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Pharmacometabolomics Informs About Pharmacokinetic
Profile of Methylphenidate

Rima Kaddurah-Daouk1,2, Thomas Hankemeier3,4, Elizabeth H. Scholl11, Rebecca Baillie6, Amy Harms3,4, Claus Stage7,
Kim P. Dalhoff7, Gesche J}urgens8, Olivier Taboureau9, Grace S. Nzabonimpa10, Alison A. Motsinger-Reif5,11,
Ragnar Thomsen12, Kristian Linnet12, Henrik B. Rasmussen13,14, INDICES Consortium† and
Pharmacometabolomics Research Network

Carboxylesterase 1 (CES1) metabolizes methylphenidate and other drugs. CES1 gene variation only partially explains
pharmacokinetic (PK) variability. Biomarkers predicting the PKs of drugs metabolized by CES1 are needed. We identified
lipids in plasma from 44 healthy subjects that correlated with CES1 activity as determined by PK parameters of
methylphenidate including a ceramide (q value 5 0.001) and a phosphatidylcholine (q value 5 0.005). Carriers of the CES1
143E allele had decreased methylphenidate metabolism and altered concentration of this phosphatidylcholine
(q value 5 0.040) and several high polyunsaturated fatty acid lipids (PUFAs). The half-maximal inhibitory concentration (IC50)
values of chenodeoxycholate and taurocholate were 13.55 and 19.51 lM, respectively, consistent with a physiological
significance. In silico analysis suggested that bile acid inhibition of CES1 involved both binding to the active and superficial
sites of the enzyme. We initiated identification of metabolites predicting PKs of drugs metabolized by CES1 and suggest lipids
to regulate or be regulated by this enzyme.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
� The activity of CES1, the enzyme responsible for

degrading MPH, is highly variable. The underlying con-

tributors to that variability are unclear.
WHAT QUESTION DID THIS STUDY ADDRESS?
� This study shows that the PKs of MPH may be used

to identify metabolic pathways, which regulate CES1

activity or are regulated by CES1.
WHAT DOES THIS STUDYADD TO OUR KNOWLEDGE?
� The present study identified CES1 as a potential

regulator of the concentration of EPA, an anti-

inflammatory fatty acid, in lipids. It also identified bile
acids that were correlated with the PK of MPH and
subsequently shown to inhibit CES1 activity in vitro.
Finally, the study has linked MPH PK and plasma
lipid concentrations to CES1 genotype and apparent
enzyme activity.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� Metabolomics is a tool, which may be able to identify
metabolic pathways contributing to variability in drug
concentration.

Methylphenidate (MPH) is a central nervous system stimu-

lant used in the treatment of attention deficit hyperactivity

disorder.1 Its medical use began in 1960; the drug became

increasingly prescribed by the late 1980s and early 1990s

when the diagnosis of attention deficit hyperactivity disorder

itself became more widely accepted and prevalent.2 Up to

30% of patients treated with MPH either do not achieve the

desired improvement in symptom severity or are intolerant

to the treatment.3

The individual variation in the response to MPH is poorly

understood but factors affecting the activity of CES1 may

be important in determining individual variation in plasma

concentration and clinical outcome of the drug.4

The pharmacokinetic (PK) properties of a drug are deter-

mined by the processes of its absorption, distribution,

metabolism, and excretion. Among these, the metabolism

is particularly interesting because the activity of several

drug metabolizing enzymes are significantly influenced by
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variation in the genes coding them.5–7 This opens up for
the use of genotyping of drug metabolizing enzymes to pre-
dict PKs and potentially provide information about decrease
in efficacy or susceptibility to adverse reactions.6,7

Carboxylesterase 1 (CES1) is a hydrolase, and is the

principal enzyme in the metabolism of commonly pre-

scribed drugs, such as MPH,8 clopidogrel,9 and the

angiotensin-converting enzyme inhibitor prodrugs.10,11 This

enzyme has also been implicated in the metabolism of

endogenous compounds, such as esters of cholesterol and

triglycerides.12 Besides serving as potential substrates for

CES1, endogenous molecules with a cholesterol-like struc-

ture have been implicated in the regulation of the activity of

the enzyme by allosteric binding to its superficial ligand

binding site, the so-called Z-site.13–15

Some individuals carry a hybrid of carboxylesterase 1

pseudogene 1 (CES1P1) and a segment of CES1. This

hybrid has been designated CES1A2, whereas CES1 fre-

quently is referred to as CES1A1.16,17 Collectively, CES1A1

and CES1A2 are often referred to as CES1A. CES1A2 is

composed of the promoter and exon 1 of CES1P1 and a

duplicated segment of CES1 containing exons 2–14.

