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Error associated with estimates 
of Minimum Infection Rate for 
Endemic West Nile Virus in areas of 
low mosquito trap density
S. Chakraborty   1 & R. L. Smith   2*

West Nile Virus (WNV) is a mosquito-borne infection that can cause serious illness in humans. 
Surveillance for WNV primarily focuses on a measure of infection prevalence in the Culex spp. 
mosquitos, its primary vectors, known as the Minimum Infection Rate (MIR). The calculation of MIR for 
a given area considers the number of mosquitos tested, but not the relative effort to collect mosquitos, 
leading to a potential underestimation of the uncertainty around the estimate. We performed Value of 
Information analysis on simulated data sets including a range of mosquito trap densities in two well-
studied counties in Illinois between 2005 and 2016 to determine the relative error introduced into MIR 
associated with changing the density of mosquito traps. We found that low trap density increases the 
potential for error in MIR estimation, and that it does so synergistically with low true MIR values. We 
propose that these results could be used to better estimate uncertainty in WNV risk.

West Nile Virus (WNV) causes an infectious disease in birds, horses and humans that is transmitted by the bite 
of infected mosquitoes1. In 80% of human cases, the disease does not produce any symptoms, but in a subset of 
patients it can cause febrile illness, joint pain, fatigue and weakness and about 1 in 150 people develop encephali-
tis or meningitis1. The disease first emerged in the United States in 1999, following which it has spread across the 
contiguous states and is now considered established. The first report of WNV in the state of Illinois was among 
dead birds in 2001; it has since spread to almost all counties in the state. From 1999 until 2017, the CDC reports 
that Illinois has had 2,458 human cases of WNV, the 5th highest number in the nation, including 1,553 cases of 
neuro-invasive disease1. It is a nationally notifiable disease and the state of Illinois has a surveillance system to 
monitor this pathogen, resulting in reports in 2017 of 90 human cases, 8 human deaths, 25 birds with WNV pos-
itivity and 2,022 positive mosquito batches2.

Birds serve as the main reservoir hosts for WNV. The virus, which belongs to the Flaviviridae family, is trans-
mitted by mosquitoes in the genus Culex. Several species of Culex mosquitoes, such as C. tarsalis, C. quinque-
fasciatus, C. stigmatosoma, C. thriambus, C. pipiens, and C. nigripalpus, have been found to be able to transmit 
WNV3. Mosquitoes become infected when they feed on birds that harbor the virus; they are then capable of 
transmitting WNV to humans and horses1.

Surveillance for WNV is conducted primarily by testing mosquitoes, monitoring birds particularly in the 
family Corvidae, and sero-surveillance of sentinel chicken flocks and equines. The Illinois Department of Public 
health monitors WNV by testing groups of up to 50 mosquitoes, dead perching birds (such as crows, blue jays, 
and robins), and testing sick horses and humans with West Nile virus-like symptoms2. Since, individual collec-
tion and testing of mosquitoes can be an expensive and arduous process, pooled samples are used to detect the 
presence of pathogens within the species- a concept first introduced by Dorfman in 19434. Mosquitoes are thus 
collected for testing by setting traps throughout the state; the placement of traps and number of mosquitoes 
submitted for testing is determined by local public health departments or mosquito abatement districts. The 
mosquito abundance in traps can be affected by factors such as temperature5, rainfall6, structure of urban land-
scapes7,8, vegetation9 and climatic variability10. Mosquitoes from these traps are collected in pools of up to 50 for 
viral testing. The results of mosquito testing are used to calculate the Minimum Infection Rate (MIR) for West 
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Nile Virus, which is defined as the number of positive pools of a particular mosquito species over a defined time 
period and area divided by the total number of mosquitoes in those pools. The underlying assumption of MIR 
is that there is just one infected individual within a pool of mosquitoes. Another method used by researchers to 
detect the infection rate is using the Maximum Likelihood Estimate (MLE) which is defined as the infection rate 
most likely observed given the testing results and an assumed probabilistic model (i.e., binomial distribution of 
infected individuals in a positive pool)11. An increase in MIR estimates often is assumed to increase risk of disease 
transmission to humans. The Centers for Disease Control & Prevention have shown that MIR is an important 
indicator in WNV surveillance systems that can be helpful in predicting patterns in virus activity, and thereby 
human cases in a given area12. Previous studies that have used MIR to detect WNV are Bernard et al.13, Kulasekara 
et al.14 and Hadler et al.15. Therefore, prediction of MIR is a public health priority in areas endemic for WNV.

