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This paper describes the acquisition setup and development of a new gait database, MMUGait.This database consists of 82 subjects
walking under normal condition and 19 subjects walking with 11 covariate factors, which were captured under two views.This paper
also proposes a multiview model-based gait recognition system with joint detection approach that performs well under different
walking trajectories and covariate factors, which include self-occluded or external occluded silhouettes. In the proposed system,
the process begins by enhancing the human silhouette to remove the artifacts. Next, the width and height of the body are obtained.
Subsequently, the joint angular trajectories are determined once the body joints are automatically detected. Lastly, crotch height and
step-size of the walking subject are determined. The extracted features are smoothened by Gaussian filter to eliminate the effect of
outliers. The extracted features are normalized with linear scaling, which is followed by feature selection prior to the classification
process. The classification experiments carried out on MMUGait database were benchmarked against the SOTON Small DB from
University of Southampton. Results showed correct classification rate above 90% for all the databases. The proposed approach is
found to outperform other approaches on SOTON Small DB in most cases.

1. Introduction

Biometrics is a way to identify individuals through their
physical and behavioral characteristics such as fingerprint,
gait, face, iris, and spoken speech. These characteristics are
known as biometric identifiers that are distinctive and will
be attached to a person permanently. Gait is a biometric
modality that gained public recognition and is well accepted
as security assessment. This is mainly because the user does
not require any contact or intervention with the capturing
device. Furthermore, it is still capable of identifying people at
a distance even if other biometrics identifiers are intentionally
obscured (hand gloves to cover finger print andmask to cover
face).

The development of gait database has started since 1998
with the University of California San Diego (UCSD) gait
database [1] which consists of six subjects with a total of
42 outdoor walking sequences. In 2002, the University of
Southampton released the SOTON gait database [2] that
contains the LargeDBwith 115 subjects and the SmallDBwith

11 subjects involving 15 covariate factors. The HumanID Gait
Challenge [3] was released in 2005. It comprised 122 subjects
with five major covariate factors (surface, shoes, carrying,
camera angles, and time). In 2005, CASIA database B [4] was
publishedwith three covariate factors (bag, normal, and coat)
with 11 different view angles. In 2012, the Treadmill Dataset B
fromOU-ISIRGait Database [5] provided 64 subjects with 32
combinations of clothing variations while user was walking
on treadmill. However, Lee and Hidler [6] demonstrated that
there are differences in optical flow between subjects walking
on treadmill and solid ground. As such, this databasemay not
be suitable for gait recognition evaluation as it does not reflect
real world scenarios.

While many gait databases are available, we argue that all
of them have neglected one important challenge: none of the
male subjects are wearing long fabrics covering the legs. Most
of the databases contain male subjects that are only wearing
trousers. The closest breakthrough is the SOTON database,
where there are two female subjects (out of 115 subjects)
wearing long blouse and Indian traditional garment (“salwar
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kameez”). On the other hand, OU-ISIR Treadmill Database B
contains short skirt as a covariate factor for the participants.
However, the short skirt is only partially covering the legs
with the knees still clearly visible. In reality, males do wear
long fabrics such as “sarong” and “kain samping” for ethnic
Malays in South East Asia, long “dhoti” in Southern Asia, and
“kilt” in Scotland. Due to this reason, it motivates us to build
database with subjects wearing “sarong” and “kain samping”.

Our database consists of 82 subjects on normal condition
for reliable performance evaluation on the large population
and 19 subjects with 11 covariate factors as emphasis for
the evaluation on the exploratory factor analysis of gait
recognition. It contains side-view and oblique-view videos,
the extracted silhouette frames, subject still face images, and
ancillary data like subject information, cameras setup, and
floor measurements.

We also propose a multiview gait recognition system,
tested on this database, and benchmarked with the SOTON
Small DB. This system comprises database construction,
viewpoint normalization, gait feature extraction, feature pro-
cessing, and classification. In the next Section, we present
existing research works on gait recognition.

2. Related Work

Various research works have been conducted in gait recogni-
tion system.This section reviews the related literature on gait
features extraction approaches andmulti-view normalization
approaches.

2.1. Gait Features Extraction Review. Generally, the ap-
proaches on gait features extraction are divided into two
major groupings, which are model-based approaches and
model-free approaches. Model-based approaches [7, 8] nor-
mally imitate the human body structure as two dimensional
boxes. Then, it integrates with the knowledge of the body
shape and match as model components. The capability to
acquire the dynamic gait features from model parameters is
the main advantage of these approaches. It is competent to
liberate the background noise and is also able to avoid the bad
effects from the changes of the camera view-points or sub-
ject’s apparel. Conversely, it generates complex model during
the extraction process, which required high computational
power, massive storage space, and huge experimental cost.

