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Abstract

Whole-genome sequence is potentially the richest source of genetic data for inferring ancestral demography. However,
full sequence also presents significant challenges to fully utilize such large data sets and to ensure that sequencing errors
do not introduce bias into the inferred demography. Using whole-genome sequence data from two Holstein cattle, we
demonstrate a new method to correct for bias caused by hidden errors and then infer stepwise changes in ancestral
demography up to present. There was a strong upward bias in estimates of recent effective population size (Ne) if the
correction method was not applied to the data, both for our method and the Li and Durbin (Inference of human
population history from individual whole-genome sequences. Nature 475:493–496) pairwise sequentially Markovian
coalescent method. To infer demography, we use an analytical predictor of multiloci linkage disequilibrium (LD)
based on a simple coalescent model that allows for changes in Ne. The LD statistic summarizes the distribution of
runs of homozygosity for any given demography. We infer a best fit demography as one that predicts a match with the
observed distribution of runs of homozygosity in the corrected sequence data. We use multiloci LD because it potentially
holds more information about ancestral demography than pairwise LD. The inferred demography indicates a strong
reduction in the Ne around 170,000 years ago, possibly related to the divergence of African and European Bos taurus
cattle. This is followed by a further reduction coinciding with the period of cattle domestication, with Ne of between 3,500
and 6,000. The most recent reduction of Ne to approximately 100 in the Holstein breed agrees well with estimates from
pedigrees. Our approach can be applied to whole-genome sequence from any diploid species and can be scaled up to use
sequence from multiple individuals.
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Introduction
In diploid populations, the strength and patterns of linkage
disequilibrium (LD) between loci are strongly influenced by
effective population size (Hill 1975). Consequently, the extent
of LD in a population can be used to estimate past effective
population size (Ne) (Hill 1981). Although knowledge of the
ancestral demography is of interest in itself, it is also of
importance, for example, when studying patterns of LD for
evidence of selection (Grossman et al. 2010). The null hypoth-
esis of no selection requires an accurate demographic model
because variation in Ne can result in LD patterns that mimic
selection (Pritchard and Przeworski 2001).

Although LD measured between pairs of loci, such as r2,
has been used to infer complex demography (Schaffner et al.

2005; Voight et al. 2005), multiloci measures of LD potentially
capture more population genetic information and therefore
have also been used to infer ancestral demography (Hayes
et al. 2003; Meuwissen and Goddard 2007; Lohmueller et al.
2009; MacLeod et al. 2009). LD arises as a result of individuals
in a finite population sharing chromosome segments in-
herited identical by descent (IBD) from a common ancestor.
Longer segments arise as a result of more recent coalescent
events while very short IBD segments are more likely to date
back to very distant coalescent events. Therefore, the pattern
of multiloci LD can be described by the distribution of the
lengths of chromosome segments that are IBD, which in turn
can be used to infer demography (Hayes et al. 2003).

In practice, if a pair of chromosome segments carry the
same alleles at all positions we observe a pairwise “run of
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homozygosity” (RoH), which is identical by state (IBS) but not
always entirely IBD from a single common ancestor because
recombination can be masked. Multiloci LD can therefore be
summarized by the observed distribution of lengths of pair-
wise RoH separated by heterozygous sites. MacLeod et al.
(2009) developed an analytical method to calculate the prob-
ability of observing pairwise RoH of n or more loci using
simplified coalescent theory, which accounts for stepwise
changes in Ne. They call this summary statistic “haplotype
homozygosity” or HHn and demonstrated that the analytical
method could be exploited to infer a demography that was
consistent with the observed distribution of RoH in empirical
single-nucleotide polymorphism (SNP) array data. This
method avoids the computational burden of Approximate
Bayesian Computing approaches that simulate many repli-
cates of genetic data (Beaumont et al. 2002). This study is the
first application of the MacLeod et al. (2009) method to
whole-genome sequence data.

The genome sequence of even a single individual in an
outbred population provides vast numbers of pairwise RoH
(up to millions), each with its own coalescent history, from
which we can summarize the genome wide pattern of multi-
loci LD. Until recently, demographic inference studies have
used either subsets of genome wide loci known to be poly-
morphic (such as SNP arrays) or polymorphic loci in samples
of relatively short resequenced genome segments (Gronau
et al. 2011). One previous study used individual whole-
genome sequences from several humans to reconstruct
demography, although they first condense nonoverlapping
windows of 100 bp into a single “locus” defined as homozy-
gous or heterozygous (Li and Durbin 2011). These authors
apply a pairwise sequentially Markovian coalescent (PSMC)
model that relies on the distribution of heterozygous sites
within an individual sequence to infer historical Ne (Li and
Durbin 2011). Their method appears to work well for human
ancestral demographic inference, although they found esti-
mates of human Ne in recent times were not reliable (from
~800 generations ago). We compare our inferred demogra-
phy with that from the PSMC model (Li and Durbin 2011).

Importantly, in this study we introduce a new method to
first correct for false-positive heterozygous errors in the
sequence prior to inferring demography. These errors have
a disproportionate impact on the longer RoH and even after
careful quality control, a low level of false positives remains in
sequence data. We demonstrate that even a low error rate
can cause a serious bias in estimates of more recent Ne

because the longer RoH that inform these Ne estimates are
those most likely to be broken up by the false positives. Our
results indicate that introducing the error correction method
for false positives also considerably improves the accuracy of
the PSMC estimates of recent Ne in cattle.

Using whole-genome sequence from two Holstein bulls,
we applied stringent filters to remove common sequencing
errors and then applied our correction method to account for
residual false-positive heterozygous errors. We then inferred a
stepwise pattern of changing ancestral Ne, which predicts a
distribution of RoH matching that observed in the corrected
sequence data. The sequenced bulls represent two key

ancestors in the Holstein breed (Larkin et al. 2012):
Walkway Chief Mark (“Mark”) and Pawnee Farm Arlinda
Chief (“Chief,” the sire of Mark). We inferred the stepwise
pattern of ancestral Ne using Mark’s sequence, and then
cross-validated the demographic model in Chief’s sequence
data. We also used simulated sequence data to further test
the methodology (supplementary information, Supplemen-
tary Material online).

Our method would be useful for a range of outbred diploid
species and can be readily scaled up to use sequence data
from multiple individuals, for example, to estimate the
change in Ne over time for wild animal populations.

Results
The results from the data analysis (fig. 1) are presented in
three sections: error estimation and correction, observed
summary statistics (HHn) calculated from RoH, and demo-
graphic inference.

Sequence Error Correction

The sequence of both bulls was independently subjected to
stringent filtering to reduce common sequencing errors,
referred to henceforth as “filtered sequence.” Residual error
rates in the filtered sequence were then calculated for each
bull: that is, remaining false-positive heterozygous SNP and
false-negative missed heterozygous SNP. The numbers of het-
erozygous SNP detected in the filtered sequence (table 1)
provided more than 1 million RoH from which to estimate
HHn in Mark. The proportion of missed heterozygous SNP
positions (false negatives), estimated by comparing sequence
positions matching independent 50,000 SNP array genotypes
(SNP50), is higher in Chief’s sequence compared with Mark’s
(table 1) due to the difference in average read depth (~7� for
Chief and ~13� for Mark). The false-negative rate was rela-
tively high because we used stringent filters to minimize false-
positive heterozygous SNP that can cause a serious bias in the
distribution of longer RoH. It was important to estimate the
false-negative rate because this also affects the observed dis-
tribution of RoH, and this was corrected for by scaling the
mutation rate (Materials and Methods).

The false-positive error rate in filtered sequence estimated
from comparison with the SNP50 genotypes is relatively low
for both bulls (table 1) and not very different to the potential
error rate of 0.1% in SNP50 data (http://res.illumina.com/
documents/products/datasheets/datasheet_bovine_snp5o.
pdf, last accessed July 23, 2013). Therefore, these estimates of
false-positive rate (table 1) may be inflated by the assumption
that SNP50 data is error free, and may also be imprecise be-
cause of the relatively low number of loci available for valida-
tion with SNP50 genotypes. We therefore computed a more
robust estimate of the false-positive error rate using observed
average sequence heterozygosity in regions matching long
RoH in the SNP50 data (>10 Mb) (i.e., long runs of adjacent
homozygous genotypes that were likely to be IBD regions). In
filtered sequence, we found an average of one heterozygous
sequence SNP per 55,118 bp in Mark and one per 87,464 bp in
Chief in regions corresponding to long SNP50 RoH. This was
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in stark contrast with the remainder of the genome which
had an average of one heterozygous SNP per 1,957 bp for
Mark and one per 3,214 bp for Chief. Therefore, matching
the long SNP50 RoH regions to filtered sequence provided
estimates of average residual false-positive error rate of
1.8� 10�5 in Mark and 1.1� 10�5 in Chief.

