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ABSTRACT: Cystathionine β-synthase (CBS) is a modular enzyme which catalyzes condensation of serine with
homocysteine. Cross-talk between the catalytic core and the C-terminal regulatory domain modulates the
enzyme activity. The regulatory domain imposes an autoinhibition action that is alleviated by S-adenosyl-
L-methionine (AdoMet) binding, by deletion of the C-terminal regulatory module, or by thermal activation.
The atomic mechanisms of the CBS allostery have not yet been sufficiently explained. Using pulse proteolysis
in urea gradient and proteolytic kinetics with thermolysin under native conditions, we demonstrated that
autoinhibition is associated with changes in conformational stability and with sterical hindrance of the catalytic
core. To determine the contact area between the catalytic core and the autoinhibitory module of the CBS
protein, we compared side-chain reactivity of the truncated CBS lacking the regulatory domain (45CBS) and
of the full-length enzyme (wtCBS) using covalent labeling by six different modification agents and subsequent
mass spectrometry. Fifty modification sites were identified in 45CBS, and four of them were not labeled in
wtCBS.One differentially reactive site (clusterW408/W409/W410) is a part of the linker between the domains.
The other three residues (K172 and/or K177, R336, and K384) are located in the same region of the 45CBS
crystal structure; computational modeling showed that these amino acid side chains potentially form a regulatory
interface in CBS protein. Subtle differences at CBS surface indicate that enzyme activity is not regulated by
conformational conversions but more likely by different allosteric mechanisms.

Cystathionine β-synthase (CBS,1 EC 4.2.1.22) is a pyridoxal
50-phosphate (PLP) dependent enzyme which catalyzes the first
step of the transsulfuration pathway, namely, the condensation
of serine with homocysteine to cystathionine (1). Its deficiency
due to missense mutations in the CBS gene is the most common
cause of inherited homocystinuria, a treatablemultisystemic disease
affecting to various extent vasculature, connective tissues, and
central nervous system (http://www.ncbi.nlm.nih.gov/omim/
236200). More than 100 different pathogenic amino acid substitu-
tions in the CBS protein were described, and the missense
mutations represent 86% of all analyzed patient alleles (http://
www.uchs.edu/cbs/cbsdata/cbsmain.htm).

Human CBS is a homotetrameric protein, and each subunit
(61 kDa) consists of 551 amino acids. The protein sequence

comprises three regions: the N-terminal heme-binding domain
(1-69), a highly conserved catalytic core (70-413), and the
C-terminal regulatory domain (414-551) (2), an autoinhibitory
module with binding site for the allosteric activator, AdoMet (3).

CBS activity can be stimulated in vitro by several processes: by
allosteric binding of S-adenosyl-L-methionine (AdoMet) (3), by
proteolytic cleavage yielding the C-terminally truncated dimer con-
taining identical subunits with molecular mass of 45 kDa (4), or by
heat activation (3, 5). Proteolytic activation of CBSwas observed
also in vivo in rat liver extract (6) and in HepG cell lines (7).

The spatial arrangement of CBSmolecule was solved byX-ray
crystalography for the truncated 45 kDa enzyme lacking the
C-terminal regulatory domain (amino acids 1-413, 45CBS)
only (8, 9); the 3-D structure belongs to theβ-family of PLP enzymes
such as O-acetylserine sulfhydrylase or tryptophan synthase.
However, the 3-D structure of the full-length CBS (wtCBS) has
not yet been determined, and therefore the atomic basis of the
enzyme regulation is still unclear. While hydrophobicity of the
C-terminal module and putative interdomain motions prevented
successful crystallization of wtCBS, alternative techniques can
yield at least partial information about the allosteric communication
in the wtCBS protein. Using H/D exchange, Sen et al. showed
that the region 356-385 exhibited significantly slower rate of
deuterium incorporation for wtCBS compared to 45CBS (10).
The data were used for evaluation of a protein-protein docking
exercise, anda structuralmodel of the full-lengthCBSwasproposed.
However, this model has not yet been supported and/or refined
by other structural techniques.
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In this study, we developed a procedure for covalent labeling
of solvent-accessible amino acid residues (11) in purified CBS.
Using this technique, we compared reactivity of the side chains
in 45CBS and wtCBS with six modifiers. These commonly used
compounds specifically react with histidines (diethyl pyrocarbonate;
DEP), tyrosines (N-acetylimidazole; NAI), cysteines (N-ethyl-
maleimide; NEM), lysines (sulfo-N-hydroxysuccinimido acetate;
NHS), tryptophans (N-bromosuccinimide; NBS), and arginines
(4-hydroxyphenylglyoxal; HPG) (12). Surfacemapping provided
data which faciliated development of the refined model for wtCBS
spatial arrangement and enabled insight into the structural basis
of the enzyme allosteric regulation.

