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SUMMARY
The SARS-CoV-2 Delta variant rose to dominance in mid-2021, likely propelled by an estimated 40%–80%
increased transmissibility over Alpha. To investigate if this ostensible difference in transmissibility is uniform
across populations, we partner with public health programs from all six states in New England in the United
States. We compare logistic growth rates during each variant’s respective emergence period, finding that
Delta emerged 1.37–2.63 times faster than Alpha (range across states). We compute variant-specific effective
reproductive numbers, estimating that Delta is 63%–167% more transmissible than Alpha (range across
states). Finally, we estimate that Delta infections generate on average 6.2 (95% CI 3.1–10.9) times more viral
RNA copies per milliliter than Alpha infections during their respective emergence. Overall, our evidence sug-
gests that Delta’s enhanced transmissibility can be attributed to its innate ability to increase infectiousness,
but its epidemiological dynamics may vary depending on underlying population attributes and sequencing
data availability.
INTRODUCTION

The evolution and emergence of severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) variants associated with

increased transmissibility,moreseveredisease, and/ordecreased

vaccine effectiveness continue to exacerbate the coronavirus
Cell
This is an open access article under the CC BY-N
disease 2019 (COVID-19) pandemic.1 A SARS-CoV-2 variant is a

virus with a defining set of mutations that distinguishes it from

viruses belonging to other lineages.2 In particular, two SARS-

CoV-2 variantswith enhanced transmissibility substantially altered

the pandemic’s trajectory: Alpha (B.1.1.7 lineage) and Delta

(B.1.617.2 and AY.x sub-lineages). Alpha, defined in part by a
Reports Medicine 3, 100583, April 19, 2022 ª 2022 The Authors. 1
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N501Y amino acid substitution in the spike gene receptor binding

domain that may affect ACE2 binding, was first detected in the

United Kingdom in late 2020 and became the dominant global

variant by early 2021.3–5 Delta, containing the spike L452R and

P681Hmutations (in the receptorbindingdomainandnear the furin

cleavage site, respectively) that may affect antibody recognition,

was first recognized in India in early 2021 and displaced Alpha

as the dominant variant bymid-2021.5 This shift led to a significant

resurgence in COVID-19 cases in many countries.6–9

Transmission rates can be affected by twomain factors: innate

attributes of the variant itself and the specific population in which

it spreads. Variant-associated attributes may lead to innately

increased transmissibility (e.g., increased viral loads, longer

infection duration, decreased infectious doses).10 The rapid

spread of Delta in many locations around the world suggests

that it is innately more transmissible than Alpha and other

SARS-CoV-2 variants. However, estimates of Delta’s transmissi-

bility may also vary among populations because of differences

in underlying immunity, control measures, behaviors, and

demographics. For example, a variant that ismore likely to cause

vaccine breakthroughs may have a larger observed transmissi-

bility advantage in populations with higher vaccination rates

because it can spread tomore individuals. In addition, the quality

and volume of data generated by sequencing programs in

different locations can influence estimates. Studies conducted

in the United Kingdom estimated that Delta is 40%–80% more

transmissible than Alpha, which itself was more transmissible

than the SARS-CoV-2 lineages previously in circulation.11 The

World Health Organization similarly estimated a 55% increase

in Delta transmissibility on the basis of data from India and the

United Kingdom.12 To understand whether these estimates are

applicable elsewhere, it is critical to compare the relative

transmissibility of SARS-CoV-2 variants in different locations to

test the sensitivity of estimates to population-specific

conditions. Accurate variant transmissibility estimates enable

us to begin exploring drivers of transmissibility differences

between populations.

In this study, we posed several important questions that arose

with Delta: (1) how much more transmissible was Delta

than Alpha, (2) what was the range in relative transmissibility

estimates across states, and (3) was Delta more transmissible

because it caused higher viral loads during infection? To

investigate each, we partnered with SARS-CoV-2 genomic

surveillance programs from all six New England states:

Connecticut, Maine, Massachusetts, New Hampshire, Rhode

Island, and Vermont. Using logistic growth rates and estimated

effective reproductive numbers,4,13,14 we found that Delta

was consistently more transmissible than Alpha, but the relative

difference varied across states. Furthermore, we found on

average 6.2 (95% confidence interval [CI] 3.1–10.9) times more

viral RNA copies per milliliter from samples collected from Delta

infections compared with Alpha infections during their respec-

tive emergence periods, supporting the hypothesis that Delta

may be more transmissible because it generates higher viral

loads. Overall, we estimated that Delta is 63%–167% more

transmissible than Alpha (range across states). Our data indi-

cated that the overall transmission advantage of Delta may in

part be attributed to its innate ability to enhance infections and
2 Cell Reports Medicine 3, 100583, April 19, 2022
that the range in estimates between populations may be driven

by differences in underlying characteristics and sequencing

data availability.

RESULTS

Genomic surveillance revealed similar variant
frequency trajectories across New England
In response to emerging SARS-CoV-2 variants, all states within

the New England region of the United States (Connecticut,

Maine, Massachusetts, New Hampshire, Rhode Island, and

Vermont) increased their virus sequencing capacity through

local and regional partnerships (Figure 1A). From early April to

mid-July 2021, at least 5% of the weekly reported COVID-19

caseswere being sequenced from each state (with the exception

of 7 days in June for New Hampshire and 10 days for Vermont

when daily mean coverage dropped to 4% and 2%, respec-

tively). The maximum daily sequencing coverage ranged from

16% (New Hampshire) to 46% (Maine). From these state-level

sequencing data, we tracked the frequencies of the SARS-

CoV-2 Alpha variant (B.1.1.7 lineage), the Delta variant

(B.1.617.2 and AY.x sub-lineages), and all other lineages

(Figure 1B). We observed similar trajectories in variant fre-

quencies, with other lineages declining as Alpha increased in

March and April 2021. Beginning in June 2021, Delta rapidly

displaced the Alpha and other lineages. We also observed that

the emergence of Delta resulted in a ‘‘selective sweep’’ and

more fully dominated the variant landscape compared with

Alpha. By the final week in July 2021, Delta constituted the

vast majority of sequenced samples in all states (range

94%–100%). In contrast, although Alpha was the main variant

in early 2021, we still observed other lineages maintained in

the population.