Under-sampling is believed to be a significant obstacle in developing robust prediction models for MIR. 
Under-sampling could be caused by not having enough traps set out within the geographic area of study, by not 
testing all mosquitoes collected in the traps, by low mosquito abundance in the traps, or by a combination of any 
of those factors. Additionally, MIR may not be the best measure of calculation if the virus to be detected is com-
mon or if pool sizes are too large11. Without sufficient data, MIR estimates are likely to be inaccurate and appro-
priate public health efforts will be difficult to determine. However, there is no current method for determining the 
error introduced into MIR by under-sampling.

Value of information analysis is a quantitative method to estimate the return on investment (value) produced 
by research16. This concept can be applied to compare the results of using an artificially reduced data set with that 
of the full data set to determine how much data are required to meet a specific criterion. The Value of Information 
(VOI) approach is increasingly becoming a useful tool with applications in prioritizing research decisions17, eco-
nomic design of clinical trials18, as well as in treatment interventions19 and social sciences20. As the roots of VOI 
lie in statistics and has wide ranging applications, it is therefore used as a guiding concept in this paper to deal 
with error associated with MIR. In this case, the value we are interested in estimating is the accuracy and preci-
sion of the MIR estimate, while the information we are using is varying mosquito trapping densities.

The objective of this study was to determine the error associated with calculation of WNV MIR at the county 
level in cases of low mosquito trap density. This analysis considered data obtained from mosquito traps that were 
set in different locations in Illinois between the periods of 2005–2016. Utilizing the value of information concept 
as outlined above, we determined the impact of low trap density (under-sampling) in the accuracy of MIR results.

Results
After selecting only weeks in which at least 50 pools of mosquitos were tested and at least one pool was positive, 
a total of 240 weeks of data were available for Cook County and 182 weeks of data were available for DuPage 
County (Table 1).

After randomly sampling subsets of mosquito trap data, the absolute relative error in estimated MIR for a 
county, Ep

MIR MIR
MIR

100

100
= − , was clearly skewed, with a high concentration near 0 and a long tail (Fig. 1). There was 

a secondary peak in frequency near Ep = 1 due to the bounded distribution of MIR, which cannot fall below 0; any 
iteration in which no positive traps were sampled (probabilities shown in Table 1) would result in an Ep value of 
1. This also resulted in a skew in the relative error, −MIR MIR

MIR
100

100
 (Fig. 2) towards more positive outliers.

The distribution of relative error in MIR was clearly wider when the density of traps decreased, and also when 
the observed MIR100 was low (Fig. 2). Results of a lognormal regression to determine the effect of trap density 
and MIR100 on relative absolute error showed that there was a significant synergy between the variables (Table 2). 
Likewise, the range of the 95% confidence interval around the MIR estimate tended to increase more when the 
density of the traps decreased (Fig. 3), but a higher estimate of MIR100 was associated with a higher range around 
the MIR estimate, although this effect was somewhat decreased with high trap density (Table 3). Information 
about model fit can be found in the Supplementary Information.