On the other hand, model-free approaches [9–12] sim-
plify the entire human body to a concise representation using
silhouette or skeleton. The significant advantages of these
approaches are that they are related straightforward and only
require minimum memory usage with low computational
cost. Nevertheless, their performance is heavily defected by
the background noise and the variations of the subject’s
apparel.

In this paper, we employed model-based approach for
the extraction of gait features. The approach is based on
human body proportion [13], which is similar to the work
of Goffredo et al. [10] and Yoo and Nixon [12]. Compared to
their work, our approach is related more straightforward as it
does not involve the measurement of gait cycle for kinematic

parameter calculation. Moreover, manually labelling of the
model template is not required, as performed by Goffredo
et al.

2.2. Multiview Normalization Review. There are three major
types of approaches that solved the issues in the multiview
normalization, namely, view invariant gait feature, view
synthesis, and view transformation.

In the first approach [14–17], they are able to extract gait
features that are invariant to changes in walking trajectory
and camera view-point. However, these approaches can only
be applied to a few limited viewing angles and their feature
extraction processes can disrupted due to occlusion.

In the second approach [18, 19], they reconstruct gait
motion by 3D information from calibrated multiple view-
point cameras. They manage to generate precise synthetic
images, but it requires heavy computational resource and
complicated technical setup due to camera calibration.

In the third approach [20, 21], they reconstruct the gait
features into the same view by mapping the relation between
the gait features with the subject. However, these approaches
propagate numerous noises during the reconstruction pro-
cess, which degrades the recognition performance.

We employ perspective correction for view invariant gait
feature extraction, which is comparable to Jean et al. [15].
However, we do not extract the spatiotemporal trajectories
of body parts for gait modeling. We managed to mitigate the
problemswithmissing heads or feet in the silhouettes as faced
by Jean et al. In addition, our approach does not require the
detection of half gait cycle as proposed by in Jean et al. We
also do not attempt to detect each of the lower limbs. Thus,
it can handle occluded silhouette either from self-occlusion
or those occluded by apparels, which are normally disastrous
for other view invariant gait feature approaches.

Our approach is also free from view synthesizing and
camera calibration processes and is related more straightfor-
ward and faster than the view synthesis and view transforma-
tion approaches.

3. Methodology

According toMurray [22], it is not practical tomeasure pelvic
and thorax rotations. Furthermore, they were found to be
inconsistent after repeated tests. Thus, we only consider gait
features from the lower limbs. Nonetheless, our system does
not attempt to detect each of the lower limbs.Therefore, it can
handle occluded silhouette which may be either due to self-
occlusion or external occlusion, such as occlusion by subject’s
apparel (long blouses or baggy trousers) or load carrying.
These conditions are normally disastrous for model-free
approaches. It is also straightforward, faster, and simpler than
other model-free approaches.

In view of the fact that the static body parameters and the
dynamics of humanwalking stance are themain structures in
gait configuration [22], we present a model-based approach
to extract subject’s height, width, step-size, and crotch height
as the static features and compute joint angular trajectories
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Figure 1: Proposed processes flowchart.
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Figure 2: (a) The acquisition environment. (b) The recording layout.

as the dynamic features. Figure 1 illustrates the flow of the
processes.

3.1. Acquisition of the MMUGait Database. The MMUGait
database is part of the MMU GASPFA database [23]. It was
captured and recorded in the Set and Background Studio
located in the Faculty of Creative Multimedia, Multimedia
University. The acquisition was done over a period of four
days in December 2011 with involving 82 participants. Ethical
approval was obtained from the participants by signing

a standard university approval consent form prior to volun-
teering. The recording of MMUGait database was done in
an indoor environment with green backdrop and white solid
surface. Figure 2(a) shows the acquisition environment.

Two SONY HDR-XR160E full HD video camera
recorders (camcorders) were used during the filming. The
recorded videos are in MPEG Transport Stream (MTS)
format with resolution of 1920 (Height) × 1080 (Width)
pixels. The video stream was captured using progressive
scan with a frame rate of 50 frames per seconds (fps).
The camcorders captured the walking sequence from two
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different view angles, which were side-view (frontal parallel)
and 60∘ oblique-view.

The subjects walked back and forth on a track contin-
uously and captured in both directions. Both ends of the
walking track were the turning point that subjects must turn
around and repeat the walking sequence in another direction.
Figure 2(b) shows the recording layout.