Because the most common promoter in CES1A2, is mark-

edly weaker than that of CES1A1, presence of CES1A2 is

usually not associated with significantly increased amounts

of CES1 mRNA.16 However, there is a promoter haplotype

of CES1A2 with a CES1A1-derived segment containing two

overlapping Sp1 sites that exhibits significantly higher tran-

scriptional activity as compared with CES1A2 haplotypes

without these sites, the high-activity promoter.18 Several

single nucleotide polymorphisms (SNPs) of CES1 have

been reported, including rs71647871, also designated

G143E or p.Gly143Glu as it leads to a change of glycine to

glutamic acid at position 143, a variation that has been

associated with a significantly decreased rate of drug

metabolism.19,20 Another variant, CES1A1c, is a haplotype

defined by a series of SNPs, preferentially located in exon

1, that has been associated with reduction in CES1 mRNA

expression but without marked impact on drug metabolizing

activity.21,22

Because the frequencies of variants of CES1 with a func-

tional impact are low (Ferrero-Milliani, unpublished) it is

likely that variation in this gene explains only a relatively

small proportion of the variation in the PKs of MPH. Hence,

other types of biomarkers may be required for prediction of

the kinetics of drugs metabolized by CES1 on the individual

level.
Using metabolomics approaches, totally new insights

have been gained about the mode of action of a variety of

drugs and the mechanisms implicated in variation in

response to treatment with key classes of therapies, includ-

ing antidepressants,23 statins,24 and antihypertensives.25

Accordingly, metabolomics is a tool, which may prove

helpful in the identification of biomarkers for prediction of

drug response.
Several enzymes implicated in drug metabolism also

have endogenous substrates.26,27 Knowledge about endog-

enous substrates and small molecules of endogenous ori-

gin modulating the activity of such an enzyme may provide

clues to the identification of biomarkers in the blood that

correlate with its activity in the liver.28

The aim of the present study was to identify predose

endogenous metabolites that correlate with the PKs of

MPH and variation in the gene encoding CES1, the princi-

pal enzyme in the metabolism of this drug, besides gaining

new insights into the physiological role of this enzyme.

MATERIALS AND METHODS
Study design, sampling, genetic analyses, and

pharmacokinetic analyses
Data from a previous study in which we investigated the

influence of variation in the gene encoding CES1 on the PK

variables of MPH in 44 healthy volunteers,29 were made

available to the present study. In brief, the 44 volunteers,

consisting of 19 men and 25 women aged 20–29 years and

with a body mass index ranging from 18–28, had been

selected from a total of 200 recruited subjects on the basis

of CES1 genotyping and classified into six CES1 genotype

groups, which included the CES1 wildtype genotype and

five genotypes of CES1 with presumed or documented

effect on drug metabolism. These six groups were desig-

nated 1–6 and consisted of group 1: wild type with 2 copies

of CES1 and without nonsynonymous SNPs, n 5 16; group

2: carriers of four CES1 copies including two CES1A2

copies, n 5 5; group 3: carriers of the 143E allele

(rs71647871), n 5 6; group 4: carriers of three CES1 copies

including one CES1A2 copy with overlapping Sp1 sites con-

ferring increased transcriptional activity, n 5 2; group 5: car-

riers of the CES1A1c variant, n 5 4; and group 6: carriers

of three copies of CES1 including one CES1A2 copy, which

carries the common and low-activity promoter, n 5 10. One

of 17 subjects with the wild-type genotype caught a cold

with fever and did not complete the study according to

the protocol. Hence, this group consisted of 16 subjects.

The characteristics of the study subjects in the six geno-

type groups are listed in Table S1. The study had been

designed as a prospective, open labeled, single armed trial

in which the subjects from all genotype groups received a

single dose of 10 mg MPH (Ritalin; Novartis, Basel, Switzer-

land) after a standardized breakfast. Serial blood samples

for analysis of plasma concentrations of MPH (d-MPH and

l-MPH) and its metabolites, which are d-ritalinic and l-ritalinic

acid (d-RA and l-RA), were collected 0.5, 1, 1.5, 2, 2.5, 3,4,

6, 8, 10, 24, and 33 hours after dose administration. Non-

compartmental methods were used to determine area under

the curve (AUC)0-inf, area under the concentration-time curve

from time 0 to infinity; Cmax, the maximum post-dose con-

centration; Tmax, time at which Cmax occurs; and t1=2, termi-

nal elimination half-life of d-MPH, l-MPH, d-RA, and l-RA.

We examined whether these PK variables differed between

CES1 genotypes using an unpaired Wilcoxon Test with cor-

rection by the Benjamini & Hochberg method to control for

false discovery rates based on significance set to q< 0.2.30

The PK variables of the six genotype groups are listed in

Table S2.
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Samples for metabolomics profiling
Blood samples for metabolomics profiling had been col-

lected immediately before the standardized breakfast using

4-mL tubes containing EDTA (Becton Dickinson). After cen-

trifugation of the tubes, plasma was harvested and immedi-

ately frozen by submergence in a mixture of ethanol and

dry ice. The plasma samples were stored at 2808 until

analysis.

Metabolomics profiling: liquid chromatography and

mass spectroscopy targeted metabolomics analyses
Targeted metabolomics analyses, summarized below, were

performed using standard operating procedures based on

previously published methods. More detailed method

descriptions and target lists are given in the Supplemen-

tary Material.