Our method of stochastically correcting for residual false-
positive errors remaining in filtered sequence (see Materials
and Methods) had a significant impact on restoring the
longer RoH and therefore moving the distribution of RoH
closer to the true distribution. Figure 2 illustrates how the

long RoH are much more likely to be disrupted by errors than
very short RoH, by comparing “corrected sequence” and fil-
tered sequence in a chromosome region with a long RoH
(~33 Mb) in Mark’s SNP50 data. In the corrected sequence,
several very long RoH are evident (fig. 2A) compared with
filtered sequence (fig. 2B), which displays >100 shorter
homozygous segments in this same region. In figure 2C, it is
clear that correction of the sequence data without controlling
for uniform distribution of false positives (random deletion of
SNP without using nonoverlapping windows) does not
uncover the long RoH. The correction method is not

I d d t SNP50 t i i di id lR f AGGTACCTTTAGCG Independent SNP50 genotypes: in same individuals A Whole genome sequence:  
alignment & SNP discovery , 
extract heterozygous SNP data (   ).

Reference …AGGTACCTTTAGCG…

B Apply optimal filters & estimate error rates: remove common heterozygous 
errors in SNP data, estimate proportion missing heterozygous SNP.

Validate sequence data & estimate error rates

…TTCAGCTAACTGTCGGCTATGCCG… 
…GTCAGCTAACTGTAGGCTATGCCG… Sequence 

T 
G

G 
G

A
ASNP chip

Validate filters: Cross check SNP50 genotypes & 
sequence SNPs. Compare v. long RoH in SNP50 data 
to seq. region (high probability homozygous in seq.)

C Correct sequence data for residual false positives: Calculate & correct for 
residual false heterozygous error rates, based on sequence heterozygosity in
regions matching long RoH in SNP50 data

G GAp

q g ( g p y yg q )regions matching long RoH in SNP50 data. 

Compute HH summary statistic in sequence data: filtered and corrected for Validate error correction: consistently restoringD Compute HHn summary statistic in sequence data: filtered and corrected for
errors.

y g
longer RoH for sequence regions that match SNP50 
long RoH.

E Infer demographic model: Use analytical HHn prediction to determine 
population parameters that best match the empirical HHn of corrected sequence 
data of one bull.

Validate demographic model: predict HHn in 
sequence of second animal. Simulate data with 
inferred demography and compare HHn in simulated 
vs. observed corrected seq. HHn

FIG. 1. The computational workflow first identified heterozygous positions within each genome sequence of two bulls (A). Heterozygous positions were
then validated across independent SNP50 genotypes (B). After filtering to remove heterozygous errors, the residual false-positive rate in sequence was
estimated and corrected for (C), and the summary LD statistic (HHn) was calculated (D). The ancestral demography was inferred using an analytical
model (E) and validated using the sequence of the second bull.

Table 1. SNP Discovered in Sequence Data and Independent SNP50 Genotypes for Mark and Chief after Stringent Filtering, and Estimation of
Sequence Errors by Comparison with SNP50.

SNP Description Mark Chief

Number of heterozygous SNP recovered in filtered sequence data 1,243,113 757,266

Number of heterozygous SNP in SNP50 data after strict quality control 12,627 12,509

Number of homozygous SNP in the SNP50 data after strict quality control 26,299 26,493

Number of matching heterozygous SNP positions: heterozygous in SNP50 and also in
filtered sequence

6,344 (50.2%) 3,839 (30.7%)

Number of false-negative errors: heterozygous in SNP50 but homozygous in filtered
sequence

6,283 (49.8%) 8,670 (69.3%)

Number of false-positive errors: homozygous in SNP50 but heterozygous in filtered
sequence

30 (7.7� 10�4 of all
38,926 positions
validated in SNP50)

24 (6.2� 10�4 of all
39,002 positions
validated in SNP50)
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therefore randomly creating long homozygous runs, but
rather is unmasking those that were previously hidden by a
low level of false-positive errors. In the regions flanking the
SNP50 RoH, there is little discernable difference in corrected
compared with filtered sequence because these very much
shorter RoH are rarely affected by the low error rates in fil-
tered sequence (fig. 2). Similar patterns as seen in figure 2
were observed across the genome for both bulls for all regions
with long RoH in SNP50 data (Mark’s chromosomes 1 to 10
shown in supplementary figs. S5, S6, and S7, Supplementary
Material online). After correction for false-positive errors
there remained 1,198,677 RoH for Mark and 728,059 for
Chief, referred to henceforth as “corrected sequence.”

Table 2 gives estimates of single base heterozygosity for
each bull. The observed single base heterozygosity rates are
very different because Chief was sequenced at about half the
read depth of Mark resulting in divergent false-negative error
rates. However, the estimates of true single base heterozygos-
ity were very similar for both bulls. This is important because
it lends credibility to the independently estimated error rates
and data correction for each bull. Estimated true heterozy-
gosity indicates that on average we would expect to find one

heterozygous base pair every 1,070 bp: that is, approximately
2.47 million heterozygous SNP across all autosomes assuming
a total length of 2,545,896,661 bp based on the Btau 4.0 ref-
erence genome (http://www.ncbi.nlm.nih.gov/assembly/
GCF_000003205.2/, last accessed July 23, 2013).

Distribution of RoH–HHn

The HHn summary statistic (MacLeod et al. 2009) is defined
here as the probability that any pair of homologous
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FIG. 2. The blue bar indicates the position of a long RoH in Mark’s independent SNP50 genotype data. Position and length of runs of homozygosity
(RoH) in Mark’s stochastically corrected sequence data (A) and filtered only data (B). In (C), the same proportion of heterozygous errors was randomly
deleted from the filtered data as for corrected data (A), but without enforcing uniform deletion from nonoverlapping windows. This demonstrates that
our correction method effectively unmasks long RoH in the sequence data (A). Very much shorter RoH are observed in the regions flanking the SNP50
RoH even in the corrected data, because these are rarely affected by the low level of residual errors.

Table 2. Observed Single Base Heterozygosity in Filtered Sequence,
Sequence Corrected for Residual False-Positive Errors, and Predicted
Estimates of True Single Base Heterozygosity for Sequence in Both
Bulls (i.e., with No False Negatives).

Mark Chief

Filtered sequence heterozygosity 4.883� 10�4 2.974� 10�4

Corrected sequence heterozygosity 4.708� 10�4 2.860� 10�4

Estimated true heterozygositya 9.371� 10�4 9.319� 10�4

aTrue heterozygosity was estimated from observed heterozygosity, given an auto-
some length of 2,545,896,661 bp and detection rate of true heterozygous SNP by
validation with the SNP50 genotypes (table 1).
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chromosomes are observed IBS for at least n base pairs to the
right of a site chosen uniformly at random. The HHn summary
statistic was independently estimated in each bull from the
observed RoH in filtered sequence and also in corrected se-
quence. To test the precision of our stochastic correction
method, used to restore the distribution of RoH closer to
the true distribution, we replicated the data correction 25
times for each bull sequence and calculated HHn in each
replicate. The coefficient of variation of HHn across the 25
replicated data sets increased slightly with the size of segment
(n), but was never greater than 0.3% in Chief, 0.2% in Mark.
Also, we used our goodness of fit measure, Q (adapted from
eq. 1 in Materials and Methods) to estimate the pairwise
deviation between Mark’s corrected replicates:

Q ¼
HHnreplicate i

� HHnreplicate j

� �2

HHnreplicate i

The maximum value of Q for between replicate HHn in cor-
rected sequence did not exceed 1� 10�4. This was important
because we also use the Q value for demographic inference to
measure of the goodness of fit between observed HHn and an
analytical prediction of HHn for a specified demography. Our
experience with real and simulated data indicated that an
appropriate threshold for Q was �� 0.001. The low variation
between replicates of stochastically corrected data demon-
strated that the correction method is robust and indicated
that a single stochastically corrected sequence would have
been adequate for our estimate of HHn. However, we used
the averaged HHn across replicates for our demographic
inference. The observed HHn for filtered and corrected
sequence in figure 3 demonstrates that although there was
only a very low level of residual false-positive heterozygous
errors in filtered sequence, these errors still create a significant
bias. False positives particularly affect the probability of
observing longer RoH (fig. 3) and therefore may bias the
estimates of more recent Ne. For example, the probability of
observing RoH of 200 kb or longer is approximately 10% in the
corrected data for both bulls but is only around 5% for the
filtered data. Lengths of more than 0.5 Mb are almost never
observed in the filtered data whereas after correction, there is
a 6% probability of observing them (fig. 3).

