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Realistic high‑resolution lateral 
cephalometric radiography 
generated by progressive growing 
generative adversarial network 
and quality evaluations
Mingyu Kim1, Sungchul Kim2, Minjee Kim2, Hyun‑Jin Bae1, Jae‑Woo Park3* & 
Namkug Kim1,4*

Realistic image generation is valuable in dental medicine, but still challenging for generative 
adversarial networks (GANs), which require large amounts of data to overcome the training instability. 
Thus, we generated lateral cephalogram X‑ray images using a deep‑learning‑based progressive 
growing GAN (PGGAN). The quality of generated images was evaluated by three methods. First, 
signal‑to‑noise ratios of real/synthesized images, evaluated at the posterior arch region of the first 
cervical vertebra, showed no statistically significant difference (t‑test, p = 0.211). Second, the results 
of an image Turing test, conducted by non‑orthodontists and orthodontists for 100 randomly chosen 
images, indicated that they had difficulty in distinguishing whether the image was real or synthesized. 
Third, cephalometric tracing with 42 landmark points detection, performed on real and synthesized 
images by two expert orthodontists, showed consistency with mean difference of 2.08 ± 1.02 mm. 
Furthermore, convolutional neural network‑based classification tasks were used to classify skeletal 
patterns using a real dataset with class imbalance and a dataset balanced with synthesized images. 
The classification accuracy for the latter case was increased by 1.5%/3.3% at internal/external test 
sets, respectively. Thus, the cephalometric images generated by PGGAN are sufficiently realistic and 
have potential to application in various fields of dental medicine.

At present, many clinicians use cephalometric analyses to better understand the underlying basis of a 
 malocclusion1,2. A cephalometric analysis consists of identifying landmarks that represent important facial-
structure points and evaluating the distances or angles between the landmarks and the lines that compose the 
 landmarks3–5. This enables a quantification of the relationship between the facial bone structure and the teeth. 
However, because of the over-simplified and omitted measurement details in malocclusion research, clinical 
applications for diagnosing all types of malocclusion are  inadequate6. Hence, in addition to comparing individual 
measurements with a normal image, many clinicians also evaluate anatomical patterns, including soft  tissue7.

Recently, owing to progress in the computer-vision field and the rapid development of deep learning, many 
studies have investigated the automated diagnosis of cephalometric X-ray images using deep learning. Yu et al.8 
classified patients’ structural patterns using deep learning, without using cephalometric tracing information. 
They achieved a mean accuracy of over 90% for skeletal pattern (i.e., Class I, Class II, Class III) classification. 
However, they trained the model with a dataset that excluded ambiguous skeletal classes. These unclear patient-
selection criteria could make the model inapplicable in actual clinical settings. Lee et al.9 proposed a method to 
classify patients for successful treatment by orthodontics or maxillofacial surgery. However, because information 
regarding the patients’ skeletal features was absent, their method is difficult to apply in an actual clinical setting.
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The aforementioned issues are a result of insufficient data to enable deep-learning models to learn sufficient 
anatomical structures to discriminate pattern differences, and also the significantly low amount of data for the 
abnormal skeletal patterns used to learn various occlusion  patterns10. Augmenting images using geometric 
transforms or intensity variations are advances that can be applied to solve the mentioned  issues11,12. However, 
geometric and intensity augmentations (e.g., translation, rotation, scaling, and filtering) do not improve perfor-
mance because these types of transforms do not significantly change their intrinsic image properties.

To address this issue, generative adversarial networks (GANs)13 have been widely used to synthesize infinitely 
unique images using unsupervised  methods2,14. Few studies have applied GANs to generate realistic images in 
the clinical region. Frid-Adar et al.2 synthesized computed tomography (CT) images around liver lesions using 
a GAN. They performed a convolutional neural network (CNN) classification between a dataset that was clas-
sically augmented using geometric or intensity transformations and a dataset that was synthetically augmented 
using a GAN. The classification performance using synthetic augmentation was 5% better in terms of sensitivity 
and specificity. This study shows that using synthetic images for data augmentation can overcome the small-
dataset problem.