There were 82 participants that took part in the recording
of the MMUGait database. They were from different nation-
alities, genders, and age groups. There were 67 subjects from
Malaysia, while the remaining 15 subjects came from six other
countries (theMiddle East, Central Asia, and Africa). For the
gender class, 15 subjects were female, while the remaining 67
were male. 71 subjects were aged between 15 and 25 years,
while the rest fell between the ages of 26–40 years.

There are two categories of database collected in this
phase.The first set (MMUGait LargeDB) contains 82 subjects
that walked for at least 20 sequences in both directions with
personal clothing (own shoes and own cloth). On the other
hand, the second set (MMUGait Covariate DB) contains
19 subjects that walked in both directions wearing different
types of clothes, shoes, and carrying various types of bags,
with varying walking speed. This set includes 11 covariant
factors, which are “sarong”, “kain samping”, personal clothing,
hand bag (held in hand), barrel bag (slung over shoulder),
barrel bag (carried by hand), rucksack, walking slowly,
walking quickly, walking in flip flops, and bare feet. In total,
there were approximately 110 sequences per subject.

To the best of our knowledge, this is the first paper that
introduces biometric gait recognition with Malays’ tradi-
tional costumes, which are common attire for ethnic Malays
in South East Asia, especially during Friday prayers and
religious festivals. In this case, we recorded subjects with
“kain samping” and “sarong” as covariate factors as changes
in apparel. We believe that it can act as a benchmark database
for performance evaluation by other gait recognition systems.

3.2. Data Processing. The original video format filmed was in
MPEG transport stream format (MTS) with 50 frames per
second (FPS). For further processing, all the recorded videos
were converted to Audio Video Interleave (AVI) format with
resolution of 1920 (High) ∗ 1080 (Width) pixels. After that,
the videos were extracted into individual frames in Joint
Photographic Experts Group (JPEG) format.

3.3. Silhouette Generation. To extract the human silhouette
from each extracted frame, background subtraction tech-
nique was employed. We have improved the conventional
background subtraction technique by summing up the gray
level results from (a) background image subtracted by
foreground image and (b) foreground image subtracted by
background image. This approach is able to amplify the
difference between the foreground and the background. As
a result, the foreground object is more distinctive.

Next, the pixels’ intensity was adjusted to increase the
contrast of the foreground object. The process was carried
out by obtaining optimal thresholding viaOtsu’smethod [24].
Once the threshold was found, it was used to rescale the gray

level values to new values such that values between the lowest
input value and the threshold were scaled to values between
0 and 1.

By applying the Otsu’s method [24] again, the gray
scale image was then converted to binary image using the
new threshold. In this case, if a pixel value was below the
threshold, it was set to zero; otherwise, it was set to one in
the binary image.

After that, the morphological operations with a 7 × 7
diamond shape structuring element are applied to enhance
the generated foreground object. Morphological opening was
applied to separate the shadow into isolated regions, while
morphological closing is used to close the small gaps in the
foreground object.

In some cases, noise still exists as pseudoobjects in the
image. Connected component labeling is applied to label all
regions within the image. Subsequently, those regions with
area smaller than 1500 pixels are removed. Figure 3 shows the
resulting images at different stages of silhouette generation.

The pseudocodes of the processes involved are described
below.

Definition of Notations

𝑝⃗ = (𝑥, 𝑦): running pixel;
𝐷 = {(𝑥, 𝑦) | 0 ≤ 𝑥 < 𝑁

𝑥
, 0 ≤ 𝑦 < 𝑁

𝑦
}: domain of

image;
𝐵(𝑥, 𝑦): background image;
𝐹(𝑥, 𝑦): foreground image;
Δ
1
(𝑥, 𝑦): foreground object with pixels of higher

intensity than background image;
Δ
2
(𝑥, 𝑦): foreground object with pixels of lower

intensity than background image;
Δ(𝑥, 𝑦): foreground object in gray scale;
T1, T2: thresholds generated from Otsu’s method;
Δ
󸀠

(𝑥, 𝑦): foreground object after contrast enhance-
ment;
𝐶(𝑥, 𝑦): binary image of foreground object;
𝐷
1
(𝑥, 𝑦): binary image after morphological opening

with structuring element S;
𝐷
2
(𝑥, 𝑦): binary image after morphological closing

with structuring element S;
𝐸(𝑥, 𝑦): labeled image after connected component
labeling;
𝐼(𝑥, 𝑦): labeled image after blobs removal;
trun(): truncate negative pixel values to zero;
rgb2gray(): convert RGB values to gray level values;
Ostu(): Ostu’s thresholding technique;
scale(): rescale the gray level values from 0 and T1 to
0 and 1, respectively;
concom(): connected component labeling;
blobremove(): remove blobs with size smaller than r;
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Figure 3: (a) Foreground image. (b) Color image of foreground subtracts background. (c) Color image of background subtracts foreground.
(d) Gray level image of (b). (e) Gray level of (c). (f) Addition of (d) and (e). (g) Foreground object after intensity adjustment. (h) Binary image
of foreground object. (i) Foreground object after morphological opening. (j) Extracted silhouette.