Demographic Inference

Our method of inferring stepwise Ne searches for a demo-
graphic model that analytically predicts an HHn in close con-
cordance with observed HHn for a range of segment sizes up
to 1 Mb, with “goodness of fit” Q (eq. 1, Materials and
Methods) assessed by a threshold parameter (�� 0.001).
The reliability of the HHn analytical predictions was demon-
strated by comparing these with empirical HHn in sequence
data simulated using our inferred demography (supplemen-
tary fig. S2, Supplementary Material online). Importantly, the
goodness of fit test (Q) between predicted and empirical HHn

in each of the simulated data sets also met our threshold
parameter (�� 0.001).

We used Mark’s corrected sequence to infer demography
and calculated the upper and lower range of Ne within a given

Phase (time period) that met our goodness of fit threshold
between predicted and observed HHn (fig. 4A). The upper
and lower limits for Ne were estimated while fixing the original
Ne estimate in all other time periods. This was considered a
reasonable approach because estimates of Ne in any given
time period are most dependent on the distribution of par-
ticular lengths of RoH. In several very short stepwise changes,
where Ne� number of generations for that time period, it
was only possible to give a lower limit but not an upper limit.
This occurs because generally LD patterns are not affected by
relatively brief surges in population size or bottlenecks that
occur over very brief time periods � Ne (Nordborg and
Tavare 2002). On reaching the best fit model in figure 4A,
we then adjusted two or more neighboring Phases of differing
Ne to a single Ne value, provided HHn remained within our
threshold goodness of fit. We then re-estimated the predicted
upper and lower Ne limits in this revised demography (fig. 4B).
This illustrates that it is difficult to determine exact time
boundaries for changes in Ne, although the overall demo-
graphic pattern remains similar in figure 4A and B.

The inferred demography found to closely predict the
observed HHn for Mark’s corrected data (fig. 4A) reduces
from the predefined large ancestral Ne (~62,000) to very
small (~90) in present day (“present” being 1978, Mark’s
birth year). We have converted cattle generations into years
before present using an average generation interval of 5 years:
a reasonable estimate based on average generation intervals
in modern cattle (Gutierrez et al. 2003; Mc Parland et al. 2007)
as well as likely reproductive behavior in their wild ancestors.
However, even if the estimated generation interval is
increased to 7 years, this would not much affect our conclu-
sions. Our results suggest that some 166,000 years ago (33,200
generations ago) there was a sharp reduction in Ne to ~17,000
and this remained stable until around 12,000 years ago. Over
the following 3,000 years there was a further steep decline in
Ne to ~3,500. From that time the reduction in Ne became
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FIG. 3. The observed pattern of HHn in the filtered and corrected se-
quence for Mark and Chief indicates that even when a low level of false-
positive heterozygous errors remains in the sequence (filtered data), the
observed pattern of HHn is biased downwards, particularly in seg-
ments> 10 kb. The HHn curves differ between bulls because Chief
was sequenced at half the read depth of Mark, and the observed cor-
rected data does not account for missed heterozygous SNP
(false negatives).
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more gradual but some 120 years ago the Ne dropped rapidly
again from around 1,500 to the current estimate of around 90.

In figure 5, we contrast the inferred demography using
corrected sequence with that inferred from filtered sequence
(i.e., not corrected for residual false positives), and also com-
pare our results with those using the PSMC demographic
inference method of Li and Durbin (2011). Parameter settings
used for the PSMC method are given in the supplementary
information, section 7, Supplementary Material online. Clearly
the residual false positives in the filtered data have a major
effect on estimates of Ne in recent time for both methods: in
contrast to the sharp reduction in recent Ne, inferred from
corrected data, both models infer a rapid expansion around
1,000 years ago to a present day Ne of around 20,000. Notably,
the PSMC bootstrapping method (Li and Durbin 2011) gave a
highly variable Ne estimate across the most recent 1,000 years

(200 generations) with Mark’s filtered sequence (supplemen-
tary fig. S10, Supplementary Material online). However, after
applying our correction method to Mark’s sequence, the
PSMC estimate was much less variable in the most recent
time period (supplementary fig. S11, Supplementary Material
online). The PSMC inferred demography using corrected se-
quence was similar to our result (fig. 5), except in the most
recent 1,000 years where PSMC estimates Ne& 1,100.
However, in the PSMC method the final 1,000 years was
modeled as a single fixed time period so there was no
scope for more recent changes in Ne. Li and Durbin (2011)
found that PSMC estimates of Ne in humans were not reliable
more ancestrally than 120,000 generations ago and our esti-
mates of Ne are similar at this time point (~600,000 years ago)
but then diverge (fig. 5). We constrained our most ancestral
estimate of Ne to a time period of approximately 1 million
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generations ago because the limited proportion of extremely
short RoH limits the reliability of more ancestral Ne estimates.

A cross-validation of the inferred demography from Mark’s
corrected sequence was provided by using the inferred Ne

parameters in the analytical model to predict the expected
pattern of HHn in Chief’s corrected data, but re-scaling
mutation rate to match Chief’s observed single base hetero-
zygosity (table 2). The recombination rate (r) was fixed
at 1� 10�8 between base pairs for both bulls, while rescaled
mutation rates per site per generation were: �R = 4.1� 10�9

in Mark and �R = 2.15� 10�9. These mutation rates were
lower than the assumed true mutation rate of 1� 10�8

(Kumar and Subramanian 2002; Roach et al. 2010;
Campbell et al. 2012) because they are scaled to account
for the false-negative error rates in the sequence. The predic-
tion of Chief’s HHn using Mark’s inferred demography (fig. 6),
deviated by Q< 0.001 when compared with observed HHn

across the range of segment sizes up to 0.01 Morgan. The
pattern of observed and predicted HHn for each bull in
figure 6 demonstrates the closeness of fit for the inferred
demographic model HHn.

We also used Chief’s corrected sequence to independently
infer a demography, fixing the most ancestral Ne to 62,000
(fig. 7). The inferred demography, although broadly similar to
Mark’s, shows departures in the estimated time boundaries
for changes in Ne and does not always fall within the upper
and lower limits of Ne estimated with Mark’s data. However,
Chief’s sequence has a very high false-negative rate (~70%,
due to lower coverage than Mark) and we would therefore
expect that this inferred demography is less accurate than
Mark’s. With such a high false-negative error rate the large
proportion of missing heterozygous positions is likely to have
a more variable effect on the distribution of observed RoH.
We further explored the accuracy of the method to infer
demography using simulated data with added false-negative

errors (supplementary information, section 5, Supplementary
Material online).

Finally, we accounted for the false-negative error rate in
corrected sequence by scaling up the mutation rate. We
calibrated the analytical model to predict a match with the
estimated true single base heterozygosity, resulting in a
mutation rate for error free sequence data of �= 9.4� 10�9

per base per generation (close to our assumed true mutation
rate: 1� 10�8). Although this correction has no influence on
the estimates of Ne, it is critical because it provides the final
mutation rate required to produce a simulation of error free
sequence data. Supplementary figure S1, Supplementary
Material online, compares the predicted HHn for Mark’s
corrected sequence with the predicted true HHn if all
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FIG. 5. Inferred demography for Mark’s corrected sequence using our
method (bold green line) and the Li and Durbin (2011) PSMC method
(bold pink line). Also shown is the inferred demography from Mark’s
filtered sequence (with residual false-positive errors) using both our
method (blue) and the PSMC method (maroon). There is a sharp
contrast is the recent time Ne estimate between corrected and filtered
sequence because of bias due to false-positive errors.
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FIG. 7. Inferred ancestral demography from Chief’s corrected sequence
(black line) compared with the demography inferred using Mark’s
corrected sequence (green line). Also shown are Mark’s upper (red)
and lower (blue) limits for predicted Ne that met our goodness of fit
threshold (�� 0.001).
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heterozygous SNP had been detected, given our
inferred demography. The predicted true HHn curve for
Chief is the same as for Mark (not shown) because the esti-
mated true heterozygosity for each bull differs by only
5� 10�6 (table 2).

Discussion
In this study, we use whole-genome sequence to infer a step-
wise demographic model by matching an empirical and
analytically predicted summary statistic of the RoH distribu-
tion (HHn). Importantly, our study shows that even a low level
of residual errors in sequence data (after stringent filtering)
can lead to a considerable bias in estimates of the more recent
Ne. We therefore developed a simple but robust method to
correct for false-positive heterozygous errors. Furthermore,
we demonstrate that this error correction method consider-
ably improved the accuracy of the Li and Durbin (2011) PSMC
method of demographic inference.