Sandfort, et al.14 used  CycleGAN15 to generate non-contrast CT images from contrast CT images. They aug-
mented the dataset by combining contrast CT and synthesized non-contrast CT images. Then, they assessed the 
segmentation performance on organs, e.g., kidney, liver, and spleen. The average performance showed a Dice 
score of 0.747, which is considerably higher than that of using a dataset containing only contrast CT images 
(Dice score of 0.101). Consequently, synthesizing images using GANs has potential for various applications, such 
as data augmentation of various disease cases to increase CNN performance, diagnostic assistance, treatment 
planning, and physician training.

In this study, lateral cephalometric images were trained to synthesize realistic images. Among the various 
types of GANs available, a progressive-growing GAN (PGGAN)16 was chosen. Validations were performed to 
evaluate quality and utility. For the quality evaluation, signal-to-noise ratio (SNR) calculation on the posterior 
region of the first cervical vertebra, image Turing test, and landmark tracing were performed. In terms of utility, 
CNN-based classification task was performed to validate whether the class balanced dataset by adding synthe-
sized images could be used for increasing performance in a real cephalometric dataset with an intrinsic class 
imbalance issue.

Methods
Training‑data collection. A total of 19,152 cephalometric images of patients who received orthodontic 
treatment  between 2009 and 2019 were obtained (institutional review board (IRB) No: P01-202011-21-032) 
from the Kooalldam Dental Hospital in Korea. From this total, 3319 poor quality images that were used for test-
ing equipment were excluded. Finally, 15 833 images were used for the PGGAN training. The mean age of the 
patients was 25.7 ± 7.2 years ranging from 19 to 76 years and 35% were male.

This retrospective study was conducted according to the principles of the Declaration of Helsinki and was 
performed in accordance with current scientific guidelines. The study protocol was approved by the IRB of the 
Korea National Institute for Bioethics Policy, Seoul, Korea. Informed consent was acquired from all the patients 
and from 13 readers who participated in the image Turing test.

PGGAN training. PGGAN is a variant of GAN architecture with a different training method. The tradi-
tional GAN has two networks, a generator and a discriminator. These two networks act in an adversarial man-
ner: the generator produces a synthesized image and the discriminator indicates whether this image is real 
or not. The distinctive characteristic of PGGAN training is that the generator generates images progressively. 
Both GAN and PPGAN progressively grow starting from a low resolution (4 × 4 pixels) to a high resolution 
(1024 × 1024 pixels) by adding layers to the network, as shown in Fig. 1. This method enables a stable training 
by learning from easier images with coarse structure to difficult ones with fine details. PGGAN was chosen for 
cephalometric image generation because this model performed better in reconstructing global structures and 
fine details with a high-resolution quality among other GAN variant  models17–19.

The 15 833 lateral cephalograms were used to train the PGGAN in an unsupervised manner. The input images 
were resized from 1880 × 2360 to 1024 × 1024 pixels without considering the aspect ratio. Two Titan-RTX 24-GB 
graphics processing units (GPUs) were used, the learning rate was set to 0.001, and other parameters were fixed 
as default. Consequently, synthesized images were produced, and metric evaluation, image Turing test, landmark 
tracing, and augmentation efficacy test were performed to validate the model. Here, synthetic cephalometric 
X-ray images generated by GAN would have a distribution similar to that of a real dataset including gender, age 
distribution, imaging parameters, and X-ray machines, as GAN is known to train the distribution of the training 
dataset. As an example, comparisons between real and synthesized images with skeletal pattern are shown in 
Fig. 2. Here, the PGGAN was used from a public website (Tensorflow-gpu 1.6.0, Python 3.4.0).

