C. S. & Biesecker, L. G. SomatoSim: precision
simulation of somatic single nucleotide variants. BMC Bioinforma. 22, 109
(2021).

40. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139-140 (2010).

41. Smyth, G. K. Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol.
3, Article3 (2004).

42. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

43. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics
27, 1739-1740 (2011).

44. Ignatiadis, N., Klaus, B., Zaugg, J. B. & Huber, W. Data-driven hypothesis
weighting increases detection power in genome-scale multiple testing. Nat.
Methods 13, 577-580 (2016).

45. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177,
1888-1902.e21 (2019).

46. Love, M. L, Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

Acknowledgements

We thank Xianjie Huang for optimizing cellSNP-lite on genotyping mitoDNA variants
and preprocessing MKN-45 data, and Yin Hei Lam for reproducing CopyKat results on
TNBCI data.This work was supported in part by AIR@InnoHK administered by
Innovation and Technology Commission (J.H.), Collaborative Research Fund by the
Research Grants Council of Hong Kong (C7026-18G, J.H.) and startup funds from the
University of Hong Kong (Y.H.) and the Chinese University of Hong Kong (M.S.).

Author contributions

JH., Y.H., and M.S conceived and supervised the study. Y.H., J.H., A.K,, C.Q. designed
the statistical model. AK. and C.Q. implemented the software. A.K. performed all data
analysis with help from RH. AK,, Y.H,, and J.H. wrote the manuscript. All authors
provided feedback on and approved the paper.

Competing interests

The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541467-022-28845-0.

Correspondence and requests for materials should be addressed to Joshua W. K. Ho or
Yuanhua Huang.

Peer review information Nature Communications thanks Na Cai, Hamim Zafar and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons
BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

| (2022)13:1205 | https://doi.org/10.1038/s41467-022-28845-0 | www.nature.com/naturecommunications


https://doi.org/10.1109/icdcsw.2011.20
https://doi.org/10.1109/icdcsw.2011.20
https://doi.org/10.1038/s41467-022-28845-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	MQuad enables clonal substructure discovery using single cell mitochondrial variants
	Results
	MQuad is a robust statistical approach to identify informative mtDNA variants
	Tumor cell populations are accurately inferred from informative mtDNA variants detected by MQuad
	MQuad identifies mtDNA-based clonal structure that complements clones inferred from nuclear SNVs
	MQuad identifies subclonal structure in a gastric cell line with scDNA-seq
	MQuad can detect mtDNA variants near captured sites in UMI-based scRNA-seq

	Discussion
	Methods
	Variant detection pipeline
	MQuad model
	Data preprocessing
	Simulation
	Comparison with other tools
	Analysis of copy number variations on scDNA-seq data
	Gene expression analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