EXPERIMENTAL PROCEDURES

Materials. If not specified otherwise, all chemicals were pur-
chased from Sigma-Aldrich.
Preparation of 45CBS and wtCBS. The 45CBS and the

wtCBS were expressed in Escherichia coli and purified to homo-
genity as previously described (13, 14).
Pulse Proteolysis. Pulse proteolysis was performed as de-

scribed previously (15, 16) with some modifications. Purified
45CBS or wtCBS (0.5 mg/mL) was equilibrated overnight at 4 �C
in 20 mM Tris-HCl (pH 8.0) containing 10 mM CaCl2 and urea
(0-7M) and then digested by thermolysin from Bacillus thermo-
proteolyticus (0.1mg/mL). To carry out pulse proteolysis of wtCBS
in the presence of AdoMet, wtCBS was incubated with 300 μM
AdoMet at room temperature for 10min prior to equilibration in
urea. The proteolytic pulse (1 min) was quenched in 20 mM
EDTA. Protein samples (7.5 μg) were analyzed by SDS-PAGE
using Tris-acetate SDS running buffer with 3-8% gradient
Tris-acetate precast gels (Invitrogen) and visualized byCoomassie
blue solution. Experiments were repeated three times. Band inten-
sities were quantified using GeneTools software (Syngene) and
were fitted into the sigmoidal equation:

ffold ¼ 1

1þ e pðcm - cÞ

using Origin 8.0 (Originlab); ffold represents a fraction of folded
proteins remaining intact after proteolytic pulse, cm urea con-
centration at which ffold is 0.5, and c urea concentration. Value of
p is a slope of curve at cm, and it reflects unfolding cooperativity.
Proteolytic Kinetics under Native Conditions. Purified

proteins (0.5 mg/mL) were diluted in 20 mM Tris-HCl (pH 8.0)
containing 10mMCaCl2 and digested by thermolysin (0.1mg/mL).
At the chosen time point, proteolysis was quenched in 20 mM
EDTA. SDS-PAGE and band quantification were performed
as described for pulse proteolysis. First-order kinetic constant of
proteolysis (kp) for each protein was determined by nonliner
curve fitting (17).
Preparation of Modified Protein Samples. CBS proteins

(1 mg/mL) were diluted in modification buffer and covalently
labeled. Each labeling procedure (18-23) (Table S1 in the Sup-
porting Information) was repeated three times. Reaction was
quenched by buffer exchange using Zeba Desalt spin columns
(ThermoFischer Scientific) with elution by 50 mM NH4HCO3.
Analysis ofModified Proteins. (i)Native Electrophoresis.

Labeled proteins (3 μg) were separated using Laemmli buffer
system without sodium dodecyl sulfate and with 3-8% gradient
Tris-acetate precast gel at 4 �C and visualized by silver staining
kit (Promega) according to manufacturer’s manual.

(ii) CBS Activity Assay. Enzyme activity of the proteins
was determined in the absence or presence of 1 mM AdoMet by

radiometric assay using [14C]-L-serine (Moravek Biochemicals);
the previously described method (24) was slightly modified. The
reactants and products were separated by thin-layer chromatog-
raphy using cellulose-HPTLC sheets (Merck) and subsequently
visualized using PhosphorImager system (Molecular Dynamics);
amount of radioactive cystathionine as the reaction product was
determined by ImageQuant 5.0 software (Molecular Dynamics).