Comparison with Previous Methods

Two recent studies have estimated ancestral patterns of
demography using genome sequence from several humans
with diverse ethnic backgrounds (Gronau et al. 2011; Li and
Durbin 2011). Gronau et al. (2011) modified the Rannala and
Yang (2003) method which implements a Bayesian Markov
chain Monte Carlo (MCMC) approach, sampling from many
possible genealogies to determine the likelihood that a given
set of demographic parameters could have given rise to the
observed properties of the sequence data. However, because
this approach is too computationally demanding to imple-
ment with entire genome sequence, the authors selected
37,500 “neutral loci” from the sequence data, each of 1 kb
length (~1.5% of each genome). They exploit the pattern of
mutations to infer demographic history under the assump-
tion that the “neutral loci” are in linkage equilibrium and that
intra-locus recombination can be ignored. Importantly there-
fore, their method is not able to capture additional demo-
graphic information from LD and they emphasize that their
primary focus is to estimate divergence times and migration
rates between diverse human populations. Their model only
allows for changes in Ne at the time of divergence, but
otherwise Ne remains constant.

Li and Durbin (2011) inferred ancestral demography from
sequence by assessing the distribution of heterozygosity along
the genome sequence of a single individual. Using a hidden
Markov model, they infer time to most recent common
ancestor and use the distribution of coalescent times to esti-
mate a stepwise demographic pattern (PSMC). This shares
some similarities with our approach, however they first con-
dense the sequence data by redefining nonoverlapping win-
dows of 100 bp as a “single locus” being either heterozygous
or homozygous. We use all heterozygous sites in our observed
sequence to measure RoH so that no data are “lost.” The Li
and Durbin binning of 100 bp into a single locus may incur
some loss of data where there are stretches of very high
heterozygosity because these are potentially a result of very
distant ancestral coalescent events. Generally their Ne

estimates for human data showed reasonable accuracy be-
tween 800 and 120,000 generations ago but were unreliable
for more distant or more recent time periods. Recent Ne in
human populations may be more difficult to reliably estimate
due to the expanding Ne resulting in relatively few recent
coalescent events present in the sequence (Li and Durbin
2011). Our relatively narrow estimates for recent time Ne in
Holstein cattle were potentially aided by the rapidly reducing
Ne in Holsteins resulting in many more recent coalescent
events compared with human populations.

Li and Durbin (2011) do not correct their sequence data
for residual false-positive errors, although using simulations
they show that these errors result in an upward bias in their
more recent Ne estimates. Importantly, we confirm that our
method of correcting for residual false positives had a strong
impact on improving the precision of the PSMC method to
estimate recent time Ne (supplementary information and figs.
S10 and S11, Supplementary Material online). There was rea-
sonable agreement between the inferred bovine demography
using PSMC and our method between 200 and 120,000 gen-
erations ago. However, using simulated data we show that
time boundaries for significant changes in Ne are not very
precise with either our method or PSMC (supplementary
information, section 5, and fig. S4A and B, Supplementary
Material online). Our method can also be extended to esti-
mate population divergence times in a similar way as the Li
and Durbin (2011) approach, by combining data from male X
chromosomes of two individuals from different populations.
At the time of divergence, we would also expect to find a
sudden increase in the estimated Ne, therefore we believe that
it would be important to first correct for false positives.

We believe that a strength of our approach is the modeling
of multiloci LD across a wide range of segment sizes, rather
than pairwise LD. Schaffner et al. (2005) calibrated a human
demographic model to match pairwise LD and empirical
allele frequencies for SNP across a wide range of genomic
segments. Recently, Pool et al. (2010) used this human de-
mography to simulate data and compared the distribution of
long RoH in simulated data with empirical HapMap data.
They found that the simulations considerably underestimated
the proportion of longer RoH observed in empirical human
data. Pool et al. (2010) argue that more detailed population
genetic information for recent times may be gleaned by
considering patterns of multiloci LD. Hayes et al. (2003)
demonstrated that their multiloci measure of LD could be
used for estimating past Ne, and had a lower coefficient of
variation compared with the pairwise r2 LD measure.
However, their methodology is computationally more de-
manding than ours and their analytical model does not in-
clude mutation.

Correcting for Errors and Potential Biases

Our results demonstrate the importance of correcting for
even very low levels of false-positive errors. This is likely to
be most important in species where there have been recent
sharp reductions in Ne such as cattle or substantial recent
bottlenecks. We estimated error rates and corrected the
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sequence data of each bull independently, allowing us to test
the effectiveness of our stochastic false-positive error correc-
tion, as well as our demographic model. Although read depth
in Chief was low (~7�) and approximately half that in Mark,
our inferred demography from Mark’s HHn predicted a close
match with Chief’s observed corrected HHn.

When we tested our false-positive correction method in
simulated sequence data, the true distribution of RoH was
not completely restored (supplementary information, section
6, and fig. S8, Supplementary Material online). In contrast,
error correction in Mark’s data appears to restore the
length of RoH closer to the true length (assuming true
length = SNP50 RoH) than for simulated data (supplementary
information, section 6, Supplementary Material online). We
believe that our correction method worked better in real
sequence data because rather than a very uniform spread
of errors, there was some marked clustering of heterozygous
SNP in small subregions within several sequence regions that
matched a long SNP50 RoH. These clusters of heterozygotes
may have arisen for several reasons: they may be real hetero-
zygotes or false positives due to mapping errors of, for exam-
ple, segmental duplications (SD; supplementary figs. S5 and
S7, Supplementary Material online). If some clusters of het-
erozygosity were true heterozygotes the residual false-positive
error rate may have been slightly overestimated, and this
could have resulted in some RoH lengths being overesti-
mated. Although this would not have had a major impact
on the distribution of the longer RoH in our data, it may have
resulted in a small downward bias in more recent Ne esti-
mates. Conversely, if error rates were correctly estimated but
we have only partially restored the true distribution of RoH to
that of error free sequence, then our more recent Ne estimates
will tend to have an upward bias.

Although we found some evidence of clusters of hetero-
zygotes in SD> 1 kb regions (SD as identified by Liu et al.
2009), the filtering of sequence at least partially addressed
likely errors in more highly repeated SD regions by excluding
SNP with excessively high coverage. This removed 43% (Mark)
and 37% (Chief) of heterozygous SNP within SD> 1 kb.
Furthermore, these regions appear to only account for
approximately 3% of the bovine genome (Liu et al. 2009),
so overall these errors are unlikely to have had a very signif-
icant impact on our estimates of Ne.

In studies with larger SNP arrays, higher coverage and/or
more individuals sequenced, it is possible to use more sophis-
ticated methods to minimize false-positive heterozygous
errors but an estimate of residual errors would still be re-
quired. A range of error detection strategies (such as machine
learning and hidden Markov models) may be applied depend-
ing on the data available (Lynch 2008; Hoberman et al. 2009).
Validation with individual SNP on commercial arrays should
be used with caution because these SNP are generally chosen
as reliably “well behaved” and may therefore result in a down-
ward bias in estimated false-positive rates, because they are
also less likely to produce errors in sequence data (due to
other variants in close proximity for example).

In theory, false negatives (missing heterozygotes) should
not affect the demographic estimates except as a timescale

effect, so can be corrected for by scaling the mutation rate
(Li and Durbin 2011). To test the theory, we simulated se-
quence data with 50% false-positive errors and then used this
data to infer the demography. Having inferred the demo-
graphic model from simulated data with 50% false-negative
errors, we were then able to analytically predict a close match
to observed HHn in error-free simulated sequence by scaling
up the mutation rate (supplementary information, section 5,
Supplementary Material online). However, the higher the
false-negative error rate in sequence the more difficult it
will be to adequately interpret and account for the effect of
large amounts of missing heterozygous data. Although the
independently inferred demography using Chief’s sequence
with 70% false-negative error rate was similar to Mark’s, we
advise caution in using sequence data with any more than
50% false negatives.

Our analytical method of predicting HHn and inferring
demography assumes a known and constant genome wide
recombination and mutation rate. If our rescaled average
mutation rate is lower or higher than the true value, this
could result in some timescale changes but would still be
expected to predict a pattern of demography reducing in
size to present day (supplementary fig. S3, Supplementary
Material online). Variable recombination rates due to hot-
spots could arguably increase the proportion of some lengths
of RoH, resulting in more variable estimates of Ne across time.
Evidence to date indicates that although hotspots occur more
in intergenic regions, their density and intensity varies across
the genome and they appear to be evolving quite rapidly
(International HapMap Consortium 2007). Therefore, overall
we expect variable recombination rate to have a minimal
impact on the overall demographic model, because we are
using whole-genome sequence and a summary statistic of LD.
We suggest a similar argument holds for variable mutation
rates across the genome, but this could be further tested
through simulations.