County

County Proportion of Traps Sampled

Cook DuPage 50 60 70 80 90 100

Number of Weeks 240 182 422 422 422 422 422 422

Number of Positive Pools 
per Week 21 [3, 103] 4 [1, 17] 5 [1, 23] 6 [1, 28] 7 [1, 33] 7 [1, 37] 8 [1, 42] 9 [1, 47]

Total Number of Culex 
Mosquitos per Week

12381 [7130, 
18232]

2796 [2075, 
3681]

2677 [1360, 
6972]

3220.5 [1635, 
8390]

3770 [1907, 
9771]

4308 [2182, 
11236]

4850 [2478, 
12610]

5423 [2780, 
14041]

MIR 0.0022 [0.0003, 
0.0045]

0.0014 [0.0003, 
0.0080]

0.0019 [0.0002, 
0.0078]

0.0019 [0.0002, 
0.0078]

0.0019 [0.0003, 
0.0079]

0.0019 [0.0003, 
0.0079]

0.0019 [0.0003, 
0.0079]

0.002 [0.0003, 
0.0078]

Number of Traps Used per 
Week 373 [229, 506] 92 [67, 116] 84 [46, 202] 101 [55, 242] 118 [64, 282] 134 [73, 322] 151 [82, 363] 168 [91, 402]

Density of Traps (traps/mi2) 0.39 [0.24, 0.54] 0.28 [0.20, 0.36] 0.16 [0.11, 
0.23]

0.19 [0.13, 
0.28]

0.22 [0.15, 
0.33] 0.26 [0.17, 0.37] 0.29 [0.2, 0.42] 0.32 [0.22, 

0.47]

Probability of False Negative NA NA 0.09 0.06 0.04 0.03 0.01 NA

Table 1.  Description of observed and simulated data (median [interquartile range (IQR)]) used for estimating 
baseline MIR and to determine effect of lower density sampling. The probability of a false negative was 
calculated as the number of iterations in which MIR was 0 when MIR100 was greater than 0.
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The equation from Table 2 could be used to calculate the expected potential absolute relative error (ARE) 
around an observed MIR by using the equation

E exp MIR Density MIR Density[ ] 0 00001p 0 1 2 3β β β β= + + + ∗ − .

Figure 1.  Distribution in simulated absolute relative error (Ep
MIR MIR

MIR
p 100

100
=

− ) in MIR associated with 
sampling different proportions of mosquito trap data in Cook and DuPage counties on a weekly basis between 
2005 and 2016. Each proportion of traps was randomly selected from all trap data available in a given week for 
50 iterations.

Figure 2.  Simulated relative error in MIR for Cook and DuPage counties created by randomly sampling only a 
subset of mosquito trap data. Color indicates the number of traps per square mile in the simulated data. MIR100 
is the observed MIR using all data.
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where Ep
MIR MIR

MIR
100

100
= − . The expected potential range of MIR100 can be calculated as 

±
MIR

E1 p
. Likewise, the 

expected change in the 95% confidence interval range can be calculated from the equation in Table 3. When the 
regression equation from Table 2 is applied to the observed data for Cook and DuPage counties, the range of 
predicted values is shown to be small(Fig. 4): at current trap density, the median range around the MIR is 0.18, 
which is only smaller than the observed 95% confidence interval, which has a median of 2.1. This is likely due to 
the high trap density, large number of pools, and high MIR100 in Cook County for this period. When the model is 
used to predict potential for error in example years from Will, McHenry, and Lake Counties(Fig. 5), where trap 
density is lower, it is seen that the error associated with MIR calculated from all traps is quite high; the median 
range around the MIR is 2.0. This is only slightly less than the observed 95% confidence interval, which has a 
median of 3.8, likely due to the small number of pools tested.

One factor of interest to mosquito control officials is the ability to detect a rise in MIR. We examined the 
simulated data for false negatives, circumstances in which the observed MIR100 was non-zero but the simulated 
MIRp was zero (Fig. 6). As with the absolute relative error, the probability of a false negative was significantly 
increased with low trap density and with low MIR100, and the effect of trap density and MIR100 was synergistic (see 
Supplementary information). However, the effect of MIR100 was much greater than that of trap density.