Pseudocode
∀𝑝⃗ ∈ 𝐷

Δ
1
(𝑝⃗) = trun (𝐹(𝑝⃗) − 𝐵(𝑝⃗))

Δ
2
(𝑝⃗) = trun (𝐵(𝑝⃗) − 𝐹(𝑝⃗))

Δ(𝑝⃗) = rgb2gray (Δ
1
(𝑝⃗)) + rgb2gray (Δ

2
(𝑝⃗))

T
1
= Ostu(Δ)

∀𝑝⃗ ∈ 𝐷

Δ
󸀠(𝑝⃗) = scale(Δ(𝑝⃗), 0, T

1
)

T
2
= Ostu (Δ󸀠)

∀𝑝⃗ ∈ 𝐷

𝐶 (𝑝⃗) = {

1, Δ
󸀠

(𝑝⃗) > 𝑇
2

0, Δ
󸀠

(𝑝⃗) ≤ 𝑇
2

(1)

𝐷
1
= (𝐶 ⊖ 𝑆) ⊕ 𝑆

𝐷
2
= (𝐷
1
⊕ 𝑆) ⊖ 𝑆

E = concom (𝐷
2
)

I = blobremove (𝐸, 𝑟).

3.4. View-Point Normalization. To normalize the oblique
walking sequence into the side-view plane, the perspective
correction technique is employed. First, all silhouettes in a
walking sequence are superimposed into a single image, as
shown in Figure 4(a).

Next, lines X and Y are drawn horizontally based on
the highest and lowest point among the silhouettes. As the
normal gait cycle is periodic, a sinusoidal line is formedwhen
the highest points of all silhouettes in a walking sequence are
connected. Line Z is then drawn by connecting the first peak
and the last peak of the sinusoidal line.

The perspective correction technique consists of two
stages: vertical and horizontal adjustments. For vertical
adjustment, each silhouette is vertically stretched from line Z
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Figure 4: (a) Superimposed silhouettes from one walking sequence. (b) Superimposed silhouettes after perspective correction.

(a) (b)

Figure 5: (a) Results without jagged edge exclusion. (b) Results with jagged edge exclusion.

towards line X. In addition, each silhouette is also vertically
stretched from the bottom towards line Y. Figure 4(b) shows
superimposed silhouettes after perspective correction.

3.5. Feature Extraction. Several processes were involved in
the extraction of the gait features from the human silhouette
images. The details of these processes are discussed in the
following subsections.

3.5.1. Enhancement of Silhouettes. Occasionally, the fore-
ground object segmentation does not work well due to
noise. As a result, the boundaries of the segmented human
silhouette are coarse with jagged edges. Sometime, spurious
regions may also present near the border of the human
silhouette or even in the background. If horizontal lines are
drawn across the human silhouette for automatic body joint
identification, the jagged edges and spurious regions will
hinder the process as they may be erroneously considered as
parts of the human silhouette.

To mitigate these problems, the width of the regions
crossed by the horizontal lines should be determined. To
determine the width of these regions, the distance between
the rising edge and falling edge of a region is determined.
If the width of a region is less than a threshold value, that
region is considered as invalid andwill be excluded during the
body joint identification process. In the proposed technique,
the threshold value has been empirically determined as five
percent of the human silhouette height. Figure 5 shows the
improvement on joint detection with jagged edge exclusion.
In Figure 5(a), there is a jagged edge at the left side of the back
knee.When the proposed body joint identification technique
draws a horizontal line across the human silhouette at knee
height, the horizontal line crosses the jagged edge as well
as both knees. The horizontal line is then scanned from left
to right and the middle points of the first two regions that
it crosses are identified as the center of the knees. In this
example, the jagged edge has been erroneously identified as
the center of a knee while the actual center of the knee at
the front leg has been completely ignored even though the
jagged edge is only a few pixels wide. By excluding the regions
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Figure 6:Theheight andwidth of a human silhouettewith the image
profile of horizontal line drawn through the hip.

narrower than the threshold value, the jagged edge has been
excluded from the body joint identification process and the
centers of both knees have been correctly identified as shown
in Figure 5(b).

3.5.2. Bounding Box Measurement. After that, the height (H)
and width (W) of the body are obtained from the bounding
box of the improved silhouette. Figure 6 shows the two
extracted gait features.