(iii) In-Solution Proteins Digestion and Mass Spectro-
metric Analysis.Labeled proteins were reduced in 5mMdithio-
threitol at 50 �C for 30 min; reduced cysteines were acetamidated
in 25 mM iodoacetamide in the dark at room temperature for
30 min. Subsequently, they were digested by trypsin (Promega),
chymotrypsin, endoprotease Glu-C, and protease double combi-
nations (25) at 37 �C for 1 h. The CBS:protease ratio (w/w) was
20:1. The protein digest was fractionated by ZipTip (Millipore),
and each fraction was mixed with the matrix solution (saturated
solution of R-cyano-4-hydroxycinnamic acid supplied by Bruker
Daltonics, sample:matrix ratio of 1:1 v/v) and measured using
Autoflex II (Bruker Daltonics) mass spectrometer equipped with
a nitrogen laser (337 nm) in reflector positive mode (m/z range
from 500 to 4500). The mass spectrometer was externally cali-
brated by peptide calibration standard II (Bruker Daltonics).
All spectra were processed by Flex Analysis, Biotools 3.0 and
mMass 3.0 (26); mass accuracy tolerance was set at 50 ppm for
MS and (0.5 Da for MS/MS analyses (22).

With the exception of labeling with NBS, all other modification
sites were identified by detection of labeled peptides that were not
detected in unmodified controls (27); expected mass shifts for
each reaction are shown in Supporting Information Table S1.
The labeling with NBS induces tryptophan oxidation (19) which
is also considered to be a common artifact of sample han-
dling (28). Since we observed tryptophan oxidation even in the
unmodified controls, the residues labeled with NBS were deter-
mined by comparing peak intensities of the modified and the
unmodified peptides (29). Tryptophan residues were classified as
labeled if the relative intensity of modified peptide increased at
least 1.5-fold compared to the unmodified control. Identity of the
modified peptides generated from all labeling experiments was
confirmed by MS/MS measurements (method LIFT).

In general, mass spectrometric measurements were satisfacto-
rily reproducible; i.e., modification sites were determined identi-
cally in the repeated experiments.
Thermal Activation of wtCBS. The wtCBS diluted in the

reaction buffer was incubated at 55 �C for 10min and then chilled
on ice (3, 5). Thermally activated proteins were labeled and ana-
lyzed by native electrophoresis, activity assay, and mass spectrom-
etry as described above.
Protein StructureModeling.Model of the C-terminal regu-

latory module was built by homologymodeling packageModeller
9v3 (30) using the structure of CBS-domain containing protein
MJ0100 fromMethanocladococcus jannaschii (PDB ID3KPB) (31)
as a template. The initial sequence-sequence alignment was pro-
cessed by the web services of PHYRE (32) and PSI-BLAST (33)
and further modified manually. The resulting model was evaluated
using Prosa web service (34) and statistical coupling/protein
sector analysis (35). For this purpose, 6983 protein sequences
fromCBS subfamily were taken from the Pfam database (36) and
analyzed using a Python script based on the procedure introduced
by Halabi and co-workers (35).

Model of wtCBS dimer was obtained by docking of a single
C-terminal regulatory domain to 45CBS dimer (PDB ID 1JBQ,
with missing loops reconstructed byModeller package) using the
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program ZDOCK (37). This was followed by addition of the
C-terminal domain to the second subunit that was driven by sym-
metry. Differentially modified residues from the experimental
results were forced to be involved in an interdomain interaction
during the docking process.

Structural models generated by this approach were visually
inspected on the basis of several criteria, namely, involvement of
differentiallymodified resides in the interaction, dimer symmetry,
and protein stereochemistry. The full-length dimer was built by
Modeller using the best-suited structure from docking procedures.

RESULTS

Pulse Proteolysis and Proteolytic Kinetics under Native
Conditions. Using pulse proteolysis we determined the global
conformational stability and unfolding cooperativity of CBS
proteins (Figure 1 andTable 1). ThewtCBS exhibited lower resis-
tance to urea-induced denaturation and lower degree of unfolding
cooperativity compared to 45CBS. Binding ofAdoMet to wtCBS
moderately increased the protein stability toward urea, although
it remained lower than the 45CBS resistance. On the other hand,
unfolding cooperativity of wtCBS did not differ from wtCBS in
the presence of AdoMet. These data show that CBS proteins
adopt variant conformational states characterized by different
degree of the stability.