Biogenic amine profiling
Internal standards were added to 5 ll plasma, reduced with

tris(2-carboxyethyl)phosphine, extracted via a protein pre-

cipitation step, and derivatized using AccQ-Tag (Waters

Chromatography, Etten-Leur, The Netherlands), after which

the samples were analyzed using an AccQ-Tag Ultra col-

umn coupled to a Xevo-TQS ultra-performance liquid

chromatography-tandem mass spectrometry system

(Waters Chromatography).31

Positive and negative lipid profiling
We took 10-lL and 20-lL plasma samples that were spiked

with calibration and internal standards and extracted using

isopropyl alcohol (for the positive lipid platforms) or metha-

nol (for the negative lipid platforms). Samples were ana-

lyzed using an ACQUITY UPLC system with an HSS T3

column coupled to a 6530 Accurate Mass QToF (Agilent

Technologies, Santa Clara, CA).32

Bile acid profiling
Bile acid extraction was performed by adding methanol con-

taining internal standards to 50 lL plasma. Samples were

analyzed using an ACQUITY UPLC system with an HSS

T3 column coupled to a 6530 Accurate Mass QToF (Agilent

Technologies).
Following liquid chromatography-mass spectrometry anal-

ysis, data was preprocessed by performing peak inte-

gration, background correction, and determination of the

relative ratios between metabolites and their corresponding

internal standards. The metabolite units were expressed as

the peak area ratios of the target analyte to the respective

internal standard. An in-house written tool was applied

using the QC samples to compensate for shifts in the sen-

sitivity of the mass spectrometer throughout the batches.

Both internal standard correction and QC correction were

applied to the dataset before reporting results. Quality

assurance of metabolite measurements was performed

using the QC relative standard deviation (RSDqc). For

amines, reported compounds had an RSDqc <15%, for

positive and negative lipids RSDqc <20%, and for bile

acids RSDqc <30%.

Processing of metabolomics data and statistical
analysis
Data processing and analysis was performed in the open-
source statistical software, R version 3.2.2.33 Initial testing
determined much of the data was skewed from normal.
Hence, log transformation of the data was used for all sub-
sequent analyses. Significant correlation between outcomes
and metabolites was tested by linear regression.

Correlation coefficients (r) were calculated using the
Pearson’s product-moment correlation test as used in the
cor.test function. Comparisons of genotype variants to wild-
type genotype were tested using an unpaired Wilcoxon
Test. A retrospective power analysis was conducted on the
dataset in Stage et al.29 2017 showing that a minimum of 6
subjects per group, more precisely 5.06 subjects, was
required to detect a difference between groups. Therefore,
genotype comparisons were restricted to only those groups
that had at least >5 subjects, namely groups 1 (wild type)
and groups 3 and 6. Multiple testing correction for each set
of comparisons was performed using the Benjamini &
Hochberg correction method to control for false discovery
rates with significance set to q< 0.1.30 With the significance
set at q< 0.1, the results should include at least 90% true
positives.

In vitro inhibition study
The ester substrate, p-nitrophenyl acetate, the bile acids
sodium glycocholate hydrate, sodium taurochenodeoxycho-
late, sodium taurocholate, lithocholic acid, deoxycholic acid,
sodium glycochenodeoxycholate, chenodeoxycholate, and
cholic acid were purchased from Sigma-Aldrich (St. Louis,
MO). Diltiazem hydrochloride, an inhibitor of CES1, served
as a positive control and was purchased from Napp Phar-
maceuticals Research (Cambridge, UK). Recombinant
human CES1 (CES1b/CES1A1), the major isoform in the
human liver, was from BD Gentest (Woburn, MA), and the
p-nitrophenol was purchased from Fluka (Buchs, Switzer-
land). Other chemicals were of liquid chromatography-mass
spectrometry grade and also commercially available. Glyco-
cholic acid was only available as a hydrate with an unspeci-
fied number of water molecules. For calculation of the
molecular mass of this compound, we assumed presence
of two water molecules in it.

Inhibition of CES1 by the bile acids was investigated by
incubation with the recombinant enzyme in the presence of
p-nitrophenyl acetate. The final concentration of this sub-
strate and the enzyme was 100 mM and 10 mg/mL, respec-
tively. The bile acids were incubated at six concentration
levels ranging from 0.33–1200 mM. Reactions containing
enzyme but without bile acids were also prepared. A reac-
tion mixture with substrate but without enzyme was
included as a negative control. Dimethyl sulfoxide in a final
concentration of 2% v/v was used for dissolution of the bile
acids. This dimethyl sulfoxide concentration was previously
found to have only negligible effect on CES1 activity.11 All
incubations were performed in 96-well pureGrade BRAND
plates (BRAND, Wertheim, Germany) in 100 mM phosphate
buffer at 378C in a final volume of 200 mL. The concentra-
tion of the hydrolytic product of the substrate, that is,
p-nitrophenol, was determined by measurement of its
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absorbance at 405 nm after 3 minutes using a Sunrise

microplate reader (Tecan, Gr€odig, Austria). The absorbance

readings were corrected for spontaneous hydrolysis by sub-

tracting the absorbance of the negative control. The sam-

pling time was found to be within the linear range of the

reaction. All reactions were performed in triplicate. The

half-maximal inhibitory concentration (IC50) constants were

determined using nonlinear regression in Prism, version

6.07 (GraphPad Software, San Diego, CA).

In silico analysis
A docking study was carried out to decipher the preferred

CES1 binding site of the seven bile acids for which we

determined IC50 values in the in vitro analysis, namely, gly-

cocholate, taurochenodeoxycholate, taurocholate, deoxy-

cholic acid, glycochenodeoxycholate, chenodeoxycholic,

and cholic acid. For this purpose, the coordinates of human

CES1 in complex with taurocholate in the catalytic site and

in the Z-site (Protein Data Bank code 2DR0) were obtained

from the Research Collaborator for Structural Bioinformatics

Protein Data Bank. The structure preparation and docking

calculations were performed using CLC Drug Discovery

Workbench (CLC Drug Discovery Workbench version 2.0.