3.5.3. Hip Joint Estimation. By referring to a priori knowledge
of the body proportions [13], the vertical position of hip, knee,
and ankle are estimated as 0.48H, 0.285H, and 0.039H with
referring to the body height H. Once these are known, the
horizontal position of these body joints can be determined.
Figure 6 shows a horizontal dashed line that goes through
the hip with the resulting image profile shown below the
silhouette. The horizontal center position of the hip can be
found by determining the midpoint between the positive and
negative edge by applying the equation below:

𝑐pos = 𝑐pe +
𝑐ne − 𝑐pe

2

, (2)

where 𝑐pe is the horizontal position of the positive edge, 𝑐ne
is the horizontal position of the negative edge, and 𝑐pos is the
horizontal center position of the hip.

3.5.4. Knee and Ankle Joints Estimation for Nonoccluded
Silhouettes. To locate the center horizontal positions of the
knees, a horizontal line is outlined at knee height all the
way through the silhouette. The silhouette without self or
external occlusion, four edges can be found on the image
profile along this horizontal line, as indicated by two dots
beside each knee in Figure 7(a). The horizontal center knee
positions are discovered by computing the midpoint flanked
by two adjacent edges on each knee by the equations below:

𝑘fPos = 𝑘fPe +
𝑘fNe − 𝑘fPe

2

,

𝑘bPos = 𝑘bPe +
𝑘bNe − 𝑘bPe

2

,

(3)

where 𝑘fPos and 𝑘bPos are the horizontal center positions of
the front and back knee for normal silhouette, kfPe and kbPe
are the horizontal positions of the positive edge on the front
and back knee, and kfNe and kbNe are the horizontal positions
of the negative edge on the front and back knee.

To locate the horizontal center position of the ankles, the
same method is applied. If a horizontal line is outlined at
ankle height, four edges are found on the image profile along
the horizontal line on a normal silhouette, as illustrated in
Figure 7(b). As a result, the horizontal center ankle positions
will be detected by employing the subsequent equations

𝐴 fPos = 𝐴 fPe +
𝐴 fNe − 𝐴 fPe

2

,

𝐴bPos = 𝐴bPe +
𝐴bNe − 𝐴bPe

2

,

(4)

where 𝐴 fPos and 𝐴bPos are the horizontal center positions of
the front and back ankle for normal silhouette,𝐴 fPe and𝐴bPe
are the positive edge on the front and back ankle, and 𝐴 fNe
and 𝐴bNe are the negative edge on the front and back ankle.

3.5.5. Knee and Ankle Joints Estimation for Occluded Silhou-
ettes. For occluded silhouettes, the horizontal center knee
positions are located by determining the midpoint between
each edge with referring to the horizontal center position of
the hip (as only two edges can be found on the image profile),
as shown in Figure 7(c). Consider

𝑘fPos1 = 𝑘pe +
𝑐pos − 𝑘pe

2

,

𝑘bPos1 = 𝑐pos +
𝑘ne − 𝑐pos

2

,

(5)

where 𝑘fPos1 and 𝑘bPos1 are the horizontal center positions of
the front and back knee for occluded silhouette, 𝑐pos is the
horizontal center position of the hip, 𝑘pe is the horizontal
position of the positive edge, and 𝑘ne is the horizontal position
of the negative edge on the corresponding image profile.

Since there are only two edges on the image profile,
as highlighted in Figure 7(d), the horizontal center ankle
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Figure 7: (a) Knee positions on normal silhouette. (b) Ankle positions on normal silhouette. (c) Knee positions on self-occluded silhouette.
(d) Ankle positions on self-occluded silhouette.
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Figure 8: (a) Computation of joint angular trajectory. (b) Nine extracted gait features.

positions are found by determining the midpoint flanked by
both edges with employing the equations as

𝐴 fPos1 = 𝐴pe + 0.25 (𝐴ne − 𝐴pe) ,

𝐴bPos1 = 𝐴pe + 0.75 (𝐴ne − 𝐴pe) ,
(6)

where𝐴 fPos1 and𝐴bPos1 are the horizontal center positions of
the front and back ankle for occluded silhouette,𝐴pe and𝐴ne
are the horizontal positions of the positive and negative edge
on the image profile, and 0.25 and 0.75 are chosen to compute
the first quarter and third quarter points between these edges.
𝐶pos is not used in the formulation as it does not reflect the
middle point between 𝐴pe and 𝐴ne.