A limitation of our study is that we used data from two
bulls only, one for inference and one for validation. Our esti-
mate of more ancestral demography is unlikely to be affected
because there are hundreds of thousands of small homozy-
gous segments in the sequence of these animals that are
inherited independently from much more distant ancestors.
Our estimates of very recent effective population size (Ne)
could be biased because, by chance, these bulls could be more
or less inbred than other cattle of this breed. Very long RoH
arise from one or a combination of; small recent Ne, inbreed-
ing and recent intense selection. However, both bulls have
made a major contribution to the North American Holstein
population so should be representative of the current
population (Young and Seykora 1996). Furthermore, our
recent time Ne estimate is close to that expected from
major pedigree analysis of the Holstein breed (Weigel 2001;
Stachowicz et al. 2011). If multiple genome sequences are
available for a population (with the same coverage and
false-negative rates), then a combined estimate of the distri-
bution of RoH would be preferable to improve the recent
time Ne estimates.
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Inferred Bovine Demography

From approximately 1,500 generations ago to present, our
predicted demography broadly follows a similar pattern of
decreasing Ne found in several other studies based on pairwise
or multiloci LD in marker data (Hayes et al. 2003; Gautier et al.
2007; Kim and Kirkpatrick 2009; MacLeod et al. 2009; Villa-
Angulo et al. 2009). However, our full sequence data should
provide better estimates of LD across very short segments
compared with the less dense marker data used in these
previous studies. This should allow more certainty of param-
eter estimates in the more distant past because the very short
homozygous segments trace back to very distant ancestors.
MacLeod et al. (2009) used RoH in SNP50 data to estimate
bovine demography and found very low sensitivity for esti-
mates of Ne beyond 3,600 years ago (720 generations), be-
cause their data contained no SNP in very close proximity.

We inferred a sharp reduction in Ne approximately 170,000
years ago, possibly marking the period of divergence between
African and European Bos taurus cattle estimated to have
taken place between 26,000 and 250,000 years ago (Bradley
et al. 1996; MacHugh et al. 1997; Troy et al. 2001).
Alternatively, it may be linked to the divergence between B.
indicus and B. taurus cattle estimated to have occurred be-
tween 100,000 and 500,000 years ago (Ritz et al. 2000; Ho et al.
2008; Murray et al. 2010). To test if this was simply a reflection
of our most ancestral Ne being over-estimated, we also
attempted to infer a bovine demography beginning with a
fixed most ancestral Ne of 15,000, rather than 62,000.
However, the demography could not be inferred without
the estimated true mutation rate rising to above 5� 10�8,
which is most unlikely.

In figure 4A, we also infer a steep decline in Ne (9,000 to
17,000 years ago) around the time of cattle domestication,
estimated to have taken place in Neolithic times some 10,000
years before present in the Near East (Perkins 1969; Bruford
et al. 2003). It is possible that this bottleneck begins a little
earlier in our demography due to wild B. primigenius popu-
lations being affected by post glacial warming and expansion
of human populations that were taking place at this time
(Soares et al. 2010). A severe population bottleneck around
the time of domestication might be expected due to the
difficulties involved in the initial capture and taming of wild
cattle, and also because evidence suggests that B. taurus do-
mestication was confined to one or two very local regions
(Bruford et al. 2003).

A recent genetic study of cattle domestication in the Near
East using mitochondrial DNA (mtDNA) samples from an-
cient and modern domestic cattle, from the Near East only,
estimated the domestication founder female Ne to be around
80 with confidence limits of 23 to 452 (Bollongino et al. 2012).
Although this is a very severe bottleneck, it may not be in
conflict with our results because this is a mitochondrial DNA
estimate of founding female Ne. Bollongino et al (2012) as-
sumed a single domestication event and mitochondrial DNA
samples were restricted to ancient and modern cattle sam-
pled from close to the original site of domestication. It is likely
that their estimate is therefore for a more localized period

than would be possible using our method. Our method
would not detect a relatively brief bottleneck nor can it esti-
mate female only Ne, and it is likely that this female founder
population was quite rapidly increased by keeping and rearing
of female offspring. It seems highly plausible that the females
were more easily managed than males, but it would be
difficult to impossible to prevent tamed females and their
female offspring from breeding at random with wild males.
It is possible, given our Ne estimate around the period of
domestication was approximately 3,500, that for some time
the female Ne could have been as small as 1,200 while male
Ne would then be 3,200 (based on the approximation:
Ne Total = 4Ne femaleNe male /[Ne female + Ne male]). Only after
many generations of breeding for tameness would it have
become easier to manage and retain males in a domestic
setting. Thus, for quite some time during the domestication
process the male Ne was likely larger than the female Ne: a
situation that would become gradually reversed up to
modern day cattle breeding where the very small elite male
population now limits the overall Ne.

In apparent conflict with our results, Murray et al. (2010)
detected no domestication bottleneck for taurine cattle, al-
though they did detect a severe bottleneck around 30,000 to
50,000 years ago. There are a range of difficulties in determin-
ing the accurate timing of bottleneck events, including knowl-
edge of mutation rates for the loci studied. The study by
Murray et al. (2010) may have lacked power because they
used gene regions which may have been subject to selection,
and their methodology inferred demography from the sum-
mary statistic of “site frequency spectrum” (SFS) only, which
exploits information regarding mutation but not recombina-
tion. Furthermore, they combined genomic data across a
range of B. taurus breeds from Europe and Africa, which
may have concealed any domestication bottleneck because
there is some molecular evidence suggesting different domes-
tication origins for European and African taurine cattle
(Bradley et al. 1996; Beja-Pereira et al. 2006). The wide varia-
tion in past estimates of the timing of bovine bottlenecks
highlights the need for further studies to confirm the accuracy
of our estimates.

Following the domestication period our estimates of fur-
ther gradual decline in Ne are potentially due to increasing
genetic isolation from the wild population, limited numbers
of domestic cattle being taken to northern Europe, and the
start of breed formation (Beja-Pereira et al. 2006). In the last
100 years, the further decrease in Ne is likely a result of breed
registration rules requiring that animals are purebred, as well
as the high selection intensity in modern breeding programs
through very extensive use of artificial insemination (Goddard
1992; Young and Seykora 1996; Stachowicz et al. 2011).
Although Finlay et al. (2007) report a sharp increase in
cattle population size from domestication to present day,
their study is based on mtDNA and is therefore indicative
of the expanding female population size with no adjustment
made for the likely decreasing to very small male effective
population size. They also combined mtDNA from a number
of different cattle breeds and analyzed this as one population
which therefore reflects the present day population size of
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domestic cattle generally, such that in this context an expand-
ing population is not surprising.

Similarly, Murray et al. (2010) estimated a large present day
Ne for domestic cattle but they also combined genomic data
from a range of breeds to define a “taurine” population. Our
estimate of present day population size of between 80 and
220 is close to several independent estimates for this breed
using both LD methods (Hayes et al. 2003; de Roos et al. 2008;
Kim and Kirkpatrick 2009; MacLeod et al. 2009) as well as
extensive pedigree records (Weigel 2001; Stachowicz et al.
2011). This current day Ne indicates the importance of
taking steps to monitor and minimize inbreeding in
Holstein cattle to avoid potential negative effects of inbreed-
ing depression on economic traits. Two traits of particular
concern in modern Holstein dairy cattle breeding are fertility
and longevity (VanRaden 2004) both of which could po-
tentially be affected by inbreeding depression as a result of
low Ne.

Conclusions
Our study demonstrates a computationally efficient method
of inferring ancestral demography from empirical observa-
tions of the distribution of RoH in whole-genome sequence.
We also demonstrate a method to correct for the potential
serious bias of residual false-positive errors on recent esti-
mates of Ne. Our inference method can be applied to any
outbred diploid species for one or multiple individuals with-
out the need to phase the data into haplotypes. That is, HHn

can be summarized from all RoH measured within individuals,
provided their sequences have similar false-negative error
rates. If sequence haplotypes are available from unrelated in-
dividuals the RoH can be measured both within and between
pairs of individuals. Our method provides a demographic
model that can be used to simulate sequence data generated
under a null hypothesis with realistic multiloci LD patterns, to
calibrate significance tests for evidence of selection or for a
range of other genetic studies.