CLC Bio-Qiagen, Aarhus, Denmark). Water molecules and

cofactors were removed from the complex and the mono-

meric form of the protein was protonated at pH 7.2. The

binding sites were defined with a 15 Å radius around tauro-

cholate, both in the catalytic site and the Z-site. To assess

whether the docking program was able to reproduce crys-

tallographic binding modes, taurocholate was docked back

in the two binding sites. Subsequently, the seven bile acids

were docked into the defined binding sites assuming the

protein to be completely rigid in all docking studies to

reduce computational costs. A total of 100 conformations

were computed for each compound and the first ranked

conformation of each of the compounds, that is, the confor-

mations with the lowest docking scores and the most stable

interactions inside a cavity, were considered for further

analysis. Analysis of binding was performed using the soft-

ware Molecular Operating Environment, 2015.10 (Chemical

Computing Group, Montreal, QC, Canada).

RESULTS

Lipid metabolites were measured either in positive or nega-

tive mode. In positive mode, 153 lipid metabolites were

measured (Supplementary Material). They belonged to

the following lipid classes: ceramide (Cer), cholesterol

esters (CEs), diacylglycerol (DG), lysophosphatidylcholine

(LPC), phosphatidylcholine (PC), phosphatidylethanolamine

(PE), sphingomyelin (SM), and triglycerides (TG). In the

negative mode, 61 lipids were measured belonging to: fatty

acids (FAs), LPC, lysophosphatidylethanolamine (LPE),

SN1, and SN2 classes. A measure of 13 individual bile

acids (primary and secondary) and a panel of 32 amines

were also measured.
Predose metabolomics data were correlated with the PK

profile of MPH and its metabolite RA (Table 1). Because

the study subjects were of similar age (20–29 years) and

body mass index (18–28 kg/m2) evaluation of these covari-
ates indicated that they did not possess enough variance to
justify adding them to the model (data not shown).

When testing all positive lipids as a set, baseline meas-
urements of two lipids showed significance with measured
outcomes (Table 1). PC(38:5) was negatively correlated
with both AUC of d-MPH and the Cmax of d-MPH, and
Cer(d18:1/24:1) was positively correlated with the half-life
of the metabolite l-RA.

Separating positive lipids by class before testing results
revealed three additional suggestive findings, namely a
negative correlation between CE(20:5) and AUC of d-MPH,
and positive correlations between DG(36:3) and AUC of d-
RA and PC(36:3) and AUC of l-RA.

Testing all negative lipids as a set did not reveal any sig-
nificant correlations between baseline measurement and
outcome (Table 1). Again, separating the negative lipids by
class identified two additional lipids having suggestive cor-
relations between baseline measurements and various out-
comes. Specifically, SNI-LPC(22:5-w6) was positively
correlated with the AUCs of d-RA and l-RA. SN2-LPC(20:5)
was negatively correlated with Cmax of d-MPH.

Although no significance was found after correction for
multiple testing of the correlations between the PK out-
comes and the baseline measurements of triglycerides with
highly unsaturated fatty acids, low P values were observed
for the half-life, Tmax, and AUC of d-MPH (P< 0.10;
q<1.00). These results may be suggestive of a need for
future study.

No significant correlations were found with triglycerides
having lower numbers of double bonds in the fatty acids, or
using a measurement of TG/PC ratio.

When testing predose measurements of bile acids indi-
vidually for correlation with outcomes (Table 1), although
some P values were low, there was no significance after
multiple-testing correction. However, when categorized
based on primary, secondary, and conjugated status, as
detailed in Supplementary Material, there were significant
correlations with half-life of l-RA in both primary and
primary-conjugated bile acids. Other categorized measures
were not significant, nor were there any correlations with
other bile acid categories.

Testing predose measurements of the 32 amines for cor-
relation with outcomes showed no significant results.

On testing correlations between CES1 genotype and PK,
significance was mostly seen in the comparison between
the normal genotype (group 1) and the group with the
rs71647871 143E allele (n 5 6) with a higher AUC of
d-MPH, half-life of d-MPH, and Cmax of d-MPH in the latter
of these two groups (Table 2). Detailed analysis of the
genotype/PK comparisons shown in Table 2 have been pre-
viously reported using a slightly different statistical approach,
which involved application of the Kruskal-Wallis test.29

Due to the large impact of the 143E allele of rs71647871
on MPH metabolism, testing of correlation between geno-
type groups and levels of predose metabolites was restricted
to comparison of carriers of 143E allele with the control
group (Table 2, Figure S1). For positive lipids, the only sig-
nificant comparison found with genotype was for PC(38:5),
which was present at a higher concentration at baseline in
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group 1 (median log value: 1.23) than group 3 (median log
value: 0.96; Table 3, Figure S2). Group 3 had decreased
concentrations of metabolites with high polyunsaturated fatty
acid lipids (PUFAs), specifically TG(56:6) and TG(56:5),
when compared to group 1. There were no other significant
correlations.