Proteolytic kinetics by thermolysin under native conditions
(Figure 1B) revealed slower cleavage of wtCBS compared to the

45CBS. AdoMet binding to wtCBS accelerated proteolysis;
however, it was still slower than cleavage of 45CBS.

These results are concordant with previously proposed regula-
tion mechanisms; i.e., catalytic core is sterically hindered in the
full-length protein by the C-terminal regulatory domain, and the
hindrance is partially cleared off upon AdoMet binding (3, 38).
To verify this hypothesis at the atomic level, we compared three-
dimensional structures of 45CBS and wtCBS using protein
surface mapping.
Surface Mapping of CBS. (i) Sequence Coverage. To

reach high degree of protein sequence coverage, 45CBS andwtCBS
were digested by three proteolytic enzymes, namely, chymotrypsin,

FIGURE 1: Pulse proteolysis in urea gradient (A) and proteolytic kinetics by thermolysin under native conditions (B) of CBS proteins. Below the
representative SDS-PAGEgels, the corresponding plots are shown. Points are depicted as ameanwith standard deviations; curveswere fitted by
nonlinear regression. (A) Molar concentration of urea for proteolytic pulse is indicated at the top of each line at the gels. Ffold values which
represent fraction of remaining intact protein after the proteolytic pulse are plotted against urea concentration. (B) Portion of remaining protein is
plotted against the incubation time. Each line of the gels is marked by designed time point of proteolysis in minutes; “N” refers to uncleaved control.

Table 1: Results from Pulse Proteolysis in Urea Gradient and Proteolytic

Kinetics under Native Conditionsa

pulse proteolysis

proteolytic kinetics

under native conditions

protein cm (mol/L) p kp (min-1)

wtCBS 2.70( 0.08 1.51( 0.15 0.026( 0.005

wtCBS þ AdoMet 3.26( 0.08 1.48( 0.13 0.056( 0.005

45CBS 4.08( 0.07 2.20( 0.28 0.075( 0.008

aTheCBSproteins (0.5mg/mL) were digestedwith thermolysin (0.1mg/mL).
Data were evaluated by nonlinear curve fitting. Value of cm reflects conforma-
tional stability, and value of p is informative about unfolding cooperativity;
the constant kp was acquired from the equation of first-rate kinetics.
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endoprotease Glu-C, and trypsin and by their double combinations;
we obtained the sequence coverage of unmodified proteins 89%
and 94% for 45CBS and wtCBS, respectively. For each labeling
experiment, we selected the digests that yielded the highest amount
of reliably identified modified amino acid residues (mass spectro-
metric data set available in the Supporting Information).

(ii)ModifierConcentrations. In the next step, we optimalized
conditions of each labeling reaction as the excess of a modifica-
tion agent may disrupt the spatial arrangement of a protein (39).
Therefore, the lowest concentration of the modifier that enabled
efficient mass spectrometric detection of the modified residues
was chosen. The integrity of modified proteins was monitored by
disruption of their structure manifested by smears and lack of
sharp bands on native gels along with complete loss of enzymatic
activity. These effects were observed in the case of labeling with
tyrosinemodifiers tetranitromethane and iodine, and tryptophan
modifier 2-hydroxy-5-nitrobenzyl bromide (data not shown). Six
other modification agents (Supporting Information Table S1)
were feasible for this study since modified CBS proteins migrated
as sharp bands on native gels and retained high levels of enzymatic
activity (Figure S1 and Table S2 in the Supporting Information).
These data showed that most of the modification reactions
did not even partially disturb integrity of CBS proteins, with
the exception of the 45CBS labeled with NBS. In this case,
modification procedure decreased enzyme activity to 43% of the
unmodified control. This observation indicated that the labeling
reaction may partially affect the catalytic activity. Despite this
obstacle, we utilized NBS labeling since it was the only suitable
compound for the detecting of solvent-exposed tryptophans. The
eventual impact of the modification procedure on the protein
integrity should be thus taken into account during structural
interpretation.
Modification Sites in CBS.Modification reactions were ex-

amined by mass spectrometry, and residues labeled by six dif-
ferent agents were determined. The labeling was monitored
qualitatively; i.e., the evaluation was based on the presence/
absence of the modified peptides in 45CBS and wtCBS. This
approach is commonly known as chemical footprinting (40), a
suitable technique for study of protein/protein and protein/DNA
interactions (41).