Variable Coefficient (β) 95% CI

Intercept −0.24 −0.34, −0.15

MIR100 −130 −150, −120

Trap Density −5.9 −6, −5.7

MIR100*Trap Density −1.0 −16, 14

Table 2.  Results of lognormal regression for absolute relative error in estimated MIR, 
β β β β ε+ . + + + ∗ +log MIR MIR Density MIR Density( 0 00001) i0 1 100 2 3 100~ .

Figure 3.  Change in the range of the 95% confidence interval around the simulated MIR for Cook and DuPage 
counties created by randomly sampling only a subset of mosquito trap data, as a function of the number of traps 
per square mile in the simulated data. Color represents MIR100, the observed MIR using all data.

Variable Coefficient (γ) 95% CI

Intercept 0.00043 0.00035, 0.0005

MIR100 0.29 0.28, 0.3

Trap Density −0.0013 −0.0013, −0.0012

MIR100*Trap Density −0.69 −0.7, −0.68

Table 3.  Results of linear regression for range of the 95% confidence interval around estimated MIR, 
Range Range MIR Density MIR Density( ) i100 0 1 100 2 3 100γ γ γ γ ε− + + + ∗ +~ .
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Discussion
There are various environmental factors that contribute to arbovirus transmission. Low levels of the virus might 
thrive within the host and reservoir populations and the exact conditions that lead to widespread outbreaks are 
difficult to pinpoint. Therefore, constant surveillance of mosquitoes and the sentinel organisms are a critical 
aspect of public health activities especially for West Nile Virus (WNV).

We found that if the true MIR is low, higher trap density is needed to accurately estimate MIR. This is intuitive; 
the sample size necessary to find a disease in a population is inversely proportional to the prevalence of the dis-
ease. Current estimates of MIR error are based on basic statistical theory, with sample size (total number of pools) 
responsible for much of the estimation21. This may result in underestimation of error around low MIR values and 
areas with low trap density but high trap numbers (such as a large geographical area).

Our study also provides an algorithm by which MIR error can be estimated. We believe that this error calcula-
tion can be incorporated into public health planning, giving decision makers a better sense of the potential range 
in MIR. Importantly, we have found that the probability of failing to detect a non-zero MIR was significantly 
impacted by the density of traps, especially when the actual MIR is low.

Our study was limited by the use of observed MIR, rather than true MIR, to calculate error. However, the mos-
quito surveillance systems of Cook and DuPage counties are extremely comprehensive, and the resulting calculated 
MIRs are likely to approach the true value in most cases. In fact, our model predicts low error in Cook County with 
only 10% of existing trap data, indicating that the full data set may be sufficient for the purposes of this study.

Researchers working on surveillance of arboviruses are constantly trying to optimize the tools and methods 
to better estimate disease risk and transmission in order to inform public health measures. Under-sampling has 
previously been identified as one of the most common sources of error in determining the mosquito infection 
rates22. For instance, DeFelice et al. (2017) used data assimilated from MIR and human case reports to model 
WNV transmission in New York and to generate retrospective forecasts of past WNV outbreaks in Long Island23. 
The authors realized for the model to work effectively in predicting outbreaks, it relied on timely availability of 
mosquito infection rate data, which can vary depending on the methods used for mosquito sampling. Bustamante 
and Lord (2010) also discussed other sources of error that are introduced while conducting mosquito surveillance 
such as temperature, trapping methods used for mosquito sampling, assays used for virus detection and the MIR 
vs MLE approach24. Thus, they suggest using other surveillance indicators such as historical baseline data and 
mosquito population size along with MIR for determining arboviral disease transmission.