Signal‑to‑noise ratio measurements. SNRs were measured for 100 images (50 real and 50 synthesized) 
to evaluate whether the contrast of anatomically distinct features in cephalometric radiography show consist-
ency between real and synthesized images. Here, 50 real images were randomly selected from the PGGAN train-
ing set and 50 synthesized images were randomly generated by the trained PGGAN. The distinct feature was 
chosen at the posterior arch of the first cervical vertebra because it is clearly defined to all images. For the noise 
estimation, tissue regions at the posterior direction of the posterior arch of the first cervical vertebra were chosen 
to avoid interference with other bone regions. The signal and noise regions of the 100 images were manually 
segmented by M. Kim. An example of segmented image is shown in Supplementary Appendix Fig. S2. For each 
image, the signal was calculated by taking the mean of the posterior arch of the first cervical vertebra region. The 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12563  | https://doi.org/10.1038/s41598-021-91965-y

www.nature.com/scientificreports/

noise was calculated by taking one standard deviation (SD) of 10 × 10 pixels with center at a manually segmented 
region. Finally, the SNR was estimated by taking the ratio of the signal and the noise. We conducted a t-test of 
SNRs between the real and synthesized images to evaluate the statistical differences. Here, the R statistical envi-
ronment, version 3.5.3, was used for the statistical analysis, with a significance level of p < 0.05.

Image Turing test. For the image Turing test, we prepared the 100 images used for SNR measurement. The 
image Turing test was conducted with 13 readers by displaying images one-by-one through a dedicated web-
based interface. Two of the readers were dental students, four were dental residents, and seven were dental spe-
cialists. The dental residents consisted of two non-orthodontic and two orthodontic residents. The dental spe-
cialists consisted of two non-orthodontic specialists, two orthodontists with 10 years of clinical experience, and 
three with 20 years of clinical experience. We divided the readers into two groups, non-orthodontists (Group 1) 
and orthodontists (Group 2), and compared their results.

To reduce the environmental variability during the image Turing test, the images were displayed in the same 
order and earlier answers were prohibited. Readers were informed that there were 50 real and 50 synthesized 
test images. In addition, none of the readers had experienced synthesized images before the test. All readers 
successfully finished the test. The sensitivity, specificity, and accuracy were derived for evaluation after the test. 
Here, we define a real image as positive and a synthesized image as negative. The inter-reader agreement of the 
image Turing test was evaluated using the Fleiss  Kappa20.

Cephalometric tracing on synthesized images. Cephalometric tracing by identifying landmarks 
is important step for orthodontic diagnosis and treatment planning. To use synthesized image on augmenta-
tion purposes for improving deep learning models and other clinical situations, landmarks containing clinical 
information should be identified accurately. To verify the position recognition rate of landmarks, a total of 
42 landmarks were traced by two orthodontists (J. Park and S. E. Jang) on the 50 synthesized images used for 
SNR measurement. The orthodontists knew that the cephalometric images were synthesized. They traced the 
landmarks according to their anatomical definitions. A cephalometric image with the landmark positions is 
shown in Supplementary Appendix Fig. S1 and their names are shown in Supplementary Appendix Table S1. We 
compared each point of traced landmark differences between the two readers. Then, the average difference was 
calculated and different landmark points were discussed.

Efficacy of generated images as augmentation for class imbalanced dataset. To verify the util-
ity of the synthesized images, a CNN-based classification task was performed. The task consisted of classifying 
skeletal patterns (i.e., Class I, Class II, and Class III) with and without adding synthesized images for balancing 

Figure 1.  Conceptual architecture of PGGAN for training. PGGAN synthesizes images from a low resolution 
(4 × 4 pixels) to a high resolution (1024 × 1024 pixels) by adding layers to the network.
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the intrinsically imbalanced dataset. Our hypothesis was that if synthesized images contained clinically impor-
tant information, the augmentation could increase classification performance.