Materials and Methods
For this study, our definition of RoH in sequence data refers to
an observed unbroken run of homozygous (i.e., IBS) base pairs
along a pair of homologous chromosome segments within a
diploid individual. We define our HHn summary statistic in
sequence data as the probability that a pair of homologous
chromosomes are observed IBS for at least n base pairs to the
right of a site chosen uniformly at random. Three key steps in
our methodology for demographic prediction are as follows:

1) Detection of heterozygous SNP and error rates in whole-
genome sequence,

2) Correction of false positives and calculation of the sum-
mary statistic, HHn, from the distribution of RoH for a
range of segment sizes (n), and

3) Inference of a demographic model that predicts HHn

matching that observed in corrected sequence.

A summary of the workflow is given in figure 1.

Whole-Genome Sequence

Whole-genome sequence was generated for two Holstein–
Friesian bulls using a 454 FLX-Titanium platform (Larkin et al.
2012). The bulls were Pawnee Farm Arlinda Chief (“Chief”)
and one of his offspring, Walkway Chief Mark (“Mark”). Mark
was sequenced at approximately 13� coverage, while Chief
was sequenced at approximately 7� coverage. Details of
sequencing, alignment, mapping, and SNP discovery are pub-
lished in Larkin et al. (2012). For our study, we extracted all
information on heterozygous SNP within each animal’s auto-
somal genome sequence, and applied stringent quality con-
trol filters to remove likely errors (Larkin et al. 2012,
supplement). Filtered heterozygous sequence SNP were
then used to measure base pair (bp) length of all intervening
RoH within each animal’s sequence.

Genotyping with SNP50 BeadChip

DNA from Chief, Mark and 92 of Mark’s offspring was used to
generate approximately 50,000 SNP genotypes each, using
the Infinium BovineSNP50 BeadChip (http://www.illumina.
com/products/bovine_snp50_whole-genome_genotyping_
kits.ilmn, last accessed July 23, 2013) (described in Larkin et al.
2012). The “SNP50” genotypes, generated independently of
the sequence data, were used to validate the corresponding
sequence SNP genotypes, but were first subject to strict qual-
ity control. SNP50 genotypes from Mark’s offspring were
used to identify and remove inconsistencies in Mark’s
SNP50 genotypes, and checks were also made for any discor-
dant genotypes between Chief and Mark. Additionally, based
on preliminary checks of concordance between SNP50
and sequence SNP, SNP50 genotypes were discarded if the
Illumina “Gen Train” and “GenCall” scores were less than 0.8
(http://www.illumina.com/Documents/products/technotes/
technote_gencall_data_analysis_software.pdf, last accessed
July 23, 2013). All SNP50 genotypes with unknown reference
genome position were also eliminated. There remained 38,956
and 39,026 of Mark and Chief’s SNP50 genotypes. The lengths
of all RoH between SNP50 heterozygous positions were
recorded within each animal.

Correcting Sequence for Errors

Two types of error in the sequence data must be quantified;
“false-negative” errors (heterozygous positions missed in the
sequence data and called as homozygous) and “false-positive”
errors (homozygous positions wrongly called as heterozygous
in the sequence data).

The pattern of heterozygous sites (clustered or not, dense
to sparse) occurring along a pair of sequences has a direct
impact on the distribution of observed lengths of RoH. In a
neutral model, the pattern of heterozygous sites across the
genome can be affected by changes in past Ne, such as bot-
tlenecks, and recombination rate. If false-positive errors arise
randomly across the genome they will break up long RoH into
a number of shorter RoH, whereas in regions with more dense
true heterozygous sites the false-positive errors will have
much less impact on the shorter RoH. Thus false positives
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may particularly bias the estimation of more recent Ne, be-
cause the longer RoH coalesce to more recent ancestors.

The distribution of false negatives (missed heterozygous
sites) should follow the same distribution as discovered true
heterozygous sites assuming no bias in the sequencing
method or SNP discovery. These errors will therefore more
similarly affect both shorter and longer RoH and thus will
have little impact on our estimates of ancestral Ne.
However, the number of heterozygous sites present in the
genome under a given demography, is directly proportional
to the mutation rate per site per generation, and false-nega-
tive errors reduce the number of observed heterozygous sites.
These missed heterozygous sites represent an independent
thinning of the frequency of true heterozygous sites, which is
equivalent to a reduced mutation rate. It should therefore
be possible to correct for false negatives by simply rescaling
the true mutation rate (�T) before inferring the demography.
The scaled mutation rate (�R) should be in the order of:
�R =�T (1� q), where the false-negative error rate (q) was
estimated by validation with SNP50 data (assumed error free),
so that 1� q is the proportion of sequence SNP observed as
heterozygous given the SNP50 position was heterozygous. We
assumed �T& 1.0� 10�8 per base per generation based on
recent estimates of mammalian mutation rates (Kumar and
Subramanian 2002; 1000 Genomes Project Consortium 2010;
Roach et al. 2010; Campbell et al. 2012). Similarly, we esti-
mated true single base heterozygosity (HT) in the sequence of
each bull by scaling the observed heterozygosity (HO):
HT = (HO)/(1� q).

The residual false-positive error rate in our filtered
sequence was expected to be very low and therefore the
accuracy of estimated error rate by direct validation with
SNP50 data was limited by the small number of SNP50 het-
erozygous positions (table 1). There is also potential bias due
to unidentified errors in SNP50 data and the nonrandom
choice of “better behaved” SNP on commercial SNP arrays.
We therefore developed a simple method to quantify residual
false-positive error rates in filtered sequence data, using long
RoH in the SNP50 data. An RoH in our SNP50 data was
defined as a run of adjacent homozygous SNP genotypes
within an individual. We identified several SNP50 RoH span-
ning >10 Mb; five in Chief and four in Mark. There is a high
probability that these SNP50 long RoH identify IBD chromo-
some segments, that is, these regions are also very likely to be
homozygous in sequence data. This assumption is justified
because within the pedigree of each bull there are several
inbreeding loops to recent common ancestors three to six
generations ago (https://www.holstein.ca/, last accessed July
23, 2013). In cattle, one Morgan is approximately equal to
1� 108 base pairs (Arias et al. 2009). Although mutations may
occur in the generations since inheriting chromosome seg-
ments IBD from these common ancestors, this is likely to
account for only a single heterozygous position per 10 Mb
every 5 generations, assuming a mutation rate of 1.0� 10�8

per base per generation. Average single base heterozygosity
across these SNP50 long RoH in the filtered sequence data
therefore provided an estimate of the residual false-positive
error rate. We excluded the outer 0.15 Mb of the SNP50 RoH

region when estimating the error rate to avoid the possibility
of including a region beyond the end of the sequence RoH,
that by chance appeared as part of the SNP50 long RoH due
to the average distance between SNP50 being 0.07 Mb.

To remove bias due to false-positive heterozygous errors in
the sequence, we aimed to restore the distribution of RoH
rather than identify actual false positives remaining. Filtered
sequence was “corrected” by removing the expected propor-
tion of residual heterozygous errors, assuming uniform distri-
bution across the genome. Thus, in nonoverlapping windows
of three times the average length that contains one false
heterozygous error, we randomly deleted three heterozygous
SNP per window (or less if fewer existed in a window). We
chose this window length having first tested the method with
a range of window sizes (1 to 5) and compared the resulting
RoH pattern across the entire genome of Mark and Chief with
those of RoH in the SNP50 data (e.g., supplementary figs. S5,
S6, and S7, Supplementary Material online). We also com-
pared our “3 error window” correction method with ran-
domly deleting the same proportion of heterozygous SNP
without implementing uniform deletion from nonoverlap-
ping windows: that is, removing the restriction that false-pos-
itive errors arise with equal probability across the genome.

We tested the variability in the resulting RoH distribution
after applying the 3 error window correction method by rep-
licating the data correction 25 times, resulting in 25 sets of
“corrected sequence” for each bull. Henceforth, these data
sets are referred to collectively as “corrected sequence”
data. Further validations of the correction methods for false
negatives and false positives were carried out using simulated
data (supplementary information, section 6, Supplementary
Material online).

Observed HHn Summary Statistic in Sequence

We use the HHn summary statistic (MacLeod et al. 2009) to
describe the distribution of observed RoH in diploid whole-
genome sequence. For any given value of n, HHn is calculated
as the proportion of sites in the diploid genome for which at
least n bases to the right are observed homozygous, expressed
relative to the total possible number of such sites if the entire
genome were homozygous. Take a trivial example of calcu-
lating HH5 (i.e., n is 5) in one individual with a single chro-
mosome only 10 bp long in which we observe only one RoH
of 6 bp. For this individual, HH5 = 2/6 because moving left to
right across each base pair on this chromosome there will be
only two sites at which we will observe at least 5 homozygous
base pairs to the right, and the maximum possible number of
sites if the entire 10 bp had been homozygous is six.