Delta emerged faster than Alpha and dominated the
variant landscape
Although Delta rose to dominance within several months of its

emergence (Figure 1), it was unknown how quickly it emerged

relative to Alpha in different populations. We addressed this

knowledge gap by comparing the initial growth rates of Delta

and Alpha across New England. As Alpha and Delta emerged

at different times, we defined their emergence periods as the

90 days following their initial detection in each state (Figure 2A).

We then estimated the logistic growth rate of Alpha and Delta

during their respective state-specific emergence periods

(Figure 2B). We found that Delta emerged faster than Alpha

despite higher vaccination rates during mid-2021.

Although Alpha appeared to initially outpace Delta, as

indicated by its steeper growth curve during the early emergence

period (Figure 2B), we hypothesized that this was due to gaps in

surveillance programs that impeded detection of Alpha but were

addressed before Delta emerged. In some states, the predicted

probability of a given sequence belonging to Alpha is non-zero at

the time of first phylogenetic detection, providing further support

for this hypothesis. As noted previously (Figure 1A), sequencing

coverage improved over time in all states as incident cases

declined. The probability of a given sequenced sample

belonging to Alpha at the start of its emergence period was
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Figure 1. SARS-CoV-2 sequencing coverage and variant frequency tracking

(A) Confirmed cases per 100,000 population (bars) and percentage of cases sequenced (lines) by state (7 day rolling average), January to August 2021. The

variability in percentage of cases sequenced represents changing sample availability and suitability for sequencing. The drop in percentage sequenced at the end

of August does not reflect real decreases in sequencing coverage but instead (1) the 1 to 3 week delays between sample collection and sequence availability and

(2) how the data are plotted using 7 day rolling averages.

(B) Weekly proportion of sequenced genomes belonging to each variant category with 95% confidence intervals, January to August 2021. A breakdown of the

number of genomes (n = 33,408) by state and lineage is included in Tables S1–S3.
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11% in Vermont, 8% in Connecticut, and between 1% and 2% in

the remaining states, indicating that Alpha likely was circulating

for some time before its first detection (Figure 2B). In contrast,

the probability of a given sequenced sample belonging to Delta

was 0% at the start of the emergence period in all states. We

estimated that the logistic growth rate for Delta was 2.63 times

greater than Alpha in Vermont, 2.51 times greater in Connecticut,

1.98 times greater in Rhode Island, 1.95 times greater in Maine,

1.75 times greater in New Hampshire, and 1.37 times greater in

Massachusetts (Figure 2C). From the first sequenced detection,

it took Delta on average 71 days (range across states
54–92 days) to become dominant (to surpass 50% predicted

frequency; Figure 2B). Given that the Alpha and Delta variants

circulating across New England were intermixed, the differences

in the growth rates between states are likely due in part

to population-specific factors. As an initial exploration, we

compared the increase in the logistic growth rate for Delta versus

Alpha with the vaccination rates or estimated infections (Fig-

ure 2A) per state at the start of the Delta emergence period.

We noted an association between the relative emergence speed

of Delta with state vaccination rates; however, states with earlier

Delta detection dates, such as Massachusetts, necessarily have
Cell Reports Medicine 3, 100583, April 19, 2022 3
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Figure 2. Variant logistic growth rates during their respective emergence periods in the context of infections and vaccination

(A) Estimated infections per 100,000 population (gray bars, left axis) and percentage of the population fully vaccinated (black lines, right axis) (7 day rolling

average), with the colored rectangles indicating the 90 day emergence periods for each variant.

(B) Predicted probability of a given sequence belonging to each variant category over time determined by a binomial logistic regression for the variant category as

the outcome and the number of days since the first detection as the predictor, estimating the logistic growth rate for Alpha versus Delta. Shown with 95%

confidence intervals. The analysis is restricted to the first 90 days of emergence in each state as shown in (A). During the Alpha emergence period, we had the

following number of Alpha genomes for each state: Connecticut, n = 1;221; Maine, n = 508;Massachusetts, n = 2;062; NewHampshire, n = 298; Rhode Island, n =

641; and Vermont, n = 466. During the Delta emergence period, we had the following number of Delta genomes for each state: Connecticut, n = 301; Maine, n =

108; Massachusetts, n = 268; New Hampshire, n = 30; Rhode Island, n = 136; and Vermont, n = 82.

(C) The regression coefficients (slopes) of the logistic growth rate from (B) with 95% confidence intervals. A sensitivity analysis varying the emergence periods

by ±30 days is presented in Figure S1 and Table S4.
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lower vaccination rates during the Delta emergence period. We

did not note an association between the relative emergence

speed of Delta and estimated infections per 100,000 population

in each state. Finally, we performed a sensitivity analysis varying

the emergence period by ±30 days from the selected 90 day

emergence period (Figure S1; Table S4). Using a 60 day

emergence period, Delta emerged 1.30–1.57 times faster (range

across states) in all states except Maine and New Hampshire,
4 Cell Reports Medicine 3, 100583, April 19, 2022
where Alpha emerged 2.33 and 4.55 times faster than Delta,

respectively. Using a 120 day emergence period, Delta emerged

1.97–3.30 times faster (range across states).

Delta was more transmissible than Alpha in all New
England states
We showed that Delta emerged faster in New England than

Alpha had previously (Figure 2) and rose to higher levels of
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Figure 3. Comparison of variant effective reproductive numbers to estimate relative transmissibility

(A) Estimated effective reproductive number (Rt) over time for each variant category calculated from the inferred number of infections using EpiEstim.15,16 We

used a multi-step bootstrap sampling approach to generate 1,000 samples containing the estimated number of variant-specific infections. We obtained mean Rt

estimates for each of the 1,000 bootstrapped samples and plotted the overall mean and 95% confidence intervals (2.5% and 97.5% quantiles across the

bootstrapped samples). Note that the y axis differs from that in (B).