The dataset was obtained from the Department of Orthodontics in 10 multi-centers in Korea. The distribu-
tion of skeletal patterns is 601 for Class I, 490 for Class II, and 553 for Class III, which has not a significant class 
imbalance. The skeletal patterns were classified on the A point-Nasion-B point angle. The dataset was divided 
for training and internal test with ratio of 9:1. In addition, 181 skeleton patterns from eight medical centers in 
Korea were prepared as an external test set.

Synthesized images were also prepared for balancing the number of images in the real dataset. Thus, 3000 
synthesized images were randomly generated using trained PGGAN. Then, their skeletal patterns were classified 
using the model developed in this study using only real data set. The number of synthesized images classified 
in each class were 1550, 765, and 685, for Classes I, II, and III, respectively. To overcome classification error 

Figure 2.  Examples of real and synthesized images for each skeletal pattern.
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and increase classification accuracy, synthesized images among the 3000 were chosen with likelihood criteria 
of model output. With the likelihood of 0.9 criteria, 940, 435, and 483 images were collected for Classes I, II, 
and III, respectively. Among them, 299, 410, and 347 images were added to Classes I, II, and III, respectively, to 
balance the class imbalance in the real dataset. Finally, 740 images in each class were set up for model training.

For the training, vanilla DenseNet-16921 was used. Training was performed using two datasets: the real dataset 
with intrinsic class imbalance and a class balanced dataset with addition of synthesized images. For the model 
validation, both internal test and external tests were performed and their sensitivity, specificity, and accuracy 
were derived. Here, pytorch version 3.6 and tensorflow version 2.3 were used for the development.

The study protocol was reviewed and approved by the IRB of SNUDH (ERI20022), Korea National Institute 
for Bioethics Policy for KADH (P01-202010-21-020), Ajou University Hospital Human Research Protection 
Center (AJIRB-MED-MDB-19-039), AMC (2019-0927), CNUDH (CNUDH-2019-004), CSUDH (CUDHIRB 
1901 005), EUMC (EUMC 2019-04-017-003), KHUDH (D19-007-003), KNUDH (KNUDH-2019-03-02-00), 
and WKUDH (WKDIRB201903-01).

Results
The SNRs for the real and synthesized images were 23.54 ± 10.80 and 26.46 ± 12.13, respectively, and the t-test 
showed no statistically significant difference (p = 0.211) between the SNR values.

The results of the image Turing test are shown in Table 1, with mean accuracy, sensitivity, and specificity of 
the readers. The results of each reader are presented in Supplementary Appendix Table S2. The sensitivities of 
Groups 1 and 2, which were 67.6 ± 11.0 and 75.4 ± 13.5, respectively, were not significantly different. In contrast, 
the specificity of Group 1 (31.1 ± 19.2) was considerably lower than that of Group 2 (58.9 ± 29.9). As a result, the 
mean accuracy of Group 1 was lower than that of Group 2. The sensitivity versus specificity for each reader can 
be visualized in Fig. 3. The mean Fleiss Kappa was 0.023 for Group 1 and 0.109 for Group 2, which indicates that 
the classification inter-rater agreement was poor for both groups.

The landmark-position differences between the two orthodontists are shown in Table 2. The average dif-
ference was 2.08 ± 1.02 mm. The landmark position with the largest difference was the occlusal plane point 
(5.95 ± 2.42 mm).

The classification performances of the model trained using only the class imbalanced real dataset and that 
using the dataset balanced by the addition of synthesized images were tabulated in Table 3. In the internal 
dataset, overall accuracies were 83.4 and 84.9%, respectively. In the external dataset, they were 82.9 and 86.2%, 

Table 1.  Average assessment results for readers in each group.

Group 1 Group 2 Overall

Total

Accuracy (%) 49.2 ± 6.4 67.1 ± 15.7 58.8 ± 15.2

Sensitivity (%) 67.6 ± 11.0 75.4 ± 13.5 71.8 ± 13.0

Specificity (%) 31.1 ± 19.2 58.9 ± 29.9 46.1 ± 29.0

Figure 3.  Human performance in the image Turing test.
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respectively. The accuracy increased by 1.5 and 3.3% for internal and external datasets, respectively. Figure 4 
shows the confusion matrices for both the internal and external test sets.