The IC50 values differed significantly between the bile
acids (Figure 1). We found that chenodeoxycholic acid and
taurocholic acid inhibited with IC50 of 13.55 and 19.51 lM,
respectively, which is in a range similar to diltiazem, a
known inhibitor of CES1.

Taurochenodeoxycholic acid had an IC50 value, which
was more than fourfold higher; whereas glycochenodeox-
ycholic acid had an IC50 �10-fold higher than diltiazem.
We were not able to determine the IC50 value of litho-
cholic acid because it could not be dissolved in aqueous
buffer.

Docking analysis predicted a preference of all bile acids

for the catalytic site over that of the Z-site of the enzyme,

except for deoxycholic acid (Table 4). Taurocholic acid,

taurochenodeoxycholic acid, and glycochenodeoxycholic

acid were predicted to bind to the active site with the high-

est affinity. Chenodeoxycholate, taurocholate, and tauroche-

nodeoxycholic acid, the strongest inhibitors of CES1 in our

in vitro analysis, were found to interact more strongly with

the Z-site of the enzyme than the four other bile acids in

our docking analysis (Table 4). There was a weak correla-

tion between docking scores of the bile acids for the cata-

lytic pocket of CES1 and the IC50 values (r 5 0.44). The

correlation between the docking scores of the bile acids for

the Z-site and the IC50 values was strong (r 5 0.86). The

docking analysis also revealed that taurocholate and other

compounds with a sulfate group are stabilized by an ionic

interaction with Lys92 at the entrance of the active site,

Table 1 Significant correlations between lipids or bile acids and outcomes by testing full lipid panels and after classification of lipids

Lipid Outcome Correlation (r) P value Q valuea

Positive lipids – all

PC(38:5) AUC d-Ratio 20.61912 0.000012 0.018930

PC(38:5) AUC d-MPH 20.60946 0.000018 0.028101

Cer(d18:1/24:1) Half-life l-RA 0.59135 0.000037 0.057003

PC(38:5) Cmax d-MPH 20.56358 0.000102 0.155770

Positive lipids - by class

Cer(d18:1/24:1) Half-life l-RA 0.59135 0.000037 0.001490

PC(38:5) AUC d-Ratio 20.61912 0.000012 0.004825

PC(38:5) AUC d-MPH 20.60946 0.000018 0.007163

PC(38:5) Cmax d-MPH 20.56358 0.000102 0.039706

CE(20:5) AUC d-MPH 20.45900 0.002232 0.089283

PC(36:3) AUC l-RA 0.53377 0.000272 0.106196

DG(36:3) AUC d-RA 0.40624 0.007597 0.151942

Negative lipids - by class

SN2-LPC(20:5) Cmax d-MPH 20.53120 0.000421 0.050481

SN1-LPC(22:5-w6) AUC d-RA 0.52534 0.000500 0.094993

High PUFA triglycerides

Half-life d-MPH 20.30436 0.050028 0.400225

Tmax d-MPH 20.28994 0.062524 0.500195

AUC d-MPH 20.25876 0.097997 0.783973

Bile acids

Primary bile acids Half-life l-RA 0.369441 0.024425 0.195402

Primary conjugated bile acids Half-life l-RA 0.428832 0.008090 0.064723

AUC, area under the curve; Cmax, peak plasma concentration; MPH, methylphenidate; RA, ritalinic acid; PUFA, polyunsaturated fatty acid lipid; Tmax, time of

maximum plasma concentration.

The figures in italics represent p-value < 0.1 and q-value > 0.1.
aQ values for the positive and negative lipids are by classs and are for guidance for future research rather than indicating significance.

Table 2 Significant results from testing between genotypes for outcomes of

pharmacokinetics

Outcome Direction P value Q value

Group 1 vs. group 3 (143E allele)

AUC d-MPH Group 3 higher 0.000454 0.003630

Half-life d-MPH Group 3 higher 0.000982 0.007860

Cmax d-MPH Group 3 higher 0.007112 0.056892

AUC, area under the curve; Cmax, peak plasma concentration; MPH,

methylphenidate.

Table 3 Significant results from testing between genotypes for outcomes of

lipids

Lipid Direction P value Q value

Group 1 vs group 3 positive lipids

PC(38:5) Group 1 higher 0.007988 0.039939

Group 1 vs. group 3 high PUFA triglycerides

TG(56:6) Group 1 higher 0.006085 0.091271

TG(56:5) Group 1 higher 0.007988 0.119818

PUFA, polyunsaturated fatty acid lipid.
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thus potentially compromising access of substrate to this
site (Figure 2).

The carboxyl group containing bile acids, such as cheno-
deoxycholate, are located with their carboxyl group close to
the catalytic triad amino acid Ser221, which could hinder
nucleophilic substrate attack by this amino acid. The bind-
ing of taurocholate and chenodeoxycholate to the Z-site
seem to be stabilized by Gly356 and Lys414 (Figure 3).