(B) Daily mean ratios ofRt values for Delta compared with Alpha from (A). For each bootstrapped sample described in (A), we calculated the daily ratio of the Delta

to Alpha Rt estimates. We plotted the mean across the 1,000 bootstrapped samples and the 95% confidence intervals, calculated the same as in (A). For (A) and

(B), the upper limit of Delta’s confidence intervals in Maine, New Hampshire, and Vermont are not plotted but are displayed in Figures S2B and S2C.
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dominance, almost completely displacing Alpha and other

lineages (Figure 1). However, we still do not know how much

more transmissible Delta was than Alpha when they were co-

circulating and the extent to which our estimates varied across.

To answer this question, we adapted our previously developed

framework to estimate the variant-specific effective reproductive

number (Rt) from inferred SARS-CoV-2 infections.13,15 Our Rt

estimates for each variant approximate the time-varying average

number of secondary cases from a primary infection within a

population. Rt estimates greater than 1 imply that COVID-19
cases associated with variants will increase in the future. We

report the length of the Alpha/Delta co-circulation period

(STARMethods) and estimated mean Alpha and Delta infections

per 100,000 population during the co-circulation period for each

state (Figure S2A). We computed Rt for each variant category

during January to August 2021 (Figure 3A) by combining the

frequency estimates from our genomic surveillance data (Fig-

ure 1B) with daily estimated SARS-CoV-2 infections (Figure 2A).

Specifically, we used a multi-step bootstrapped sampling

approach to generate 1,000 samples containing the estimated
Cell Reports Medicine 3, 100583, April 19, 2022 5
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number of variant-specific infections. Our approach is further

detailed in STAR Methods. Delta had Rt > 1 for the majority of

the time period following its emergence, which exceeded the

Rt estimates for Alpha and other lineages (Figure 3). Our mean

Rt estimates for other lineages was <1 for all states, ranging

from 0.87 to 0.91. Prior to the emergence of Delta, our mean Rt

for Alpha was 1.20 across states, dropping to a mean of 0.78

as vaccination increased during the period following Delta’s

emergence. Our mean Rt estimate for Delta was 1.40, ranging

from 1.27 (New Hampshire) to 1.65 (Vermont). We found that

the Rt for Delta exceeded that of Alpha in all states for the

majority of the time following its initial detection (Figure 3B).

We then estimated that the mean Rt ratio of Delta to Alpha

during their co-circulation period was 2.67 in Vermont, 2.04 in

Maine, 1.92 in New Hampshire, 1.83 in Rhode Island, 1.78 in

Connecticut, and 1.63 in Massachusetts, suggesting that Delta

was 63%–167% more transmissible on average than Alpha

(range across states).

In addition, separately for Delta and Alpha, we calculated the

multiplicative increase in Rt, another measure of relative trans-

missibility (Figure S3).14 For this estimate, we exponentiated

the coefficients from the binomial logistic regression and multi-

plied them by the mean generation interval to estimate the

change in the probability of a given sequence belonging to a line-

age over a generation interval. The multiplicative increase in Rt

for Delta was greater than that for Alpha in all states. Across

states, we observed a mean 1.30 increase in the probability of

a sample belonging to Alpha over a generation interval,

compared with 1.69 for Delta. Our multiplicative increase in Rt

estimates suggests that Delta had the greatest advantage in

Maine (1.99-fold increase) and the lowest advantage in Massa-

chusetts (1.45-fold) (Figure 3C). Differences in transmissibility

estimates between states may be due to a combination of viral,

underlying population, and data factors that are further

described in the Discussion.

Delta infections on average had a larger number of viral
RNA copies than Alpha infections during their
respective emergence periods
One potential mechanism for Delta’s increased transmissibility

relative to Alpha (Figures 2 and 3) is that infections with the Delta

variant could lead to higher virus titers than those with Alpha. To

test this hypothesis, we compared the qRT-PCR cycle threshold

(CT) values of sequence-confirmed Alpha and Delta infections

(anterior nares or nasopharyngeal swabs) available from four

institutes in New England: Yale University (Connecticut), Jack-

son Laboratory (Connecticut), Mass General Brigham (Massa-

chusetts), and the Health and Environmental Testing Laboratory

(Maine) (Figure 4). PCR CT values are a metric of virus RNA

copies, and lower CT values indicate that there are more copies.

We consistently found lower CT values for Delta infections

across all institutes, but some comparisons did not yield signifi-

cant differences.

Importantly, PCR CT values from cross-sectional tests can be

biased by the epidemic period because viral loads are dynamic

and tend to decrease with time.18 During the emergence phase

of an epidemic, most PCR tests come from recent infections,

whereas the opposite is true when the epidemic is declining.
6 Cell Reports Medicine 3, 100583, April 19, 2022
The result is that PCR CT values could be higher (meaning less

virus detected) during the declining phase even though the

infection dynamics are the same throughout the epidemic. We

first investigated if variant-specific PCRCT values change during

different epidemic phases by running a one-way ANOVA for

Alpha and Delta samples (separately) generated by one of the

institutes (Yale University) to test for significant differences

between monthly mean CT values (Figures S4A and S4B). We

found a significant difference for only the Alpha samples. Using

a post hoc Tukey’s honestly significant difference (HSD) test to

investigate pairwise differences in monthly CT values while

controlling for the experiment-wise error rate, we found that for

the Alpha samples, there was a significant difference only for

March versus April. If the epidemic phase were affecting our

mean monthly CT values, we would expect higher CT values

(corresponding to lower viral loads) for April versus March, as

April is further in the declining phase of Alpha. We observe the

opposite, providing further support for our previous finding that

we did not observe evidence of an epidemic phase effect on

our monthly CT values. Still, to account for any effects that the

epidemic period may have on our comparisons, we limited our

analysis to the approximate emergence phase of each variant:

January to March 2021 for Alpha and June to August for Delta.