Discussion and conclusions
We generated highly realistic cephalometric X-ray images using a PGGAN model. The image Turing test showed 
that the specificity of Group 1 was significantly lower than its sensitivity. This indicates that the non-ortho-
dontists’ group could not discriminate the synthesized images, whereas for the orthodontists’ group, it was 
relatively easy to find artifacts in the synthesized images. In addition, the sensitivities of Groups 1 and 2 were 
not considerably different. This result indicates that non-orthodontists and orthodontists had similar difficulties 
to discriminate the image as real.

Table 2.  Inter-reader identified-landmark position difference for 42 landmarks.

Landmark name

Intra-observer difference in mm 
(Mean ± SD)

Δx Δy
√

�x2 +�y2

A-Point 0.78 ± 0.69 2.12 ± 1.32 2.38 ± 1.29

Anterior nasal spine 1.70 ± 1.23 0.76 ± 1.13 2.07 ± 1.40

Articulare 0.46 ± 0.55 0.68 ± 0.57 0.92 ± 0.67

B-point 0.60 ± 0.43 1.18 ± 1.10 1.44 ± 1.03

Basion 1.16 ± 0.98 1.78 ± 1.99 2.29 ± 2.05

Columella 0.89 ± 0.70 0.44 ± 0.38 1.03 ± 0.75

Corpus left 3.30 ± 2.22 1.40 ± 1.71 3.69 ± 2.67

Glabella 0.35 ± 0.30 2.49 ± 2.12 2.57 ± 2.07

Hinge axis 0.69 ± 0.71 1.39 ± 1.12 1.62 ± 1.24

Labrale superius 0.61 ± 0.51 0.82 ± 0.65 1.09 ± 0.73

Lower lip 0.44 ± 0.32 0.82 ± 0.64 1.02 ± 0.59

Mandible 1 crown 0.38 ± 0.33 0.37 ± 0.35 0.58 ± 0.42

Mandible 1 root 1.62 ± 1.00 1.97 ± 1.20 2.63 ± 1.42

Mandible 6 distal 1.04 ± 1.67 0.47 ± 0.60 1.24 ± 1.70

Mandible 6 root 1.78 ± 1.70 0.86 ± 0.84 2.11 ± 1.75

Maxilla 1 crown 0.34 ± 0.27 0.25 ± 0.19 0.47 ± 0.26

Maxilla 1 root 0.88 ± 0.63 1.35 ± 0.84 1.70 ± 0.90

Maxilla 6 distal 0.96 ± 1.43 0.79 ± 0.61 1.37 ± 1.44

Maxilla 6 root 1.59 ± 1.57 0.99 ± 0.67 2.03 ± 1.52

Menton 0.71 ± 0.48 0.15 ± 0.12 0.75 ± 0.46

Nasion 0.44 ± 0.64 0.79 ± 0.88 1.00 ± 1.00

Occlusal plane point 5.87 ± 2.43 0.76 ± 0.54 5.95 ± 2.42

Orbitale 1.02 ± 0.76 0.78 ± 0.62 1.39 ± 0.83

PM 0.58 ± 0.34 1.09 ± 0.83 1.35 ± 0.71

Pogonion 0.47 ± 0.33 1.35 ± 1.33 1.53 ± 1.26

Porion 0.99 ± 0.64 0.63 ± 0.46 1.29 ± 0.58

Posterior nasal spine 1.33 ± 0.77 0.39 ± 0.34 1.47 ± 0.69

Pronasale 0.29 ± 0.27 0.98 ± 0.77 1.08 ± 0.73

Pterygoid 0.79 ± 0.65 1.25 ± 1.07 1.60 ± 1.08

R1 1.50 ± 1.22 4.09 ± 2.51 4.62 ± 2.34

R3 1.34 ± 1.18 4.11 ± 1.81 4.44 ± 1.90

Ramus down 0.93 ± 0.67 3.70 ± 2.72 3.95 ± 2.62

Sella 0.44 ± 0.35 0.28 ± 0.22 0.59 ± 0.31

Soft tissue A 0.57 ± 0.51 1.51 ± 0.86 1.67 ± 0.89

Soft tissue B 0.60 ± 0.54 1.67 ± 1.27 1.85 ± 1.27

Soft tissue menton 1.19 ± 1.09 0.48 ± 0.54 1.36 ± 1.13

Soft tissue nasion 0.60 ± 0.53 1.30 ± 1.16 1.52 ± 1.17

Soft tissue pogonion 1.62 ± 1.99 5.46 ± 4.66 5.76 ± 5.00

Stmi 0.92 ± 0.70 0.44 ± 0.36 1.11 ± 0.65

Stms 1.76 ± 0.87 0.44 ± 0.33 1.84 ± 0.87

Subnasale 0.76 ± 0.65 0.44 ± 0.31 0.94 ± 0.65

Upper lip 0.44 ± 0.47 1.37 ± 0.97 1.50 ± 0.99
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Table 3.  Accuracies of the classification model for internal and external test sets. Training using only the 
real dataset is indicated by Real images and training using the real dataset with generated images is indicated 
by + Generated images.

Real images  + Generated images

Internal test set

Overall 0.8344 0.8493