DISCUSSION

This study is the first to correlate small endogenous mole-
cules in the blood with hepatic activity of CES1 as deter-
mined by the PKs of a drug, MPH. Its main findings were
the identification of lipids that not only correlated with the
PK of MPH and RA but also with CES1 genotype and sug-
gested a role of CES1 in lipid metabolism. Involvement of
specific bile acids in the regulation of the activity of CES1
was supported by the finding of an ability of two bile acids
to inhibit CES1 in vitro, which was supplemented with in

silico observations to determine the mechanism underlying

the inhibition.
The metabolites that correlated with PK variables of d-

MPH included lipid metabolites containing eicosapentaenoic

acid (EPA) 20:5 and docosapentaenoic acid (DPA) 22:5,
FAs commonly found in fish oil. The EPA and DPA in FA,

LPC, CE, and PC containing metabolites were found to be
correlated with the Cmax and AUC of d-MPH. Both EPA and

DPA are long-chain PUFAs that are important in production
of eicosanoids, signaling molecules, which regulate inflam-

mation and metabolism.34

Lipids containing EPA were negatively correlated with d-
MPH concentration, thus decreased EPA would be associ-

ated with increased MPH level and, hence decreased
CES1 activity. This supports the hypothesis that CES1

activity determines the quantity of PUFAs in triglycerides
and regulates release of lipoproteins.35 Lower CES1 activity

would result in decreased PUFAs in hepatic lipids and the
release of those lipids modulating the composition and

release of lipoproteins from the liver.35,36 The significant
lipid metabolites with 20:5 as the FA moiety identified in

this study indicate that CES1 preferentially regulates the
quantity of EPA in lipids. Alternatively, higher levels of

omega 6 PUFA, such as DPA, which, in our study, had a
positive correlation with RA AUC, may inhibit CES1 activ-

ity14 providing a feedback regulation to control lipoprotein
production. This is in line with previous in vitro findings that

fatty acids inhibit CES1, particularly unsaturated fatty

acids.14

The finding of lower levels of PUFA in PC and TG in the
genotype group with the 143E allele, which was associated

with significantly decreased CES1 activity, should be inter-
preted with caution due to the small sample size. However,

Figure 1 Dose response curves for compounds inhibiting carboxylesterase 1 (CES1) activity. Half-maximal inhibitory concentrations
(IC50) are shown in brackets.

Table 4 Docking scores of bile acids for the active site and Z-site of

carboxylesterase 1

Compound

Docking score

active site

Docking

score Z-site

Chenodeoxycholic acid 253.00 251.50

Taurocholic acid 267.10 254.41

Taurochenodeoxycholic acid 263.20 251.00

Glycochenodeoxycholic acid 268.00 248.80

Deoxycholic acid 241.50 247.20

Cholic acid 252.00 246.70

Glycocholic acid 253.20 243.60
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it connects CES1 activity with physiological functions and
allows for improved prediction of this enzyme activity
based on the combination of genetics and metabolomics
information.

We found that levels of bile acids marginally correlated
with l-RA and d-MPH PK. Bile acids possess a variety of
physiological functions37 and have been linked with
response to drugs, such as simvastatin.24 Moreover,
cholesterol-like molecules, including the bile acids cholate
and taurocholate, have been shown to bind to CES1, which

is thought to shift the trimer-hexamer equilibrium of the
enzyme toward the trimer, the catalytically active form.13

Hence, we hypothesize that the correlations of bile acids
with l-RA and d-MPH PK in the present study reflect
involvement of bile acids in the regulation of CES1 activity.
However, we cannot exclude that these correlations have

Figure 2 Docking of taurocholate into the catalytic site (a) and
the Z-site (b). The binding of taurocholate in the catalytic pocket
of carboxylesterase 1 is stabilized by an ionic interaction with
Lys92 at the entrance of this site. Binding of taurocholate to the
Z-site appears to be stabilized by Lys414. Figure 3 Docking of chenodeoxycholate into the catalytic site (a)

and the Z-site (b). Chenodeoxycholate is located deep in the cat-
alytic pocket Ser221 close to the catalytic triad amino acid
Ser221. The binding of chenodeoxycholate to the Z-site appears
to be stabilized by Lys414.
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occurred as a result of a bias due to the small sample size

of our cohort.
Additionally, the correlations may have resulted from indi-

rect regulation of lipid metabolism by farnesoid X receptor.
Using in vitro analysis, we revealed large differences

between bile acids in the ability to inhibit CES1. Two bile

acids had IC50 values in a range sufficiently low to inhibit

CES in vivo,38 thus arguing in favor of a role of bile acids in

the regulation of CES1 activity.
Our in vitro analysis of the bile acids were supplemented

with an in silico study of these molecules to provide insights

into their molecular interactions with CES1 and resultant

effect on the enzyme. It suggested that bile acids are capa-

ble of binding to the catalytic pocket as well as the Z-site of

CES1 but have larger affinity to the former of these

two sites. Using X-ray crystallography, a previous study

observed binding of taurocholate to both the Z-site and the

active site of CES1, which is consistent with our findings.