Furthermore, the PCR CT data that we used from the four

institutes are from different assays and some target different

genes (though most target the nucleocapsid [N] gene). The

Yale University data are from the N1 primer/probe set (originally

from the ‘‘Centers for Disease Control and Prevention [CDC]

assay’’) of a ‘‘research use only’’ assay17; the Health and

Environmental Testing Laboratory data are from the same N1

primer/probe set at Yale but from the OPTI SARS-CoV-2 RT-

PCR Test; the Jackson Laboratory data are from the N gene

primer/probe set of the TaqPath COVID-19 Combo Kit; and the

Mass General Brigham data are from the envelope (E) and

open reading frame 1a (ORF1a) gene primer/probe set of the

Roche Cobas SARS-CoV-2 test. Therefore, we analyzed the

PCR CT values independently for each institute and gene target.

Assessing cross-sectional PCR data from the four institutes,

we consistently found lower mean CT values (more viral RNA

copies) from Delta compared with Alpha nasal swab samples

(Figure 4). The differences were significant from the Yale

University (p % 0.0001) and Jackson Laboratory (p % 0.001)

data, but not from Mass General Brigham and the Health and

Environmental Testing Laboratory (p > 0.05 for each). In addition,

for the Yale University samples, we used a standardized PCR

curve to translate the CT values into viral RNA copies per

milliliter.19 We found 6.2 (95% CI 3.1–10.9) times more RNA

copies per milliliter (non-log scale) on average in Delta anterior

nares swab samples comparedwith Alpha samples (Figure S4C).

Thus, during their respective emergence periods, upper respira-

tory tract samples collected from individuals infected with Delta

on average had higher viral copies than from Alpha infections,

possibly contributing to enhanced transmissibility. An important

limitation of this analysis is that viral load differencesmay change

later in each variant’s epidemic trajectory as PCR tests increas-

ingly come from less recent infections, and thus our findings are

restricted to the respective emergence periods. We discuss our

CT analysis limitations further in the Discussion.
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DISCUSSION

The SARS-CoV-2 variant Delta emerged across the United

States in mid-2021, displacing previous variants, including

Alpha. Assessing the variability in relative emergence growth

rates and transmissibility estimates of Delta versus Alpha across

different settings remains an important public health question.

With more than 3 million SARS-CoV-2 genomes available in

public repositories, large-scale and globally diverse assess-

ments can be conducted. However, there is always a risk

when analyzing diverse sources of data without input from the

data submitters on possible sampling biases (e.g., targeted

sequencing in certain settings or sub-state locations) that may

not be apparent in the repositories. We directly partnered with

SARS-CoV-2 genomic surveillance programs from all six states

in the New England region of the United States (Figure 1) to

confidently assess emergence growth rates and relative

transmissibility at the state level. We found that the logistic

growth rates (Figure 2) and effective reproductive numbers
(Figure 3) of Delta were consistently greater than Alpha across

all New England states, although there was variation among

states.

The estimated initial growth rates for Alpha and Delta

could have been influenced by population factors that differed

between each variant’s respective emergence period. At the

time of Alpha’s emergence in January and February 2021, 0%

of the population across New England was reported as being

fully vaccinated (Figure 2A). In comparison, when Delta first

emerged in March and April 2021, 18%–37% of the population

was fully vaccinated. Estimated infections per 100,000

population were also substantially lower during Delta’s emer-

gence period (Figure 2A). However, with rising vaccination rates,

all of the states began relaxing capacity constraints from late

February to late March 2021. States continued rolling back

COVID-19 mitigation measures with the majority lifted by the

end ofMay 2021, although some statesmaintained indoormask-

ing for unvaccinated individuals.20 The emergence of Delta also

occurred within the background of other variants, including
Cell Reports Medicine 3, 100583, April 19, 2022 7
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Alpha (Figure 1B). Thus, the fitness landscape for SARS-CoV-2

variants may have changed dramatically during 2021, potentially

playing out differently across the states and explaining the large

range in relative growth rates between Delta and Alpha

(Figure 2C). Finally, the initial growth rates are sensitive to the

length of the emergence period (Figure S1). We found

consistently faster relative growth rates for Delta versus Alpha

when using a longer emergence period (120 days instead of

90 days) but hadmixed findingswhen using a shorter emergence

period (60 days instead of 90 days) (Table S4). Shorter emer-

gence periods may exacerbate the potential aforementioned

biases in surveillance between Alpha and Delta, leading to

more variable results. This underscores the importance of

understanding the sequencing context in the early days of a

variant’s emergence when making these estimates.

Our estimates of the transmission advantage (measured as the

mean Rt ratio of Delta to Alpha) for Massachusetts (63%) and

Connecticut (78%) were within the 40%–80% estimate range

provided by the United Kingdom.11 We estimated a greater

transmission advantage for Delta in Rhode Island (83%), New

Hampshire (92%), Maine (104%), and Vermont (167%). This

variation may be driven by differences in the underlying state

populations, such as population density, vaccination rates,

travel patterns, control measures, behaviors, and competing

variants in circulation. In addition, the differences could reflect

the noisier Delta Rt estimates we observed for states with fewer

infections and, as a result, fewer genomic sequences. In

particular, we noted wide confidence intervals around the Delta

Rt estimates for Maine, NewHampshire, and Vermont, the states

with the greatest Delta to Alpha transmission advantage

(Figures S2B and S2C). It is possible that additional sequencing

data from these states would bring their estimates of relative

transmissibility more in line with those from other locations.

Our study adds to the growing evidence that Delta may be

more transmissible in part by causing higher viral loads during

acute infections.21–25 We found significantly lower mean PCR

CT values (corresponding to more viral RNA copies) for Delta

versus Alpha infections from nasal swab samples tested by

YaleUniversity and JacksonLaboratory inConnecticut (Figure 4).

The overall pattern of lower CT values for Delta versus Alpha held

for the Massachusetts and Maine data, although the differences

in mean values were not significant. This may be due to relatively

small sample sizes for Alpha in those locations, specimen type

used for analysis (anterior nares vs. nasopharyngeal swab),

and/or changing CT cutoff criteria for sequencing (e.g., the Alpha

CT values from Mass General Brigham do not extend above 31,

suggesting a stringent cutoff). For the Yale data, we used a

standardized curve to translate the CT values into virus copies

and found that Delta samples had on average 6.2 (95% CI

3.1–10.9) times more viral RNA copies per milliliter than

Alpha samples during their respective emergence periods

(Figure S4C).

