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ABSTRACT

The present study proposed a computer-aided diagnosis system based on 
radiomic features extracted through magnetic resonance imaging to determine the 
isocitrate dehydrogenase status in glioblastomas. Magnetic resonance imaging data 
were obtained from 32 patients with wild-typeisocitrate dehydrogenase and 7 patients 
with mutant isocitrate dehydrogenase in glioblastomas. Radiomic features, namely 
morphological, intensity, and textural features, were extracted from the tumor area 
of each patient. The feature sets were evaluated using a logistic regression classifier 
to develop a prediction model. The accuracy of the global morphological and intensity 
features was 51% (20/39) and 59% (23/39), respectively. The textural features 
describing local patterns yielded an accuracy of 85% (33/39), which is significantly 
higher than that yielded by the morphological and intensity features. The agreement 
level (κ) between the prediction results and biopsy-proven pathology was 0.60. 
The proposed diagnosis system based on radiomic textural features shows promise 
for application in providing suggestions to radiologists for distinguishing isocitrate 
dehydrogenase mutations in glioblastomas.

INTRODUCTION

Glioblastomas (GBMs), the most common glioma, 
account for approximately 70% of astrocytomas and 
15% of all intracranial neoplasms [1, 2]. Approximately 
90% of GBMs are classified as primary, and such GBMs 
mainly affect elderly people, with a median survival of 
approximately 15 months. The remaining 10% of GBMs 
are classified as secondary. Secondary GBMs develop 
from World Health Organization (WHO) grade II or III 
gliomas and predominantly affect younger individuals, 
with a median survival of 31 months [3].

The type of astrocytic neoplasm is defined through 
histological analysis. Recently, exomic sequencing has 

revealed frequent mutations in the isocitrate dehydrogenase 
1 (IDH1) gene and its homolog IDH2, in both low- and 
high-grade gliomas [4, 5]. Almost all IDH1 mutations result 
in an amino acid substitution at R132. These mutations 
impair the physiological function of IDH1 in converting 
isocitrate to α-ketoglutarate (KG) and confer a gain of 
function in converting α-KG to D-2-hydroxyglutarate 
(D-2HG), which accumulates in extremely high levels in 
tumors with IDH1 mutations [5, 6]. Such mutations are 
predominantly observed in secondary GBMs; therefore, 
these mutations are typically considered as highly selective 
molecular markers of secondary disease. In the latest WHO 
tumor classification of the central nervous system (CNS), 
GBMs are classified as (1) IDH—wild-type (WT) and (2) 
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IDH-mutant GBMs. However, diagnostic challenges may 
arise because of the heterogeneity of tumors and partial 
sampling of lesions. Moreover, not every institute has 
developed reliable methods to completely evaluate the IDH 
genotype for every case, particularly for cases that cannot 
be treated through invasive surgery.

Magnetic resonance imaging (MRI) is the modality 
of choice for imaging brain tumors. It can provide clear 
tissue contrasts to help in estimating the malignancy of 
brain tumors [7, 8]. In addition to tumor grading, several 
physiological MRI techniques, including diffusion-
weighted imaging (DWI), MR spectroscopy (MRS), and 
perfusion-weighted imaging (PWI), have been developed 
to more accurately characterize the physiological and 
molecular features of GBMs [9, 10]. Andronesi and Choi 
[11, 12] have reported that MRI combined with specialized 
MRS techniques can detect the in vivo overexpression of 
D-2HG. Other techniques, including DWI and PWI, were 
also applied to detect differences between WT and mutant 
IDH [13]. Tumors with IDH mutations were proposed to 
have a more heterogeneous imaging microenvironment 
because of their stepwise gliomagenesis [13]. 
Nevertheless, the relationship between the IDH status and 
tissue signals generated by clinically relevant conventional 
MR sequences has not been well documented.