3.5.6. Joint Angular Trajectory, Step-Size, and Crotch Height
Calculation. Figure 8(a) illustrates in what manner the joint
angular trajectory is determined from two joints. The joint
angular trajectory (𝜃) can be determined by using the
following equation:

𝜙
1
= tan−1 (

𝑝2
𝑥
− 𝑝1
𝑥

𝑝2
𝑦
− 𝑝1
𝑦

) ,

𝜙
2
= tan−1 (

𝑝3
𝑥
− 𝑝1
𝑥

𝑝3
𝑦
− 𝑝1
𝑦

) , 𝜃 = 𝜙
1
+ 𝜙
2
,

(7)

where 𝑝1
𝑥
, 𝑝2
𝑥
, and 𝑝3

𝑥
are the 𝑥-coordinates of joint 𝑝1,

𝑝2, and 𝑝3, respectively, and 𝑝1
𝑦
, 𝑝2
𝑦
, and 𝑝3

𝑦
are the 𝑦-

coordinates of joint 𝑝1, 𝑝2, and 𝑝3, respectively.
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In our system, five joint angular trajectories have been
extracted, as there are the five main joints on the limbs.These
angular trajectories are hip angular trajectory (𝜃

1
), front knee

angular trajectory (𝜃
2
), back knee angular trajectory (𝜃

3
),

front ankle angular trajectory (𝜃
4
), and back ankle angular

trajectory (𝜃
5
).

The Euclidean distance between the ankles is used to
represent the subject’s step-size (S). Then, the Euclidean
distance between the ground and the subject’s crotch is being
calculated as crotch height (CH). If the crotch height is found
lower than the height of knee, we will assumed that it is equal
to zero, as the crotch is considered occluded. Figure 8(b)
shows a sample of a human silhouette with the extracted nine
gait features.

To construct the feature vector, maximum hip angular
trajectory (𝜃max

1

) was determined during a walking sequence.
When 𝜃max

1

was identified, the corresponding S,W, H, 𝜃
2
, 𝜃
3
,

𝜃
4
, 𝜃
5
, and CH were also determined. To better describe the

human gait, 24 features were used to construct the feature
vector as shown:

𝐹 = {𝜃
max
1

, 𝑆,𝑊,𝐻, 𝜃
2
, 𝜃
3
, 𝜃
4
, 𝜃
5
,CH, 𝐴𝑊, 𝐴𝐻,

𝐴
CH
, 𝐴
𝜃
1
, 𝐴
𝜃
2
, 𝐴
𝜃
3
, 𝐴
𝜃
4
, 𝐴
𝜃
5
, 𝐴
𝑆

,

𝑅
AH
, 𝑅

ACH
, 𝑅

AS
, 𝑅

CH
, 𝑅
𝐻

, 𝑅
𝑆

} ,

(8)

where 𝐴𝑊, 𝐴𝐻, 𝐴CH, 𝐴𝜃1 , 𝐴𝜃2 , 𝐴𝜃3 , 𝐴𝜃4 , 𝐴𝜃5 , and 𝐴𝑆 are the
average of the localmaxima detected for width, height, crotch
height, hip angular trajectory, front knee angular trajectory,
back knee angular trajectory, front ankle angular trajectory,
back ankle angular trajectory, and step-size, respectively;
𝑅
AH, 𝑅ACH, 𝑅AS, 𝑅CH, 𝑅𝐻, and 𝑅𝑆 are the ratio of 𝐴𝐻, 𝐴CH,

𝐴
𝑆, CH, H, and S toW, respectively.

3.6. Features of Smoothing and Normalization. As the pres-
ence of outliers in the extracted features would hinder
the classification process, Gaussian filter with sigma values
(𝜎) equal to 2.5 is applied to remove them. In order to
normalize the extracted features from various dimensions to
be independent and standardized, linear scaling technique
[25] has been applied to normalize each feature component
to the range between 0 and 1.

3.7. Features Selection. The performance of a recognition
system is determined by the effectiveness of the selected
features, which can maximize interclass variance. In other
contexts, the redundant and inappropriate features which
degrade the classification rate would be found and removed.

In the proposed system, Ranker algorithm proposed by
Hall et al. [26] is used to rank features by their individual
evaluations, which helps to identify those extracted features
that contribute positively in the recognition process. Based on
the scores obtained, all twenty-four features have exhibited
positive contribution. Thus, all of them are used in our
system. Figure 9 shows examples of successful joint detection
from self-occluded silhouettes and silhouettes with external
occlusion.

3.8. Classification Techniques. To study the performance of
our gait recognition system, four classification techniques
were applied to find the best correct classification rate and to
verify the consistency of the results. In our work, multiclass
Support Vector Machine (SVM), Back-propagation artificial
neural network (BPANN), Fuzzy k-nearest neighbor (Fuzzy
k-NN) with Euclidean distance metrics, and Linear Discrim-
inant Analysis (LDA) classifiers are employed.