Inhibitors that both bind to the active site and the Z-site of

CES1 are most likely mixed-type inhibitors, which may

include bile acids.9 The docking scores of the ligands in the

catalytic pockets and the Z-site may not necessarily be

comparable with respect to impact on enzyme activity. The

strong correlation between the docking scores for the Z-site

and the IC50 values suggests that the docking values for

this site directly translates into enzyme activity.
Several factors determine the level of FA and bile acids,

including diet and body weight. Hence, it is possible that

these and similar factors have an impact on the activity of

CES1 and the metabolism of several of drugs.39

The lack of correlation between the level of amines and

PK of MPH is noteworthy as amines have not been associ-

ated with CES1. This is opposed to lipids that correlated

with the PK of MPH in the present study and previously

have been identified as substrates and allosteric regulators

of CES1.13 Hence, our findings are in accordance with the

existing knowledge about substrates and endogenous regu-

lators of CES1 activity.
In summary, the findings of the present study that lipid

and bile acid metabolites were correlated with apparent

activity and genotype of CES1 are suggestive of a role of

CES1 in lipid metabolism and a physiological role of the

enzyme. Our findings also open up for prediction of the PK

of drugs metabolized by CES1 on the individual level and

for improved therapy with these drugs.

Acknowledgments. The project INDICES (INDIvidualised drug ther-
apy based on pharmacogenomics: focus on CES1) aims at developing
strategies for individualized treatment with methylphenidate and
angiotensin-converting enzyme inhibitors.

Source of Funding. This research was supported by grant
10–092792/DSF from the Danish Council for Strategic Research, Pro-
gramme Commission on Individuals, Disease and Society.

Conflict of Interest. The authors declared no competing interests
for this work.

Author Contributions. E.H.S., R.B., O.T., G.S.N., R.T., G.J., and
A.A.M. wrote the manuscript. R.K.D., H.B.R., and T.H. designed the
research. A.C.H., C.S., K.P.D., H.B.R., O.T., G.S.N., R.T., K.L., G.J., and
T.H. performed the research. E.H.S., R.B., C.S., K.P.D., O.T., G.S.N.,
R.T., K.L., G.J., and A.A.M. analyzed the data.

1. Kendall, T., Taylor, E., Perez, A., Taylor C. & Guideline Development Group. Diagno-
sis and management of attention-deficit/hyperactivity disorder in children, young peo-
ple, and adults: summary of NICE guidance. BMJ 337, a1239 (2008).

2. Safer, D.J. & Krager, J.M. A survey of medication treatment for hyperactive/inattentive
students. JAMA 260, 2256–2258 (1988).

3. Mohammadi, M.R. & Akhondzadeh, S. Pharmacotherapy of attention-deficit/hyperac-
tivity disorder: nonstimulant medication approaches. Expert Rev. Neurother. 7,
195–201 (2007).

4. Fr€olich, J., Banaschewski, T., D€opfner, M. & G€ortz-Dorten, A. An evaluation of the
pharmacokinetics of methylphenidate for the treatment of attention-deficit/hyperactivity
disorder. Expert Opin. Drug Metab. Toxicol. 10, 1169–1183 (2014).

5. Gaedigk, A., Sangkuhl, K., Whirl-Carrillo, M., Klein, T. & Leeder, J.S. Prediction of
CYP2D6 phenotype from genotype across world populations. Genet. Med. 19, 69–76
(2017).

6. Ingelman-Sundberg, M., Sim, S.C., Gomez, A. & Rodriguez-Antona, C. Influence of
cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepi-
genetic and clinical aspects. Pharmacol. Ther. 116, 496–526 (2007).

7. Wu, A.H. Drug metabolizing enzyme activities versus genetic variances for drug of
clinical pharmacogenomic relevance. Clin. Proteomics 8, 12 (2011).

8. Sun, Z. et al. Methylphenidate is stereoselectively hydrolyzed by human carboxyles-
terase CES1A1. J. Pharmacol. Exp. Ther. 310, 469–476 (2004).

9. Tang, M. et al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct
carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alco-
hol. J. Pharmacol. Exp. Ther. 319, 1467–1476 (2006).

10. Takai, S. et al. Hydrolytic profile for ester- or amide-linkage by carboxylesterases pl
5.3 and 4.5 from human liver. Biol. Pharm. Bull. 20, 869–873 (1997).

11. Thomsen, R., Rasmussen, H.B., Linnet K. & INDICES Consortium. In vitro drug
metabolism by human carboxylesterase 1: focus on angiotensin-converting enzyme
inhibitors. Drug Metab. Dispos. 42, 126–133 (2014).

12. Ross, M.K., Streit, T.M. & Herring, K.L. Carboxylesterases: dual roles in lipid and
pesticide metabolism. J. Pestic. Sci. 35, 257–264 (2010).

13. Bencharit, S. et al. Multisite promiscuity in the processing of endogenous substrates
by human carboxylesterase 1. J. Mol. Biol. 363, 201–214 (2006).

14. Crow, J.A., Herring, K.L., Xie, S., Borazjani, A., Potter, P.M. & Ross, M.K. Inhibition
of carboxylesterase activity of THP1 monocytes/macrophages and recombinant
human carboxylesterase 1 by oxysterols and fatty acids. Biochim. Biophys. Acta
1801, 31–41 (2010).

15. Fleming, C.D. et al. Structural insights into drug processing by human carboxylester-
ase 1: tamoxifen, mevastatin, and inhibition by benzil. J. Mol. Biol. 352, 165–177
(2005).

16. Fukami, T. et al. Structure and characterization of human carboxylesterase 1A1, 1A2,
and 1A3 genes. Pharmacogenet. Genomics 18, 911–920 (2008).