For quantifying tumor characteristics through 
imaging, various computer-aided diagnosis (CAD) 
systems have been developed for classifying tumor types 
and grades [14–16]. An artificial intelligence classifier 
can facilitate combining numerous radiomic features to 
generate a specific model. In particular, differences between 
tumors with and those without IDH mutations may be 
subtle and should be explored through the sophisticated 
integration of various image features. In this study, 
quantitative morphological, intensity, and textural features 
were extracted from tumor tissues to determine their IDH 
status; the performance of both individual feature sets and 
a combination of the 3 feature sets was evaluated. This 
quantitative CAD procedure can provide consistent and 
reliable suggestions for IDH classifications to radiologists.

RESULTS

Considering the IDH genotype as the diagnostic 
target, the prediction performance of each feature set 
was determined (Table 1). The global morphological and 
intensity features exhibited similar performance: accuracy, 
51% (20/39); sensitivity, 57% (4/7); and specificity, 50% 
(16/32) and accuracy, 59% (23/39); sensitivity, 57% (4/7); 
and specificity, 59% (19/32), respectively. The textural 
features describing local patterns in tumors yielded an 
accuracy of 85% (33/39), a sensitivity of 86% (6/7), and a 
specificity of 84% (27/32), which are significantly higher 
than the corresponding values for the morphological and 
intensity features. The agreement level (κ) between the 
prediction results and biopsy-proven pathology was 0.60. 

A further experiment for analyzing the combination of 
the 3 feature sets revealed that only the textural features 
were selected, with an accuracy of 85%. We selected the 
features of cluster prominence, cluster shading, maximum 
probability, difference variance, the information measure 
of correlation, the inverse difference normalized, and the 
inverse difference moment.

DISCUSSION

Immunohistochemistry is a standard method for 
detecting IDH mutations under most clinical scenarios. 
However, the genetic status within a GBM, including 
the IDH status, shows intratumoral heterogeneity. 
Performing biopsies of the different parts of tumors 
may yield different results regarding the IDH status. 
Therefore, another noninvasive method to characterize 
this information is warranted. Radiomic features are 
typically extracted from pre-existing MRI images stored 
in a computer; in practice, this is not an expensive 
and complicated method. This study revealed that 
computer-aided radiomic features concerning the 
microenvironmental texture can distinguish the IDH1 
status of GBMs. Studies [5, 17–19] have reported that 
IDH mutations predominantly occur in secondary rather 
than primary GBMs. These mutations alter the normal 
enzyme activity, thus reducing the synthesis of α-KG 
and NADPH, which makes cells more vulnerable to 
oxidative stress. Furthermore, these mutations impair 
the function of IDH in converting isocitrate to α-KG and 
confer a gain of function in converting α-KG to D-2HG, 
resulting in the overexpression of D-2HG in IDH-mutant 
tumors. The excessive D-2HG is considered an oncogenic 
metabolite because it induces epigenetic changes that 
lead to the aberrant regulation of gene expression and 
perturbed cellular differentiation, which may contribute 
to tumorigenesis [20, 21]. Furthermore, D-2HG induces 
increased levels of hypoxia-inducible factor (HIF) -1α. It 
is a transcription factor that promotes tumor angiogenesis 
[22], a key element in GBM formation. Because of the 
stepwise gliomagenesis pattern of secondary GBMs, 
tumors with these mutations are considered to have a 
more heterogeneous microenvironment and imaging 
presentations [13]. Our results revealed that tumors 
with IDH mutations tended to have lower values of 
inverse difference moment features, an indicator of 
tissue homogeneity [23], which also suggests more 
heterogeneous intensities in imaging.

Using a radiomic model for predicting IDH 
mutations provides a connection between intuitive 
vision and personalized profiling. By applying radiomic 
image features, tumor characteristics can be quantified 
without requiring a risky biopsy. In addition, imaging 
is a routine procedure, with no additional costs. We 
employed numerous radiomic features in this study for 
predicting IDH mutations. These features were divided 
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into the categories of morphological, intensity, and 
textural features, which provided different viewpoints 
for distinguishing GBMs with and without IDH 
mutations.