For SVM, experiments were carried out to examine the
effects on kernel functions—Linear (Ln), Polynomial (Poly),
and Radial Basis Function (RBF). The kernel’s parameters
such as d (degree), 𝑔 (gamma), and r (coefficient) and
regularization parameter C were trained to find the best
correct classification rate. For Fuzzy k-NN, numerous num-
bers of neighbors k have been tested. For BPANN, various
numbers of hidden layers have been trained to find the best
classification rate.

As cross-validation procedure is essential to evaluate the
accuracy of the classification performance. We employed
tenfold cross-validation for this project, where the walking
sequences from the gait databases were randomly divided
into ten disjoint subsets, nine subsets used for analysis train-
ing and one subset used for validation. The cross-validation
process was iterated for 10 turns with features vectors of each
disjointed subset channeled into classifiers as the validation
test. Then, the single mean correct classification rate can be
obtained by averaging the cross-validation results.

The experiments were carried out on four classification
techniques with various optimization parameters that were
obtained during the training. Three quality measures were
used in the experiment: correct classification rate (CCR), true
positive rate (TPR), and false positive rate (FPR).

4. Experimental Results and Discussion

In order to evaluate the performance of the proposed gait
recognition system on the new database, numerous exper-
iments have been conducted. This section presents and
discusses the results of these experiments which were aimed
to assess the recognition rate of the proposed system with
respect to viewnormalization, large population, and covariate
factors.

Three databases were employed for performance eval-
uation; MMUGait Large DB, MMUGait Covariate DB and
one database from SOTON Small DB for comparison. In
the evaluation of each database, the analysis is performed
on walking sequences captured from side-view (Side), nor-
malized oblique-view (NorOb) and a combination of both
views (Com). All walking sequences from three databases
were used during the training and testing stages.

For group covariate factor analysis, thewalking sequences
were categorized into five groups: Group 1 (G1)—different
speeds; Group 2 (G2)—variety of shoes; Group 3 (G3)—
various objects carrying; Group 4 (G4)—various types of
apparel; Group 5 (G5)—personal clothing without carrying
any object.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Occluded human silhouettes with joints detection. (a) Wearing “kain samping”. (b) Wearing “sarong”. (c) Barrel bag slung over
shoulder. (d) Walking in bare feet. (e) Carrying rucksack. (f) Carrying barrel bag by hand.

4.1. Experimental Results of MMUGait Large DB. The per-
formance is evaluated on 80 subjects from MMUGait Large
DB. The side-view consists of 2961 walking sequences, the
normalized oblique-view consists of 2843 walking sequences
and the combination of both views will give a total of 5804
walking sequences. The overall CCR results are summarized
in Figure 10. The best overall performance came from SVM
RBF with CCRs of 95.4%, 91.6% and 93.3% for side-view,
normalized oblique-view and combination of both views,
respectively.

4.2. Experimental Results of MMUGait Covariate DB. The
performance is evaluated on 19 subjects from MMUGait
Covariate DB. The side-view consists of 3780 walking
sequences, normalized oblique-view consists of 3713 walking
sequences, and the combination of both views will give a
total of 7493 walking sequences. The overall CCR results are
summarized in Figure 11. In overall, the best performance
came from SVMRBF with CCRs of 96.0%, 93.6%, and 94.2%
for side-view, normalized oblique-view and, combination of
both views, respectively.

Spurred by the encouraging results, subsequent experi-
ments using SVMRBFwere conducted to evaluate the system
on various covariate factors. The overall CCRs for group and
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Figure 10: CCRs of MMUGait Large DB.

individual covariate factor are summarized in Figures 12 and
13, respectively.

4.3. Experimental Results of SOTON Small DB. The per-
formance is evaluated on the complete 11 subjects from
SOTON Small DB [2].The side-view consists of 3178 walking
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Figure 11: CCRs of MMUGait Covariate DB.
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Figure 12: CCRs of group covariate factors for MMUGait Covariate
DB.

sequences, normalized oblique-view consists of 3036 walking
sequences, and the combination of both views will give a
total of 6214 walking sequences. The overall CCR results are
summarized in Figure 14.The best overall performance came
from SVM RBF with CCRs of 96.0%, 92.5%, and 92.9% for
side-view, normalized oblique-view, and combination of both
views, respectively.

Motivated by the encouraging results, subsequent experi-
ments using SVMRBFwere conducted to evaluate the perfor-
mance on multiple covariate factors. The overall CCR results
for group and individual covariate factor are summarized in
Figures 15 and 16, respectively.

4.4. Results Discussion. In general, our gait recognition sys-
temmanaged to obtain high CCRs in all the experiments. All
the highest CCRs from each experiment are above 90%. The
TPRs obtained are identical to theCCRs.The systemachieved
low FPRs, which are in the range of 0.1% to 2.6%.