 Each class

  Class I 0.8429 0.8556

  Class II 0.8917 0.9108

  Class III 0.9342 0.9321

External test set

Overall 0.8287 0.8619

 Each class

  Class I 0.8287 0.8619

  Class II 0.8785 0.9061

  Class III 0.9503 0.9558

Figure 4.  Confusion matrices of classification task for internal (a,b) and external (c,d) datasets. Left: 
performance of trained model using only the real dataset. Right: performance of trained model using the real 
dataset and synthesized images.
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The most prominent difference between the real and synthesized cephalometric images was in the teeth 
region. In the synthesized images, the teeth frequently overlapped each other; thus, their anatomical structure 
could not be clearly distinguished (see red box in Fig. 5a). In addition, the radiopaque line at the cortical bone 
was artificial in most of the synthesized images (see blue box in Fig. 5a). Group 2 was familiar with cephalomet-
ric images, thus they could easily use these features to identify the synthesized images. Group 1 had difficulties 
distinguishing between the real and synthesized images.

Most of the landmark points identified by the orthodontists had no significant differences between them. 
Because the landmark positions are identified by the relative positions of anatomical structures, the differences 
were evaluated by dividing them into the horizontal and vertical axes of the Cartesian plane. Using this metric, 29 
landmark points out of 42 showed less than a 2 mm difference in the Cartesian plane. For point A at the maxilla 
and point B at the mandible regions, the differences in the horizontal direction were smaller than those in the 
vertical direction. These points were mainly used to evaluate the anterior–posterior relationship. In contrast, 
the anterior and posterior nasal spine points, which are important for identifying the palatal plane, had smaller 
differences in the vertical direction than in the horizontal direction. This indicates that the difference is not 
random but occurs systematically depending on the positional definitions of the landmarks.

The landmark with the largest difference between the orthodontists’ definitions was the occlusal-plane point 
(see red box in Fig. 5). The difference in the point’s horizontal direction was 5.87 ± 2.43 mm and that in the 
vertical direction was 0.76 ± 0.54 mm. This point is located at the center of the occlusal plane, which is defined 
by the position of the first premolar and thus can be identified along the horizontal direction. In the synthesized 
image, although the structure of the first premolar was unclear and had artifacts, the occlusal plane point was not 

Figure 5.  Regions of interest for the most prominent difference features. (a) Overlapped teeth region (red 
color) and radiopaque line (blue color). (b) Occlusal-plane point. (c) Cortical line of the mandibular. (d) Ramal 
planes.
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affected in the vertical direction. Consequently, the occlusal plane point had large horizontal differences between 
the orthodontists’ definitions; however, this artifact did not affect the slope of the occlusal plane.