Table 1 shows that the textural features yielded 
an accuracy of 85% (33/39), a sensitivity of 86% (6/7), 
and a specificity of 84% (27/32), which are significantly 
higher (p < 0.05) than the corresponding values for the 
morphological and intensity features. These results are in 
agreement with those of a previous study that used textural 
features to characterize the molecular subtypes of GBM 
[24]. The difference is that the proposed features and 
classification method targeted IDH mutations, which are 
recognized as a critical marker in GBM classification. We 
expect that more correlations between radiomic features 
and gene expression will be investigated.

For predicting IDH mutations, we selected the 
following features: cluster prominence, cluster shading, 

maximum probability, the information measure of 
correlation, difference variance, the inverse difference 
normalized, and the inverse difference moment. The 
cluster prominence and cluster shading measures 
indicate whether a lack of symmetry exists in gray-scale 
distributions. The maximum probability corresponds to 
the strongest response. The correlation determines the 
gray-level linear dependence between a pixel and its 
surrounding neighbors. The difference variance indicates 
the variance between the co-occurrence probabilities 
along the x and y axes. The inverse difference moment 
estimates the homogeneity of the tissue pattern [23]. 
Regarding the misclassified case in Figure 1, a potential 
regional feature distinguishing the tissues into numerous 
regions according to their brightness may be helpful for 
recognizing the halo observed on the boundary. This 
type of feature correlated with the regional brightness, 
and the location can be determined in the future to 

Figure 1: The only IDH-mutant case of GBM misclassified using the CAD system. (a) Original MR image. (b) Delineated 
tumor area. (http://cancerimagingarchive.net/; “License” and the CC BY license, https://creativecommons.org/licenses/by/3.0/; tumor areas 
in this figure were extracted from original images.)

Table 1: Performance of different image feature sets for predicting IDH mutations

 Morphology Intensity Texture
Texture vs. 
morphology 

(p value)

Texture vs. 
intensity (p value)

Accuracy 51% (20/39) 59% (23/39) 85% (33/39) 0.0016* 0.0119*

Sensitivity 57% (4/7) 57% (4/7) 86% (6/7) 0.2367 0.2367

Specificity 50% (16/32) 59% (19/32) 84% (27/32) 0.0034* 0.0261*

* p < 0.05 indicates a statistically significant difference.
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Table 2: Demographic information of the cohort

 Age Sex Tumor laterality Tumor location

IDH-WT 62.6 ± 12.5 years Female: 9
Male: 23

Right: 20
Left: 12

Frontal: 11
Temporal: 18

Parietal: 2
Occipital: 1

IDH-mutant 36.5 ± 15.9 years Female: 2
Male: 5

Right: 3
Left: 4

Frontal: 3
Temporal: 2
Parietal: 0

Occipital: 2

Figure 2: Four glioblastomas with (a and b) and without (c and d) IDH mutations. (http://cancerimagingarchive.net/; “License” and the 
CC BY license, https://creativecommons.org/licenses/by/3.0/.)
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provide more information than that provided by the 
existing features.

A limitation of this preliminary study is that the 
number of IDH-mutant cases was not comparable with 
that of IDH-WT cases. Nevertheless, patients in our cohort 
were enrolled from 4 hospitals, and a balance between 
the sensitivity (IDH) and specificity (non-IDH) was 
maintained (86% and 84%, respectively). Future studies 
should evaluate more cases with respect to the proposed 
features and CAD system. Another limitation is that we 
used only contrast-enhanced T1-weighted images (WIs), 

which might not clearly demonstrate peritumoral edema. 
However, IDH mutations are associated with angiogenesis 
activity [22], and the activity of the angiogenesis module 
within a tumor has been proven to be associated with the 
degree of contrast enhancement [25, 26]. Therefore, we 
believe that the measurements of signal intensities on 
contrast-enhanced T1WIs can be key determinants for 
differentiating GBMs with and without IDH mutations. 
However, further investigations on the role of other MRI 
sequences, such as fluid-attenuated inversion recovery, 
DWI, PWI, and MRS, are warranted.

Figure 4: Quantitative features extracted from the tumor area were combined in a logistic regression classifier. (http://
cancerimagingarchive.net/; “License” and the CC BY license, https://creativecommons.org/licenses/by/3.0/; tumor areas in this figure were 
extracted from original images.)