In conclusion, although we determined that the Delta SARS-

CoV-2 variant emerged faster and was more transmissible than

Alpha in New England, there was heterogeneity in our estimates

across states. Our analysis demonstrated that, in addition to

possible innate differences between variants, theremay be other

factors at play such as vaccination levels, transmission levels,
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demographics, behavior, control measures, and sequencing

data availability that affected each variant’s estimated

transmissibility within a given population. Finally, state

sequencing volumes and coverage variability may be partly

behind the range of estimates that we observed. The exact

mechanisms driving differences in variant transmissibility among

states are unclear, but these factors remain important when

considering how another variant might rise to dominance in the

future and the sequencing data required to accurately assess

its ascent. It is impossible to predict when and where the next

variant of concern will emerge, as the explosive recent

emergence of Omicron has shown, and thus it is important to

enhance SARS-CoV-2 genomic surveillance and further our

understanding of how different population characteristics and

sequencing data availability affect variant transmissibility

estimates.

Limitations of the study
An important limitation to our comparative analyses was that

sequencing coverage improved in states over time (Figure 1A),

and thus there may have been a greater delay in the time

to the first sequenced detection for Alpha versus Delta. In addi-

tion, because of the uncertainty around the serial interval, we

selected an uncertain serial interval approach to explore various

possible distributions when calculating Rt (STAR Methods). Our

state-specific results should be considered within the context of

their variability in sequencing coverage and the volume of se-

quences. Overall, the states with the greatest Delta to Alpha

transmission advantage (Vermont, Maine, and New Hampshire)

also had the widest confidence intervals around their Rt esti-

mates (Figures S2B and S2C), reflecting the challenges of esti-

mating variant-specific Rt values when relatively few genomic

sequences are available. In particular, Vermont had more

variable sequencing coverage because of low case counts,

and its results should be interpreted cautiously (Figure 1A).

Thus, variant frequencies based on a relatively small number of

sequences are likely driving some of the uncertainty around Rt

estimates and variability across states (Figures 3A, S2B, and

S2C). In addition, we did not account for the lag between the

time of estimated infections and when the sequenced samples

were collected, but we do not believe that this would have a

substantial impact on our Rt estimates, particularly given the

21 day sliding window we used. We conducted our analysis at

the state level, however there could be within-state heterogene-

ity in our estimates. Drivers of heterogeneity could include a lack

of even sequencing coverage across each state. We attempted

to assess the within-state location of each sequence used in our

analysis, but only the state location was typically available

among publicly available data. In addition, there could be

differences in population demographics, behavior, immunity,

and/or control measures at more local levels that could lead to

more heterogeneous estimates.

For the PCR CT analysis, we necessarily used only confirmed

variant sequence data, which represents a fraction of the total

PCR CT data and is biased against higher CT values that lack

sufficient virus RNA for sequencing. It is also important to be

cautious in interpreting CT values among institutes because of

differences in the diagnostic PCR test platforms, specimen types
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included, and subsequent CT cut-off values. For this reason, we

did not aim to directly compare institutes but rather sought to

establish whether an overall pattern of lower CT values for Delta

versus Alpha samples held. Mean CT values can also be

influenced by the epidemic trajectory, as discussed previously.

To assess whether we observe this in our data, we plotted Alpha

and Delta CT values (separately) by month for the Yale data

(Figures S4A and S4B) and did not find a pattern in monthly

mean CT values indicative of a bias due to the epidemic

trajectory. To further control for possible differences in CT

values driven by the epidemic trajectory, we also limited our

comparison of mean viral loads between variants to only the

initial 3 months following their respective emergence. Additional

patient metadata such as estimated time since infection would

enable a more extensive analysis in differences in variant viral

loads.
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35. O’Toole, Á., Scher, E., Underwood, A., Jackson, B., Hill, V., McCrone, J.T.,

Colquhoun, R., Ruis, C., Abu-Dahab, K., Taylor, B., et al. (2021). Assign-

ment of epidemiological lineages in an emerging pandemic using the

pangolin tool. Virus Evol. 7, veab064.

36. Rambaut, A., Holmes, E.C., O’Toole, Á., Hill, V., McCrone, J.T., Ruis, C.,
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Deposited data

SARS-CoV-2 genomes GISAID https://www.gisaid.org/

Confirmed COVID-19 cases Johns Hopkins Center for Systems

Science and Engineering

https://github.com/CSSEGISandData/COVID-19

Estimated COVID-19 infections Covidestim https://covidestim.org/

2019 U.S. state populations United States Census Bureau https://www.census.gov/

State population vaccination percentages Centers for Disease Control and

Prevention

https://data.cdc.gov/

Software and algorithms

R RStudio: Integrated

Development for R

Version 1.4.1106

EpiEstim: Estimate Time Varying Reproduction

Numbers from Epidemic Curves (R Package)

Cori et al., 2013 Version 2.2-4

Other

Connecticut SARS-CoV-2 PCR CT values Yale University, Jackson Laboratory https://github.com/grubaughlab/2021_paper_

Delta-v-Alpha

Massachusetts SARS-CoV-2 PCR

CT values

Mass General Brigham https://github.com/grubaughlab/2021_paper_

Delta-v-Alpha

Maine SARS-CoV-2 PCR CT values Health and Environmental

Testing Laboratory

https://github.com/grubaughlab/2021_paper_

Delta-v-Alpha
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and data should be directed to and will be fulfilled by the lead contact, Dr. Nathan

Grubaugh (nathan.grubaugh@yale.edu).

Materials availability
This study did not generate any unique reagents, but raw data and code for this study can be found in the Supplemental Materials and

via the resources specified in Data and Code Availability.

Data and code availability
A summary of the SARS-CoV-2 lineages used from GISAID are available in Tables S1–S3. A complete list of GISAID acknowledge-

ments and all original code and data have been deposited at Github and are publicly available as of the date of publication (https://

github.com/grubaughlab/2021_paper_Delta-v-Alpha). Any additional information required to reanalyze the data reported in this pa-

per is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement
Yale University (Connecticut)

The Institutional Review Board from the Yale University Human Research Protection Program determined that the RT-qPCR testing

and sequencing of de-identified remnant COVID-19 clinical samples obtained from clinical partners conducted in this study is not

research involving human subjects (IRB Protocol ID: 2000028599).