FromFigures 12 and 15, it can be observed that our system
is robust to covariant factors as it has resulted in high CCRs.
For that reason, we found that Group G1 generated high
CCR as the duration of the walking cycle was not included
as a feature. Similarly, the CCRs generated from group G2
and G3 were high as well. This showed that shoe and bags
did not affect the extracted feature. In contrast, group G4
generated lower CCRs; this was because of the crotch height
that was unidentified due to the occlusion by apparel. Group
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Figure 13: CCRs of individual covariate factor for MMUGait
Covariate DB.
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Figure 14: CCRs of SOTON Small DB.

G5 presented the best results as there was no covariate factor
involved.

From Figures 13 and 16, it can be observed that our
system is able to provide high CCRs even when the subjects
were wearing long fabrics or carrying objects. However, the
clothing factor (“sarong”) inMMUGait Covariate DB and the
objects carrying factor (carrying handbag) in SOTON Small
DB have resulted the lowest CCRs among other covariates
factors. This is mainly because it was not possible to measure
the crotch height of the subject due to the occlusion by
clothing and bag.

In general, SVM outperforms all the other three classi-
fication techniques. In particularly, the nonlinear SVM with
RBF or Poly kernel outperforms SVM with Ln kernel. As our
generated gait feature vectors are not linear, the kernel trick
in the non-linear SVM permits the algorithm to adapt the
maximum-margin hyperplane in a transformed feature space
[27]. As expected, the RBF kernel produces better results as
it normally reigned over Poly kernel [28]. Overall, nonlinear
SVM outperforms BPANN, as the BPANN suffers from the
existence of multiple local minimal solutions. However, the
solution of SVM is unique and global [29].
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Table 1: Comparison with other systems employing SOTON Small DB.

Bashir et al. [9] Bouchrika and Nixon [7] Pratheepan et al. [11] Our approach
CCR (%) 97.1 73.4 86.0 96.0
Number of subjects tested Eleven Ten Ten Eleven
Number of covariate factors tested Unspecified Twelve Four Fifteen
Number of walking sequences tested 373 440 180 3178
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Figure 15: CCRs of group covariate factors for SOTON Small DB.
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Figure 16: CCRs of individual covariate factor for SOTON Small
DB.

LDA performed poorer than the other three classification
techniques.Thismay be due to the reason that the hyperplane
computed by LDA is only optimal when the covariance
matrices for all of the classes are identical [30], whereas the
performance of Fuzzy k-NN was stable and it was the second
best among the four techniques.

To the best of our knowledge, no other researcher has
published results on oblique-view SOTON Small DB.We can
only compare finding on side-view SOTONSmall DB. Table 1
shows the comparison of our best experiment results (SVM
with RBF) with other gait recognition systems in detail.

From Table 1, the highest CCR (95.97%) obtained out-
performs the results obtained by Bouchrika and Nixon [7]
and Pratheepan et al. [11]. The poorer result by Bouchrika
and Nixon is due to the requirement to manually label model

template to describe joints’ motion. Conversely, our results
are better than Pratheepan et al., as we do not incorporate
the selection or estimation of gait cycle. Furthermore, we are
the only group that have tested the complete database with
11 subjects, 15 covariate factors, and 3178 walking sequences
comparedwith Bouchrika andNixon (10 subjects, 11 covariate
factors, and 440 walking sequences), Pratheepan et al. (10
subjects, 4 covariate factors, and 180 walking sequences),
and Bashir et al. (11 subjects, unknown number of covariate
factors, and 373 walking sequences).

Even though Bashir et al. [9] produced better results, it
is inappropriate to compare our results with them as they
have only tested about 10% of the full walking sequences and
the total numbers of the covariate factors being employed is
unclear.

5. Conclusion

We presented an automated multiview gait recognition sys-
tem by employing hybrid approach (model-free and model
based). It was tested on a new gait database, MMUGait
which consists of new variations in clothing. In the proposed
approach, the joint angular trajectories can be computed from
the detected body joints even on self-occluded or external
occluded silhouettes. Thus, it has shown to be more effective
than other approaches in related research.

In addition, the high CCRs and TPRs and low FPRs also
show that it is robust and can achieve good performance
either in gait databases with various covariate factors or
large population of subjects and multiple view angles. For
upcoming research, more gait databases will be tested by the
proposed approach to evaluate its performance.

The authors are planning to allow public access to the
MMUGait database in the near future. We believe that the
walking sequences with special apparels will be invaluable for
performance evaluation of other gait recognition systems.
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