Figure 3: Tumor contour delineation in contrast-enhanced axial T1WIs. (http://cancerimagingarchive.net/; “License” and the 
CC BY license, https://creativecommons.org/licenses/by/3.0/; tumor areas in this figure were extracted from original images.)
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MATERIALS AND METHODS

Patient information

The Cancer Genome Atlas and the Cancer Imaging 
Archive

The MRI data of 32 patients with WT IDH and 
7 patients with mutant IDH in GBM were obtained 
from the Cancer Imaging Archive (TCIA) (http://
cancerimagingarchive.net/) of the National Cancer 
Institute, a portal that contains images of patients in the 
Cancer Genome Atlas (TCGA) for performing imaging 
analysis. The materials and data provided by TCGA were 
used in compliance with all applicable laws, regulations, 
and policies for patient protection. All necessary approvals, 
authorizations, participant assurances, informed consent 
documents, and institutional review board approvals were 
obtained [27] (Figure 2).

The MR images used in this study were obtained 
from different institutes. The IDH-WT cases were provided 
by Henry Ford and Case Western hospitals. The IDH-
mutant cases were obtained from Henry Ford Hospital, + 
Case Western Hospital, Emory University, and Fondazione 
IRCCS Instituto Neuroligico C. Besta. Among the 291 
GBM cases in TCIA, only 15 (5.15%) were found to have 
the IDH1 mutation. Because 8 of them had no preoperative 
contrast-enhanced T1WIs, only 7 cases were included in 
this study. Among them, one case had an IDH1 R132G 
mutation, whereas the remaining cases had an IDH1 
R132H mutation. No case in TCIA had the IDH2 mutation. 
The IDH-mutant cases in our cohort were enrolled from 
4 hospitals in TCIA. To ensure minimum variation in 
protocols and equipment, the IDH-WT cases were obtained 
from 2 of the 4 hospitals through consecutive selection from 
TCGA archive. A total of 40 IDH-WT cases were selected; 
however, 8 cases were excluded because of incomplete or 
suboptimal image quality. The demographic information of 
our cohort is listed in Table 2.

Tumor delineation
Contrast-enhanced axial T1WIs were used for 

the image analysis. A board-certified neuroradiologist 
(K.H., having 13 years of experience), blinded to the 
molecular information, selected the most representative 
2-dimensional image of each tumor. Intensity 
normalization, which extends the gray-level distribution 
of each MR image to the whole value range (0–255), was 
performed to enhance the contrast between the tumor and 
background tissues for contour delineation. The contour 
was manually delineated using OsiriX. Image pixels 
enclosed by the defined tumor contour were used for 
further feature extraction and analysis (Figure 3).

Radiomic features

The latest WHO tumor classification of the CNS 
describes IDH mutations as a determinant for differentiating 

GBMs. Whether radiomic features can provide information 
on IDH mutations is relevant to clinical practice. The 
features extracted from images can be further combined to 
develop a prediction model for providing suggestions to and 
improving the diagnostic accuracy of radiologists. Numerous 
radiomic features were employed in this study for predicting 
IDH mutations. Three categories, namely morphological, 
intensity, and textural features, were examined to interpret 
the characteristics of GBMs with IDH mutations. Figure 4 
illustrates the extraction of radiomic features.

Morphological features

A tumor’s shape may reflect its growth pattern. 
Therefore, morphological features are widely used in 
CAD systems to describe the geometric characteristics 
of tumors, such as the shape and margins. The essential 
properties, including the area and perimeter, are easily 
calculated from the delineated tumor contour. Considering 
the tumor shape (round or irregular), compactness was 
proposed to correlate to the tumor area and perimeter 
[28]. The irregularity of the tumor margin can be estimated 
using the mean and standard deviation of the normalized 
radial length (NRL) to determine the complexity of the 
distribution of the boundary pixels [29]. The NRL is 
defined as the Euclidean distance between the tumor 
center and boundary pixels normalized by the maximum 
distance. The effects of tumors on their adjacent normal 
tissues may vary. Tumor deformation should be evaluated 
for tissue characterization.