Furthermore, the synthesized cortical lines (see red box in Fig. 5c) of the mandibular and ramal planes (see 
red box in Fig. 5d) were straight, not curved. This increased the differences of the corpus left in the horizontal 
direction and the ramus down in the vertical direction, where the errors at the mandibular plane and ramal plane 
were relatively decreased. Among the landmarks on soft tissue, the soft-tissue pogonion showed the largest dif-
ference between the orthodontists’ definitions. This is because the shape of the chin was flat in the synthesized 
image and the tissue contrast was too dark to identify the landmark. However, this difference is comparable with 
the inter-examiner error of Hwang et al.22.

Moreover, synthesized images were evaluated for classification task. Synthesized images were added to a 
real dataset for balancing the number of images in each class. The classification performance was increased for 
both internal and external test sets compared with the performance of the trained model using only the class 
imbalanced real dataset. This indicates that synthesized images have clinical information of skeletal pattern. In 
this study, the smallest number of images was used for balancing the real dataset. The accuracy could be further 
increased if more synthesized images were added.

The succession of the downstream task indicates important meaning from a following point of view. In the 
medical field, various occlusal patterns and imbalanced dataset between normal and abnormal datasets caused 
misclassification for deep learning based artificial intelligence system. Therefore, GAN based augmentation 
technique as shown in this work to accurately classify the various kinds of normal structure should be needed. 
Otherwise, anomaly detection technique also has been studied to overcome the extreme imbalanced dataset 
between normal and abnormal 23. This technique trains only normal dataset using GAN under the assumption 
that the abnormality does not generated. After training, if one inserts an abnormal image to the GAN, it generates 
normal images excluding abnormalities. The abnormality is then automatically detected by subtracting generated 
image from inserted abnormal image. Thus, the GAN based anomaly detection in cephalometric images will 
also be an important field and our work verified the GAN performance in advance.

This study has several limitations. First, because the image Turing test was conducted using limited-resolution 
images, it should be repeated by synthesizing full high-resolution images (i.e. 1955 × 2360 pixels), which are 
commonly used in the clinical field. Second, although many cephalometric images were used for this study, the 
data distribution was not known in terms of anatomic variation, which results in limitations of synthesizing 
diverse variations. In addition, the aspect ratio was not considered when resizing the cephalometric image to 
1024 × 1024 pixels for GAN training. Because relative position and angle between the landmarks are important 
for orthodontic diagnosis, some portions of clinical information could be reduced. Future studies should consider 
the aspect ratio or cropping of clinically important regions for GAN generation. Finally, comparisons between 
GANs such as PGGAN, StyleGAN1, StyleGAN2 should be the further performed, as they can be useful for 
choosing the best model for clinical application.

Although the PGGAN synthesized images show some artifacts such as in the teeth region, we concluded that 
the generated images can be used for augmentation of datasets in deep learning and to analyze the positional 
relations between the set of teeth, basal bone, and skull base through landmark tracing. Although cephalomet-
ric images contain complex features such as tooth, tissue, cervical vertebra, and devices, the generated images 
were highly realistic, as verified through various evaluation methods presented in this study. Those evaluations 
indicate it was difficult to distinguish between real and synthesized images. Furthermore, classification results of 
skeletal patterns indicated that the synthesized images contain clinical information to improve the classification 
accuracy and thus have potential to be applicable to various deep learning studies. In future studies, we expect to 
improve the artifacts in the cephalometric images by training the GAN with more datasets that contains diverse 
ranges of anatomic features.

Data availability
The datasets are not publicly available because of restrictions in the data-sharing agreements with the data 
sources. Ethics approval for using the de-identified slides in this study will be allowed upon request to the cor-
responding authors.
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