We calculated HHn in both filtered and corrected sequence
data, for a range of segment sizes between 1 and 1,000,000 bp.
This maximum segment length was chosen because this
should be informative up to recent times given that LD on
a segment is most influenced by Ne approximately 1/(2c)
generations ago assuming a linearly changing Ne, where c is
the segment length in Morgans (Hayes et al. 2003). Also, in
cattle the RoH distribution becomes relatively flat at this
length because although there are some rare much longer
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RoH, the majority of RoH are shorter. The HHn was calculated
for each of the 25 replicates of “corrected sequence” and was
then averaged across replicates for each bull. To evaluate the
robustness of the correction method we measured the vari-
ability between replicates of the summary statistic, HHn,
across a range of segment sizes (n) up to 1 Mb, because
HHn provides the basis for inferring the demography.
Variability was assessed as the coefficient of variation across
the 25 replicates.

Analytical HHn Prediction

For demographic inference, we compared the observed HHn

in sequence with an analytically predicted HHn. The analytical
HHn prediction is based on a simplified coalescence method
that accommodates stepwise changes in historical Ne, with
constant mutation and recombination rates (MacLeod et al.
2009). We implemented a small modification to the original
method to increase the computational speed of the calcula-
tion without compromising the accuracy of prediction
(details are given in supplementary information, section 1,
Supplementary Material online). With the modified
method, we predicted HHn for n = 1, 2, 3. . . to 1,000 bp,
and then for 1,000, 2,000, 3,000,. . . to 1,000,000 bp. This
allowed us to rapidly test a range of demographic models
to search for one predicting a good match to observed HHn.

Demographic Inference

The inference approach is similar to those where demo-
graphic parameters are sampled from a grid of prior param-
eters to determine those most likely to have given rise to
summary statistics in observed data (Beaumont 2004).
However, rather than simulating data with each new set of
Ne parameters sampled, we use the analytical model to pre-
dict the HHn summary statistic for any sampled set of demo-
graphic parameters and determine the goodness of fit with
the observed HHn across a range of segment lengths
(MacLeod et al. 2009). We used the averaged HHn from the
25 replicates of Mark’s corrected sequence to infer the
demography.

Parameters in the model include; effective population size
over variable time periods, “Phases” (Ne Phase i) with time
measured in generations (G Phase i), as well as mutation rate
(�) and recombination rate (r). The model assumes a single
population with no selection or migration. Coalescent time
scales are dependent on Ne, �, and r, therefore we assume
both� and r are constant across time and across the genome.
We fixed r between any base pair as 1� 10�8, so that 1
Morgan was assumed to be approximately equal to 1� 108

base pairs (Arias et al. 2009). We assumed true mutation rate
(�T) to be in the order of 1.0� 10�8 per single base per
generation based on recent mammalian estimates (Kumar
and Subramanian 2002; Roach et al. 2010; Campbell et al.
2012). Therefore, the scaled mutation rate accounting for
false negatives in the inferred demography was expected to
be in the order of�R =�T (1� q). The accuracy of this scaling
depends on how close the estimated false-negative rate, q, is
to the true value.

The analytical model cannot infer a starting value for Ne,
therefore we ran some preliminary checks with a range of
simple models with the most ancestral Ne between 50,000
and 100,000 and compared single locus heterozygosity with
that observed in the sequence. We used this Ne range because
the ancestral Ne of domestic cattle has been estimated to be
between 50,000 and 100,000 based on evidence from several
independent studies (de Roos et al. 2008; MacEachern et al.
2009), around the time of Bos species divergence from
Bubalus (buffalo) 1 to 5 Ma (Ritz et al. 2000). Based on
these preliminary checks, our starting assumption was that
the most ancestral Ne = 62,000. The method is not expected
to predict Ne further back than around 1 to 1.5 million gen-
erations ago given a rough rule of thumb that LD on segment
lengths of cMorgans will inform the Ne estimates 1/(2c) gen-
erations ago. It was therefore assumed that the most ancestral
population had reached a drift-recombination-mutation
equilibrium, over a time period fixed as >10Ne generations.

Our demographic inference makes no prior assumption of
the maximum number of time intervals (Phases) or the spe-
cific boundary of time intervals at which there could be an
instantaneous change in Ne. Rather, we begin with constant
Ne and exploit the theory that LD over shorter distances re-
flects more ancestral population parameters than LD at larger
distances. We employed the iterative approach of MacLeod
et al. (2009) to search the parameter space for the best fit
demography, with variable Ne:

1. Use the analytical model with the starting parameters to
predict HHn for segments of length n, where n was
1–1,000 bp, and then 1, 2,. . ., 1,000 kb.

2. Test the match between the predicted HHn and the
observed HHn in the sequence, across the range of seg-
ment lengths. The HHn summary statistic is a continuous
variable for each segment length tested, therefore a
“match” was defined as meeting a threshold goodness
of fit test (Q� �) for each HHn in the range of segment
lengths tested):

Q ¼
HHn Predicted � HHn Observedð Þ

HHn Observed
� �, ð1Þ

where � is a stringent predetermined threshold that we
set to 0.001. This threshold choice was based on our prior
experience with the model using simulated data. It was
also confirmed as reasonable because HHn in replicated
simulations using our inferred demography generally dif-
fered by Q� � for all segment lengths up to 0.01 Morgan.

3. If the threshold was not met at any one or more HHn for a
given segment size n, the Ne was resampled over one or
more time periods (Phases) since the ancestral popula-
tion. It is expected that LD on a segment size of c
Morgans is most affected by the population size approx-
imately 1/(2c) generations in the past (Hayes et al. 2003).
We therefore conditioned the re-sampling of Ne over a
variable time period that corresponded to the range of
segment lengths where there was a mismatch in observed
and predicted HHn. Therefore, the time boundaries for
changes in Ne were not predetermined, but rather
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were estimated as the approximate time periods corre-
sponding to segment lengths n where HHn mismatched.
For example, if HHn was under (over) predicted com-
pared with the observed HHn for segments of lengths
of 1.0� 10�5 to 0.01 Morgans, we assumed that from
approximately present day to 50,000 generations
ago [1/(2c)] the Ne should be reduced (increased) in
size from the current value to N*e Phase i. However, if the
reduced (increased) N*e was close in value to Ne Phase i + 1

or Ne Phase i�1 then we first tried to match this to
minimize the number of additional Phases. If HHn

mismatched across one or more time periods between
others that matched, the Ne was first adjusted in the
poorest fitting, most ancestral time period followed by
a return to Step 2.

Steps 2 and 3 were repeated until a demographic model was
found that met the goodness of fit criteria for HHn across all
segments lengths tested. If required, the mutation rate was
adjusted slightly to ensure a close match (±5.0� 10�5) with
the single locus heterozygosity observed in the corrected
sequence.

Step 2 and 3 could also be implemented with a systematic
sampling from a grid of prior Ne values over a pre-defined
number of Phases (each of G generations) with fixed time
boundaries. The goodness-of-fit parameter (Q) can be
summed across the range of HHn for each tested demography
(
Pk

n¼1 QHHn
, where k is the total number of HHn values

tested) and minimized to provide a means of ranking each
demographic model tested.

Having successfully inferred a demography from Mark’s
data that met our threshold �, we estimated upper and
lower limits for each stepwise change in Ne based on the
maximum and minimum Ne value possible where the thresh-
old of �� 0.001 was still met. All other stepwise values of Ne

were held constant when estimating these upper and lower
bounds. Slight adjustment was made to the mutation rate if
necessary to ensure a match with observed single locus het-
erozygosity. For computational efficiency, we tested intervals
of ± ~10% of each stepwise Ne, or less if the first increase/
reduction resulted in �> 0.001. After inferring a good fit de-
mography, we then attempted to combine two or more ad-
jacent Phases of differing Ne to a single Ne value to test the
resolution of determining time boundaries for changes in Ne.

Finally, using our inferred demographic model, we pre-
dicted expected HHn for the corrected sequence data had
there been no false-negative errors (missing heterozygous
SNP). We did this by scaling up the mutation rate to
match the estimated true single base heterozygosity in
Mark’s sequence. This step has no effect on the Ne estimates
but is of considerable importance for estimating the true
mutation rate required to simulate sequence that mimics
error free sequence data, where all true heterozygous sites
are discovered.