Intensity features

According to the signal intensity characteristics of 
various tissues in MR images, the brightness distribution 
reveals the tumor composition. The intensity in contrast-
enhanced TIWIs also reveals angiogenesis and blood–
tumor barrier abnormalities in brain tumors [9]. By 
distinguishing the brightness distribution into bins of 
gray-scale values, a histogram formulates the count of 
individual values as a probability function. Histogram 
moments [30, 31] are quantitative metrics for describing 
probability statistics. Moment features include the first-, 
second-, third-, and fourth-order central moments of a 
histogram, namely the mean, variance, skewness, and 
kurtosis, respectively.

The mean and variance measure the center of the 
gray-scale value distribution and the extent of increase in 
these values. Skewness determines the symmetric property 
of the distribution by describing the balance between 2 
sides of a distribution. Kurtosis refers to a single-peak 
histogram with heavily weighted tails compared with 
those in a normal distribution.

Textural features

Textural features are widely used in CAD systems to 
discriminate tumor types [15]. A computational statistical 
analysis between pixels can reveal the local pattern formed 
by the correlations between adjacent pixels. The brightness 
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composition, such as whether tissues inside the tumor area 
are heterogeneous or homogeneous, can be determined 
from textural features.

The gray-level co-occurrence matrix (GLCM) has 
been proposed as a promising method for interpreting 
image textures [32–34]. Various CAD systems use GLCM 
textures to describe image patterns for tumor classification 
[35]. The GLCM was established by counting the co-

occurrence frequencies of 2 adjacent pixels (i and j) 
at a distance d and direction θ [32]. A reduced image 
G with fewer intensity bins facilitated reducing the 
computational complexity. Parameters including distance 
d = 1 and 4 directions of θ= 0°, 45°, 90°, and 135° were 
used individually and in combination. In total, 14 GLCM 
textural features were used in the experiment:

Autocorrelation =
i j

x x y y

x y
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where μx,μy,σx, and σy are the mean and standard deviations 
of the marginal distributions of p(i, j|d, θ):

µ µx
i j

y
j i

i p i j j p i j= ( ) =∑∑ ∑ ∑, , ( , )
 
and (15)

σ σx

i

x

j

y

j

y

i

i u p i j j u p i j2 2 2 2= − = −∑ ∑ ∑ ∑( ) ( )( ) , , ( ) , .      (16)

Statistical analysis

The morphological, intensity, and textural image 
features were implemented in the experiment for tissue 
characterization. These features completely revealed 
the global and local appearances of GBMs. The global 
appearance includes the morphological properties 
of the tumor shape and overall intensity distribution 
of tumor tissues, whereas the local texture describes 
correlations between pixels and their neighbors in different 
orientations. All features in a category were combined into 
a feature set in a binary logistic regression classifier for 
predicting the IDH status. A combination of these features 
was also examined.

With next-generation sequencing-based molecular 
profiles as the gold standard, imaging features were 
evaluated using stepwise backward elimination to 
explore the most favorable combination of features. The 
feature set with the lowest error rate was considered 
the most relevant set. The corresponding prediction 
model was validated using the leave-one-out method 
[36] to determine its generalizability. In each validation 
iteration, an individual case was selected and was used to 
examine the trained prediction model from the remaining 
N − 1 cases. Therefore, each tumor was assigned a 
probability of having an IDH mutation according to its 
features.

Based on the proven IDH genotype, the performance 
of the prediction model was evaluated using 3 indices: 
accuracy, sensitivity, and specificity. The chi-squared test 
was used to compare the performance indices by using 
SPSS (Version 16 for Windows; SPSS, Chicago, IL, 
USA). In addition, the prediction result was compared 
with the biopsy-proven pathology to obtain the agreement 
level by using Cohen’s kappa. The resulting κ was −1.0 
to 1.0, where a high value indicates high reliability. The 
agreement was considered slight if κ < 0.20; fair if κ = 
0.21–0.40; moderate if κ = 0.41–0.60; substantial if κ = 
0.61–0.80; and almost perfect if κ > 0.81.
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