The results of this study demonstrate that WNV surveillance in mosquitoes can be affected by under-sampling. 
However, the effect of this under-sampling on error in MIR estimates may now be calculated using our approach. It 
is important to note that we assumed that the spatial distribution of the traps was not a factor; this is a simplification 
that should be addressed in future studies. Gu et al. (2008) provide recommendations to better estimate MIR when 
there are not enough samples or in areas with low level transmission, recommending either “targeted surveillance 
(increased sampling at locations of higher transmission likelihood) or estimating MIR during periods of high transmis-
sion, thereby shifting from detection of mosquito infection to estimation of the transmission intensity, while expanding 
the number of sampling sites to evaluate the range of arboviral transmission”25. The placement of traps should also take 
into account landscape features and other factors likely to affect surveillance efforts.

Figure 4.  Predicted error associated with decreased West Nile Virus sampling in Cook and DuPage County for 
2 example years. Black solid lines show the observed MIR with error bars showing the 95% confidence intervals, 
while the red shaded bar is the predicted error around the mean and the red dashed lines show the predicted 
95% confidence intervals around the upper and lower bounds of the potential MIR estimate.
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Public health surveillance of diseases like West Nile virus and other mosquito-borne infections is essential and 
can be conducted smoothly via concerted efforts of public health agencies, health departments and research insti-
tutions. The setup of adequate number of traps in different counties to regularly monitor the MIR in the mosquito 
populations is critical so that necessary public health efforts can be initiated before outbreaks occur. This paper 
shows that in areas where trap density is low, the method utilized here can be used to detect accurately the error 
in MIR, which can inform appropriate disease control and prevention measures.

Methods
Data were obtained from the Illinois Department of Public Health mosquito surveillance database, which collects 
mosquito trap testing information from major stakeholders such as public health departments and mosquito 
abatement districts in the state of Illinois. Mosquito trap data for 4 counties in Illinois (DuPage, Cook, Will, and 
Lake) were obtained for the years 2005 to 2016. Trap density (traps per square mile) was calculated for each week 

Figure 5.  Predicted MIR error associated with trap density in Will, McHenry, and Lake Counties for one 
example year each. Black solid lines show the observed MIR with error bars showing the 95% confidence 
intervals, while the red shaded bar is the predicted error around the mean and the red dashed lines show the 
predicted 95% confidence intervals around the upper and lower bounds of the potential MIR estimate.
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by dividing the number of traps tested by the total area of the county. All analyses were performed in R26. Analysis 
was performed using data from Cook and DuPage counties; all other county data were used for illustration of 
potential impact. Only weeks in which at least 50 pools were tested were included in the analysis.

For each county in each week, all data from p percent of traps (p ∈ {50%, 100%}) were removed at random and 
the remaining trap data were used to calculate the simulated MIRp using the binGroup package27. Simulated MIRp 
was compared to the observed MIR with 100% of data, MIR100, for that county-week combination, and absolute 
relative error was calculated as Ep

MIR MIR

MIR
p 100

100
=

− . This was repeated 50 times for each county-week combina-
tion. Weeks in which MIR100 was 0 were removed from the analysis.

The error Ep was examined visually for each level of p and determined to be log-normally distributed with 
zero-inflation using the fitdistrplus package28. Due to the zero-inflation, we performed shifted logistic transfor-
mation by adding a conservative number (0.00001) to all Ep prior to log transformation. The impact of trap den-
sity and MIR100 on log(Ep) was analyzed using mixed linear regression modeling with the lme4 package29, using 
the county-week combination as a random effect to account for repeated sampling. Two-way interactions were 
included, and all effects were considered significant at the α = 0.05 level. The 95% confidence interval around 
MIR100 and MIRp were calculated using the binGroup package27, and the difference in the confidence interval 
range was calculated as range100-rangep. The impact of trap density and MIR100 on the difference in the confidence 
interval range was analyzed using mixed linear regression modeling, as described above. All figures were created 
using the ggplot2 package30.

Data availability
All data and analysis scripts are available at https://github.com/rlsdvm/MIR_VOI.
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