Jackson Laboratory (Connecticut)

The Institutional Review Board of The Jackson Laboratory determined that use of de-identified residual COVID-19 clinical samples

obtained from the Clinical Genomics Laboratory for RT-qPCR testing and sequencing for this study is not research involving human

subjects (IRB Determination: 2020-NHSR-021).
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Mass General Brigham (Massachusetts)

The Institutional Review Board of Partners Human Research determined that the use of excess, de-identified COVID-19 clinical

specimens obtained within the Partners Healthcare network for RT-qPCR testing and genomic sequencing for this study is not

research involving human subjects (IRB Protocol ID: 2019P003305). In addition, the Institutional Review Board of the Massachusetts

Department of Public Health has reviewed and approved this study to perform genomic sequencing of coronaviruses (IRB Protocol

ID: 1603078).

Health and Environmental Testing Laboratory (Maine)

A Memorandum of Understanding between The State of Maine Department of Health and Human Services and The Jackson

Laboratory determined that extracted viral RNA from human respiratory specimens which have tested positive for SARS-CoV-2

and are used for sequencing will not be used in human subjects, in clinical trials, or for diagnostic purposes involving human subjects.

METHOD DETAILS

Growth rates and transmissibility estimation
Genomic surveillance data

Weobtained SARS-CoV-2 genomic sequence data fromGISAID as of August 13, 2021.26–28We restricted the dataset to our states of

interest (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont) and removed sequences that lacked a

lineage assignment (N = 4977), had mismatched metadata for the sample collection location (N = 81), or were outside of our January

1, 2021 - August 1, 2021 time period of interest (N = 4260). This yielded a final dataset of 33,408 genomes.We categorized theGISAID

SARS-CoV-2 genomes into 3 mutually exclusive categories: Alpha (B.1.1.7), Delta (B.1.617.2 and all AY.x sub-lineages existing as of

August 13, 2021), and Other (any sequences not included in the prior categories that had a lineage assignment). A breakdown of the

number of genomes by state and lineage is included in Tables S1–S3.

Confirmed cases per 100K population

We obtained confirmed case data from the Johns Hopkins Center for Systems Science and Engineering.29 We used state population

estimates for 2019 from the United States Census Bureau to calculate confirmed cases per 100K population (Figure 1A).30

Percent of the population fully vaccinated

We obtained the percent of the state populations that were fully vaccinated from the Centers for Disease Control and Prevention

(dataset downloaded August 11, 2021) (Figure 2A).31

Infections per 100K population

We obtained estimated infections for each state from Covidestim, a Bayesian nowcasting approach that accounts for differences in

diagnosis and reporting by anchoring its estimates to death data, which are generally more reliable than case data (dataset

downloaded November 11, 2021).15 We used state population estimates for 2019 from the United States Census Bureau to calculate

estimated infections per 100K population (Figure 2A).30

RT-qPCR and lineage identification
Yale University (Connecticut)

Clinical samples (anterior nares in viral transport media) were received from confirmed SARS-CoV-2 positive individuals from routine

testing provided by Yale New Haven Hospital. The samples were primarily from Connecticut and were collected for a variety of

inpatient and outpatient testing programs. Nucleic acid was extracted from 300 mL of the original sample using the MagMAX viral/

pathogen nucleic acid isolation kit, eluting in 75 ml of elution buffer. The extracted nucleic acid was tested for SARS-CoV-2 RNA using

a ‘‘research use only’’ (RUO) RT-qPCR assay.17 For this analysis, only the CT values from the CDC N1 primer/probe set were used

(Figure 4). N1 CT values were also converted into SARS-CoV-2 RNA copies using a standard curve, as previously described

(Figure S4C).19

To determine the SARS-CoV-2 lineage, samples with CT values % 35 were sequenced using the Illumina COVIDSeq Test RUO

version. Amplicons were pooled and cleaned before quantification with Qubit High Sensitivity dsDNA kit. The resulting libraries

were sequenced using a 2x150 approach on an Illumina NovaSeq at the Yale Center for Genomic Analysis. Each sample was given

at least 1 million reads. Samples were typically processed in sets of 93 or 94 with negative controls incorporated during the RNA

extraction, cDNA synthesis, and amplicon generation steps. The reads were aligned to the Wuhan-Hu-1 reference genomes

(GenBank MN908937.3) using BWA-MEM v.0.7.15.32 Adaptor sequences were trimmed, primer sequences were masked, and

consensus genomes were called (simple majority >60% frequency) using iVar v1.3.133 and SAMtools.34 An ambiguous ‘N’ was

used when fewer than 20 reads were present at a site. In all cases, negative controls were analyzed and confirmed to consist of

at least 99% Ns. Pangolin v.2.4.235 was used to assign lineages.36

Jackson Laboratory (Connecticut)

Clinical samples were received in The Jackson Laboratory Clinical Genomics Laboratory (CGL) as part of a statewide (Connecticut)

COVID-19 surveillance program, with the majority of samples representing asymptomatic screening of nursing home and assisted

living facility residents and staff. Total nucleic acids were extracted from anterior nares swabs in viral transport media or saline
Cell Reports Medicine 3, 100583, April 19, 2022 e2
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(200 mL) using the MagMAX Viral RNA Isolation kit (ThermoFisher) on a KingFisher Flex purification system. Samples were tested for

the presence of SARS-CoV-2 RNA using the TaqPath COVID-19 ComboKit (ThermoFisher). For this analysis, only the CT values from

the N gene primer/probe set were used (Figure 4).

Samples with CT values % 30 for the N gene target were prepared for sequencing using the Illumina COVIDSeq Test kit.

Sequencing was performed on an Illumina NovaSeq or NextSeq in the CGL. Data analysis was performed using the DRAGEN COVID

Lineage App in BaseSpace Sequence Hub. Sequences with >80% of bases with non-N basecalls andR1500-fold median coverage

were considered successful and were submitted to GISAID. Lineages were assigned using pangolin v.2.4.235 and the most current

version of the pangoLEARN assignment algorithm.