17. Sai, K. et al. Association of carboxylesterase 1A genotypes with irinotecan pharmaco-
kinetics in Japanese cancer patients. Br. J. Clin. Pharmacol. 70, 222–233 (2010).

18. Yoshimura, M. et al. Functional polymorphisms in carboxylesterase1A2 (CES1A2)
gene involves specific protein 1 (Sp1) binding sites. Biochem. Biophys. Res. Com-
mun. 369, 939–942 (2008).

19. Zhu, H.J. et al. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1
activity in man: clinical significance and molecular basis. Am. J. Hum. Genet. 82,
1241–1248 (2008).

20. Shi, J. et al. Association of oseltamivir activation with gender and carboxylesterase 1
genetic polymorphisms. Basic Clin. Pharmacol. Toxicol. 119, 555–561 (2016).

21. Sanford, J.C. et al. Regulatory effects of genomic translocations at the human
carboxylesterase-1 (CES1) gene locus. Pharmacogenet. Genomics 26, 197–207
(2016).

22. Wang, X. et al. CES1 genetic variation affects the activation of angiotensin-converting
enzyme inhibitors. Pharmacogenomics J. 16, 220–230 (2016).

23. Abo, R. et al. Merging pharmacometabolomics with pharmacogenomics using ‘‘1000
Genomes’’ single-nucleotide polymorphism imputation: selective serotonin reuptake
inhibitor response pharmacogenomics. Pharmacogenet. Genomics 22, 247–253
(2012).

24. Kaddurah-Daouk, R. et al. Lipidomic analysis of variation in response to simvastatin
in the Cholesterol and Pharmacogenetics Study. Metabolomics 6, 191–201 (2010).

25. Wikoff, W.R. et al. Pharmacometabolomics reveals racial differences in response to
atenolol treatment. PLoS One 8, e57639 (2013).

26. El-Sherbeni, A.A. & El-Kadi, A.O. The role of epoxide hydrolases in health and dis-
ease. Arch. Toxicol. 88, 2013–2032 (2014).

27. Ozdemir, V., Gunes, A., Dahl, M.L., Scordo, M.G., Williams-Jones, B. & Someya, T.
Could endogenous substrates of drug-metabolizing enzymes influence constitutive

Pharmacometabolomic Profiling of Methylphenidate
Kaddurah-Daouk et al.

CPT: Pharmacometrics & Systems Pharmacology

532



physiology and drug target responsiveness? Pharmacogenomics 7, 1199–1210
(2006).

28. Rasmussen, H.B. et al. Individualization of treatments with drugs metabolized by CES1:
combining genetics and metabolomics. Pharmacogenomics 16, 649–665 (2015).

29. Stage, C. et al. The impact of CES1 genotypes on the pharmacokinetics of methyl-
phenidate in healthy Danish subjects. Br. J. Clin. Pharmacol. 83, 1506–1514 (2017).

30. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57,
289–300 (1995).

31. Noga, M.J. et al. Metabolomics of cerebrospinal fluid reveals changes in the central
nervous system metabolism in a rat model of multiple sclerosis. Metabolomics 8,
253–263 (2012).

32. Hu, C. et al. RPLC-ion-trap-FTMS method for lipid profiling of plasma: method valida-
tion and application to p53 mutant mouse model. J. Proteome Res. 7, 4982–4991
(2008).

33. R Core Team. R: A language and environment for statistical computing. <http://www.
R-project.org/> (2014).

34. Wiktorowska-Owczarek, A., Berezi�nska, M. & Nowak, J.Z. PUFAs: structures, metabo-
lism and functions. Adv. Clin. Exp. Med. 24, 931–941 (2015).

35. Quiroga, A.D. et al. Deficiency of carboxylesterase 1/esterase-x results in obesity,
hepatic steatosis, and hyperlipidemia. Hepatology 56, 2188–2198 (2012).

36. Quiroga, A.D., Lian, J. & Lehner, R. Carboxylesterase1/esterase-x regulates chylomi-
cron production in mice. PLoS One 7, e49515 (2012).

37. Wahlstr€om, A., Sayin, S.I., Marschall, H.U. & B€ackhed, F. Intestinal crosstalk between
bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50
(2016).

38. Angelin, B., Bj€orkhem, I., Einarsson, K. & Ewerth, S. Hepatic uptake of bile acids in
man. Fasting and postprandial concentrations of individual bile acids in portal venous
and systemic blood serum. J. Clin. Invest. 70, 724–731 (1982).

39. Yang, D., Pearce, R.E., Wang, X., Gaedigk, R., Wan, Y.J. & Yan, B. Human carbox-
ylesterases HCE1 and HCE2: ontogenic expression, inter-individual variability and dif-
ferential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin. Biochem.
Pharmacol. 77, 238–247 (2009).

VC 2018 The Authors CPT: Pharmacometrics & Systems
Pharmacology published by Wiley Periodicals, Inc. on
behalf of American Society for Clinical Pharmacology and
Therapeutics. This is an open access article under the
terms of the Creative Commons Attribution-
NonCommercial License, which permits use, distribution
and reproduction in any medium, provided the original
work is properly cited and is not used for commercial
purposes.

Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website
(http://psp-journal.com)

Pharmacometabolomic Profiling of Methylphenidate
Kaddurah-Daouk et al.

www.psp-journal.com

533

http://www.R-project.org/
http://www.R-project.org/