Validation of the Inferred Demographic Model

We cross validated the inferred demography, using the ana-
lytical model to predict the expected HHn in Chief’s

independently corrected sequence. Assuming we have accu-
rately corrected for the different false-positive error rates in
the two bull sequences, the difference between the distribu-
tion of RoH in Mark and Chief’s corrected sequence is due
only to a higher false-negative rate in Chief’s sequence (lower
coverage). If false-negative errors are equivalent to a lowered
mutation rate, then Mark’s demographic model should pre-
dict Chief’s HHn by simply rescaling the mutation rate to
account for the higher proportion of false negatives in
Chief’s sequence. We therefore rescaled the mutation rate
to match Chief’s observed single base heterozygosity, pre-
dicted HHn and estimated the goodness of fit parameter
(Q) between predicted and observed HHn.

We also used Chief’s corrected sequence HHn to indepen-
dently infer demography, although acknowledging that this
data would be less reliable than Mark’s because the lower
coverage resulted in a high false-negative error rate (~70%).
However, we also inferred demography using simulated data
(based on Mark’s inferred demography) in which we had
randomly changed heterozygous SNP to homozygous to
mimic the false-negative rate in Mark’s corrected sequence
(supplementary information, section 5, Supplementary
Material online).

Supplementary Material
Supplementary information, table S1, and figures S1–S11 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).

Acknowledgments

The authors are grateful to two anonymous reviewers for
thoughtful suggestions to improve the manuscript. This
work was supported by Australian Research Council’s
Discovery Projects funding scheme (grant number
DP1093502) to M.E.G. and by the US Department of
Agriculture Cooperative State Research Education and
Extension Service, Livestock Genome Sequencing Initiative
(grant numbers: 538 AG2009-34480-19875 and 538 AG
58-1265-0-031) to H.A.L.

References
1000 Genomes Project Consortium. 2010. A map of human genome

variation from population-scale sequencing. Nature 467:1061–1073.
Arias J, Keehan M, Fisher P, Coppieters W, Spelman R. 2009. A high

density linkage map of the bovine genome. BMC Genet. 10:18.
Beaumont MA. 2004. Recent developments in genetic data analysis:

what can they tell us about human demographic history?
Heredity 92:365–379.

Beaumont MA, Zhang W, Balding DJ. 2002. Approximate Bayesian com-
putation in population genetics. Genetics 162:2025–2035.

Beja-Pereira A, Caramelli D, Lalueza-Fox C, et al. (21 co-authors). 2006.
The origin of European cattle: evidence from modern and ancient
DNA. Proc Natl Acad Sci U S A. 103:8113–8118.

Bollongino R, Burger J, Powell A, Mashkour M, Vigne J-D, Thomas MG.
2012. Modern taurine cattle descended from small number of Near-
Eastern founders. Mol Biol Evol. 29:2101–2104.

Bradley DG, MacHugh DE, Cunningham P, Loftus RT. 1996.
Mitochondrial diversity and the origins of African and European
cattle. Proc Natl Acad Sci U S A. 93:5131–5135.

Bruford MW, Bradley DG, Luikart G. 2003. DNA markers reveal the
complexity of livestock domestication. Nat Rev Genet. 4:900–910.

2222

MacLeod et al. . doi:10.1093/molbev/mst125 MBE

to 
-
(
 )
-
 in order 
minimise 
-
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst125/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst125/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst125/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst125/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst125/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst125/-/DC1
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/


Campbell CD, Chong JX, Malig M, et al. (13 co-authors). 2012. Estimating
the human mutation rate using autozygosity in a founder popula-
tion. Nat Genet. 44:1277–1281.

de Roos APW, Hayes BJ, Spelman RJ, Goddard ME. 2008. Linkage
disequilibrium and persistence of phase in Holstein-Friesian, Jersey
and Angus Cattle. Genetics 179:1503–1512.

Finlay EK, Gaillard C, Vahidi SMF, Mirhoseini SZ, Jianlin H, Qi XB,
El-Barody MAA, Baird JF, Healy BC, Bradley DG. 2007. Bayesian
inference of population expansions in domestic bovines. Biol Lett.
3:449–452.

Gautier M, Faraut T, Moazami-Goudarzi K, et al. (12 co-authors). 2007.
Genetic and haplotypic structure in 14 European and African cattle
breeds. Genetics 177:1059–1070.

Goddard ME. 1992. Optimal effective population size for the global
population of black and white dairy cattle. J Dairy Sci. 75:2902–2911.

Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A. 2011. Bayesian
inference of ancient human demography from individual genome
sequences. Nat Genet. 43:1031–1034.

Grossman SR, Shylakhter I, Karlsson EK, et al. (13 co-authors). 2010. A
composite of multiple signals distinguishes causal variants in regions
of positive selection. Science 327:883–886.

Gutierrez J, Altarriba J, Diaz C, Quintanilla R, Canon J, Piedrafita J. 2003.
Pedigree analysis of eight Spanish beef cattle breeds. Genet Sel Evol.
35:43–63.

Hayes BJ, Visscher PM, McPartlan HC, Goddard ME. 2003. Novel multi-
locus measure of linkage disequilibrium to estimate past effective
population size. Genome Res. 13:635–643.

Hill WG. 1975. Linkage disequilibrium among multiple neutral alleles
produced by mutation in finite population. Theor Popul Biol. 8:
117–126.

Hill WG. 1981. Estimation of effective population size from data on
linkage disequilibrium. Genet Res. 38:209–216.

Ho SYW, Larson G, Edwards CJ, Heupink TH, Lakin KE, Holland PWH,
Shapiro B. 2008. Correlating Bayesian date estimates with climatic
events and domestication using a bovine case study. Biol Lett. 4:
370–374.

Hoberman R, Dias J, Ge B, Harmsen E, Mayhew M, Verlaan DJ, Kwan T,
Dewar K, Blanchette M, Pastinen T. 2009. A probabilistic approach
for SNP discovery in high-throughput human resequencing data.
Genome Res. 19:1542–1552.

International HapMap Consortium. 2007. A second generation human
haplotype map of over 3.1 million SNPs. Nature 449:851–861.

Kim ES, Kirkpatrick BW. 2009. Linkage disequilibrium in the North
American Holstein population. Anim Genet. 40:279–288.

Kumar S, Subramanian S. 2002. Mutation rates in mammalian genomes.
Proc Natl Acad Sci U S A. 99:803–808.

Larkin DM, Daetwyler HD, Hernandez AG, et al. (17 co-authors). 2012.
Whole-genome resequencing of two elite sires for the detection of
haplotypes under selection in dairy cattle. Proc Natl Acad Sci U S A.
109:7693–7698.

Li H, Durbin R. 2011. Inference of human population history from indi-
vidual whole-genome sequences. Nature 475:493–496.

Liu G, Ventura M, Cellamare A, Chen L, Cheng Z, Zhu B, Li C, Song J,
Eichler E. 2009. Analysis of recent segmental duplications in the
bovine genome. BMC Genomics 10:571.

Lohmueller KE, Bustamante CD, Clark AG. 2009. Methods for human
demographic inference using haplotype patterns from
genomewide single-nucleotide polymorphism data. Genetics 182:
217–231.

Lynch M. 2008. Estimation of nucleotide diversity, disequilibrium coef-
ficients, and mutation rates from high-coverage genome-sequencing
projects. Mol Biol Evol. 25:2409–2419.

MacEachern S, McEwan J, Goddard M. 2009. Phylogenetic reconstruc-
tion and the identification of ancient polymorphism in the Bovini
tribe (Bovidae, Bovinae). BMC Genomics 10:177.

MacHugh DE, Shriver MD, Loftus RT, Cunningham P, Bradley DG. 1997.
Microsatellite DNA variation and the evolution, domestication and
phylogeography of Taurine and Zebu cattle (Bos taurus and Bos
indicus). Genetics 146:1071–1086.

MacLeod IM, Meuwissen THE, Hayes BJ, Goddard ME. 2009. A novel
predictor of multilocus haplotype homozygosity: comparison with
existing predictors. Genet Res. 91:413–426.

Mc Parland S, Kearney JF, Rath M, Berry DP. 2007. Inbreeding trends and
pedigree analysis of Irish dairy and beef cattle populations. J Anim
Sci. 85:322–331.

Meuwissen THE, Goddard M. 2007. Multipoint IBD prediction using
dense markers to map QTL and estimate effective population
size. Genetics 176:2551–2560.

Murray C, Huerta-Sanchez E, Casey F, Bradley DG. 2010. Cattle demo-
graphic history modelled from autosomal sequence variation. Philos
Trans R Soc B Biol Sci. 365:2531–2539.

Nordborg M, Tavare S. 2002. Linkage disequilibrium: what history has to
tell us. Trends Genet. 18:83–90.
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