Mass General Brigham (Massachusetts)

Clinical samples were received from confirmed SARS-CoV-2 positive tests collected at Massachusetts General Brigham testing

facilities during routine testing, via nasopharyngeal swabs in viral or molecular transport media. Clinical samples included in the

analysis were tested for the presence of SARS-CoV-2 RNA using the Roche Cobas SARS-CoV-2test on the 6800 system, targeting

both the E and ORF1a genes. CT values were analyzed independently for both the E (Figure 4) and ORF1a (Figure S4D) gene primer/

probe sets.

Genomic sequencing was conducted on clinical samples with CT values %30 using the Illumina COVIDSeq Test protocol. The

resulting libraries were pooled, cleaned, and quantified using the Qubit High Sensitivity dsDNA kit. Sequencing was performed at

Massachusetts General Hospital or at the Broad Institute of MIT and Harvard using a 2x150 approach on an Illumina NovaSeq

SP, an Illumina NextSeq 550, or an Illumina NextSeq 2000. Sequences were analyzed through the Broad Institute Data Analysis Plat-

form using the viral-ngs 2.1.28 on the Terra platform (app.terra.bio). All of the workflows named below are publicly available via the

Dockstore Tool Registry Service (dockstore.org/organizations/BroadInstitute/collections/pgs). Sequences with an assembly length

>24000 non-N bases were considered complete genomes. Lineages were assigned using the most up-to-date version of the

pangoLEARN assignment algorithm.

Health and Environmental Testing Laboratory (Maine)

Clinical samples (anterior nares swabs in viral transport media) were received from confirmed SARS-CoV-2 positive tests collected at

the State of Maine Department of Health and Human Services testing facilities (Health and Environmental Testing Laboratory (HETL))

during routine testing. Viral RNA were extracted on a Thermofisher KingFisher Flex purification using the MagMAX Viral/Pathogen II

Nucleic Acid Isolation Kit. Extracted samples were tested for the presence of SARS-CoV-2 RNA using the OPTI SARS-CoV-2

RT-PCR Test (OPTI Medical Systems) with the ABI 7500fast DX thermocycler. For this analysis, only the CT values from the N1

gene primer/probe set were used (Figure 4).

Prior to sequencing, samples were not reanalyzed for the presence of SARS-CoV-2 RNA. HETL utilized the QIAseq DIRECT SARS-

CoV-2 Kit from Qiagen for targeted whole genome library preparation. Samples were sequenced on an Illumina MiSeq using a

MiSeq� Reagent Kit v2 (300 cycle) kit. QIAGEN CLC Genomics Workbench was used to assemble viral genomes. Consensus

sequences were uploaded to Nexstrain and Pango for quality control, strain and clade identification.

Additional SARS-CoV-2 positive samples from HETL were sequenced by the Jackson Laboratory (Maine) using the Illumina

COVID-Seq protocol modified to include 6e2 copies/mL of a unique SDSI control spiked into each cDNA sample. Samples were

sequenced on a NextSeq500 using paired 75 bp reads by the Genome Technology group on Jackson Laboratory’s Bar Harbor

campus. Sequence reads were analyzed using an in-house pipeline (https://github.com/tewhey-lab/SARS-CoV-2-Consensus)

that leverages minimap2, samtools and iVar for read mapping and variant calling. Sequences with >80% non-N bases were

considered complete genomes for analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

We used RStudio (v 1.4.1106) for all analyses and figures.37 Statistical details are available in figure legends and in the below STAR

Methods section.

Growth rates and transmissibility estimation
Sequencing coverage

We calculated sequencing coverage per state as the number of curated sequenced genomes made publicly available on GISAID

divided by the number of confirmed cases, and plotted the data based on the sample collection date using a 7-day rolling average

(Figure 1A).

Variant frequencies among sequenced samples

We divided the number of sequences belonging to each variant category (Delta, Alpha, or Other) by the total number of sequences

with an assigned lineage to estimate variant frequencies. We calculated a Jeffreys’ interval, using the resulting 0.025 and 0.975

quantiles to form a 95% confidence interval (Figure 1B).

Logistic growth rates

We first defined the emergence period for Alpha versus Delta in each state as the time from each variant category’s first phylogenetic

detection in the GISAID data to 90 days afterward. We ran a binomial logistic regression for Alpha and Delta, separately, with the

variant category as the outcome and the number of days since the first detection as the predictor. We plotted the smoothed fitted
e3 Cell Reports Medicine 3, 100583, April 19, 2022
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curves for the emergence periods with their 95% confidence intervals (Figure 2B), which shows the probability of a given sequence

belonging to a specific variant category over time. We also reported the logistic regression coefficients as the log odds of a given

sequence belonging to a specific variant category (Figure 2C). Finally, we ran a sensitivity analysis varying the emergence

period +/� 30 days from our selected 90-day period (Figure S1 and Table S4). In Table S4, we report the ratio of the regression

coefficients (slopes) of the logistic growth rate shown in Figure S1 for Delta versus Alpha for each state and emergence period.

Effective reproductive number Rt estimates and Rt ratios

To reflect the uncertainty around whether our sampled variant frequencies were representative of the full unknown population of

infections, we took a multi-step bootstrapping approach. First, we drew the number of variant-specific genomes Yiv from a

multinomial distribution where the number of independent trials was equal to the total number of sequences on day i and the

probability of a sequence on day i belonging to variant v being equal to its frequency on day i. We then calculated the sample

probability Piv of variant v on day i. We repeat this sampling process 1,000 times.

Yi;v � MultðSi; pÞ
Yi;v = number of sequences on day i belonging to variant v

Si = total number of observed sequences on day i

p= ðpi; alpha; pi; delta; pi; otherÞ=probability of a sequence on day i belonging to variant v

pi;v =
Xi;v

Si

=proportion of total sequences on day i belonging to variant v

Pi;v =
Yi;v

Si

= sample probability of variant v on day i

Next, using our sampled variant proportions, we sampled again from a multinomial distribution 1,000 times. In this case, the

number of independent trials was equal to the number of estimated infections on day i and the probability of an infection on day i

belonging to variant v being equal to its sample probability Piv. The result for each sample was a time series of the estimated number

of Alpha, Delta, and Other infections. We applied a 7-day rolling average to these data to account for day-of-the-week differences in

sequence reporting.

Zi;v � MultðIi;PÞ
Zi;v = number of estimated infections on day i belonging to variant v
Ii = total number of estimated infections on day i
P= ðPi; alpha;Pi; delta;Pi; otherÞ=probability of an infection on day i belonging to variant v

Finally, following a previous approach used to estimate the comparative transmissibility of SARS-CoV-2 variants,13 we ran each

time series through the EpiEstim R package16 to obtain our mean Rt estimates. Within EpiEstim, we used an uncertain serial interval

to estimate Rt over 21-day sliding windows, with the mean serial interval of 5.2 days (allowed to vary between 2.2 and 8.2 days) and a

standard deviation of 4 days (allowed to vary between 2.5 and 5.5 days) based on estimates available in the literature.38–40 For

Vermont, we removed a single ‘Other’ variant category sequence on July 21, 2021 (after the ‘Other’ variant category had died

out) that was leading to highly inflated Rt estimates. We began Rt estimation when there were at least 12 cumulative estimated

infections to achieve a posterior coefficient of variation of 0.325 and restricted estimation to before August 1, 2021 as variant

frequencies became less certain after that time due to delays in sequencing and reporting. We further truncated the variant-specific

Rt estimates in states where estimated variant-specific infections went consistently to 0 (i.e. died out). EpiEstim assumes an

uninformative prior for mean Rt of 5, ensuring that when there are few infections (e.g., zero variant-specific infections for the majority

of the 21-day estimation window) the prior becomes disproportionately weighted relative to the data. As a result, in the case of a

lineage die-out, Rt estimates erroneously seem to increase. Therefore, we truncated the Rt estimates at the date where the lineage

died out. For Alpha Rt estimates, we truncated the following states: Connecticut (July 24, 2021), Maine (July 13, 2021), New

Hampshire (July 23, 2021), Rhode Island (July 17, 2021), and Vermont (July 11, 2021). For Other Rt estimates, we truncated the

following states: New Hampshire (July 20, 2021), Rhode Island (July 25, 2021), and Vermont (June 25, 2021). We did not truncate

any of the Delta Rt estimates as Delta infections grew in all states during our studied time period. We used the same serial interval

parameters for all variant categories due to the lack of consensus regarding differences.41,42 We reported the resulting mean Rt

estimates across the 1,000 samples and the 95% confidence intervals, calculated as the 2.5 and 97.5% quantiles across the

1,000 mean Rt estimates (Figure 3A). We plotted the daily mean Rt ratio and 95% confidence intervals for Delta versus Alpha over

time (Figure 3B). The mean Alpha/Delta co-circulation period across bootstrapped samples was 94 days for Connecticut, 76 for

Maine, 121 for Massachusetts, 97 for New Hampshire, 87 for Rhode Island, and 70 for Vermont. We plotted the mean estimated

Alpha and Delta infections per 100K during this time period in Figure S2A.

Multiplicative reproductive number estimates

Separately for Alpha and Delta, we calculated themultiplicative increase inRt, a measure of relative transmissibility bymultiplying the

coefficients from the previously described binomial logistic regression by the mean generation interval, 5.2 days, and exponentiating

to get an estimate of the increase in the probability of a given sequence belonging to a lineage over a generation interval.14We plotted
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this against the log-transformed p value associated with each coefficient (Figure S3) to provide the level of support for the

multiplicative value estimate.

RT-qPCR CT value and virus RNA comparisons

We binned the RT-qPCR CT and virus RNA data (separately) for Alpha (January-March 2021) and Delta (June-August 2021) samples

and compared the group means for each institute using a t-test, with statistical significance symbols corresponding to the following

values: ns (p > 0.05), * (p% 0.05), ** (p% 0.01), *** (p% 0.001), **** (p% 0.0001) (Figures 4, S4C, and S4D). For the monthly analysis,

we ran a one-way ANOVA test for Alpha and Delta samples (separately) to test for significant differences between monthly mean CT

values (Figures S4A and S4B). For the Alpha samples, which returned a significant result, we ran post hoc Tukey’s HSD test to

investigate pairwise differences in monthly CT errors while controlling for the experiment-wise error rate. To calculate the ratio of

mean Alpha to mean Delta virus RNA copies per mL during their respective emergence periods, we sampled with replacement

(with size equal to each variant’s sample size), took the mean for Alpha and Delta separately, and calculated the ratio. We repeated

this 1,000 times and took the mean, 2.5%, and 97.5% quantiles across the samples. We reported the resulting mean and 95%

confidence intervals.
e5 Cell Reports Medicine 3, 100583, April 19, 2022


	Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA
	Introduction
	Results
	Genomic surveillance revealed similar variant frequency trajectories across New England
	Delta emerged faster than Alpha and dominated the variant landscape
	Delta was more transmissible than Alpha in all New England states
	Delta infections on average had a larger number of viral RNA copies than Alpha infections during their respective emergence ...

	Discussion
	Limitations of the study

	Consortia
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Ethics statement
	Yale University (Connecticut)
	Jackson Laboratory (Connecticut)
	Mass General Brigham (Massachusetts)
	Health and Environmental Testing Laboratory (Maine)


	Method details
	Growth rates and transmissibility estimation
	Genomic surveillance data
	Confirmed cases per 100K population
	Percent of the population fully vaccinated
	Infections per 100K population

	RT-qPCR and lineage identification
	Yale University (Connecticut)
	Jackson Laboratory (Connecticut)
	Mass General Brigham (Massachusetts)
	Health and Environmental Testing Laboratory (Maine)


	Quantification and statistical analysis
	Growth rates and transmissibility estimation
	Sequencing coverage
	Variant frequencies among sequenced samples
	Logistic growth rates
	Effective reproductive number Rt estimates and Rt ratios
	Multiplicative reproductive number estimates
	RT-qPCR CT value and virus RNA comparisons