Mass spectrometric analysis revealed 50 and 70 modification
sites in 45CBS and wtCBS, respectively (Table 2). Identity of the
modified peptides was verified byMS/MS sequencing. However,
several sites could not be confirmed due to insufficient fragmen-
tation of the modified peptides (see Table 2). The majority of the
unconfirmed peptides contain a modified arginine residue since
their tagging may affect the fragmentation process as previously
reported (42). Nevertheless, these peptides were included in the
data set, since their observedmasses were unambiguously assigned
against in silico generated digests.

In wtCBS, 46 labeled residues were identified in the active core
(region 1-413), and 24 sites were located in the regulatory domain
(414-551). Comparing the side-chain reactivity of 45CBS and
wtCBS in the region 1-413, we found four sites that were differ-
entially labeled, i.e.,modified in 45CBS andnotwtCBS (Figure 2;
MS/MS spectra are shown in Figures S2-S4 in the Supporting
Information). Differentially modified amino acid side chains
were found in the peptide 164-181 (residue K172 and/or K177
modified by NHS), in the peptide 326-345 (residue R336 modi-
fied by HPG), in the peptide 380-389 (residue K384modified by
NAI), and in the peptide 406-413 (residue W408 and/or W409
and/or W410 modified by NBS).

Differentially Reactive Peptides in Thermally Activated
CBS.Lack of reactivity of the above four peptides inwtCBS could
be explained by interdomain sterical hindrance that is indepen-
dent of the regulatory motions or by conformational changes
which modulate the enzymatic activity. Thus, we tested whether
the reactivity of the residues can be restored by stimulating activ-
ity of wtCBS. If so, such a result would suggest that the residues
are involved in conformational motions; on the other hand,
persistent unreactivity of these side chains would indicate their
location at the fixed interdomain interface. Since the surface
mapping in the presence of AdoMet could not be performed due
to this ligand’s reactivity towardmost of the modifiers, thermally
activated wtCBS was analyzed as a surrogate. This approach is
feasible since allosteric changes due to AdoMet binding and
partial heat denaturation share a common mechanism (3).

For covalent labeling of the stimulated wtCBSwe applied only
the modifiers and the digestions which provided differentially
reactive peptides. Structural integrity of thermally activated
wtCBS was preserved after the labeling reactions to an extent
similar to the nondenatured wtCBS at the same concentration of
modifier (enzyme activities are shown in Table S3, Supporting
Information). The restoration of the residue reactivity was observed
only for peptide 164-181 labeled by NHS, while the other three
peptides were not labeled in thermally activated wtCBS (Figure 2).
These findings indicate that both sterical hindrance and regulatory
motions are responsible for the differential reactivity of the residues.
Structural Prediction Using Computational Modeling.

Initially, homology model of the C-terminal regulatory domain
was built using archeal CBS domain as a template (31). The amino
acid sequence identity was 16% for the template-model pair.
Nevertheless, CBS domains form a conserved tertiary structure
despite rather low sequence identity of individual proteins (43).

Table 2: Modification Profile of CBS: List of Modified Amino Acidsa

modifier

DEP NBS NEM NAI NHS HPG

G1 W43 C15 G1 G1 R18

C15 W54 C52 K25 K25 R45

H17 W208 C272 K39 K39 R182/R190/

R196b

H22 W408/W409/

W410

C370 K72 K72 R209

H65/H66/

H67

M505b C431 K137 K137 R336b

H203 M529b K172/K177c K172/K177 R369b

K211 K211 K211 R389

K406 K271 K271 R413

H411 Y308 K322 R439

H433 K322 K405 R491b

H501 K359 K406 R498

H507 K384 K441 R527

K398/K405b K472 R548

K406 K481

K441 K485

K472 K488

Y484/K485 K523

K488 K551

K523

K551

aDifferentially reactive residues (modified in 45CBS but not in wtCBS)
are underlined. bIdentity of modified peptide could not have been con-
firmed by MS/MS due to insufficient fragmentation. cReactivity of these
residues could have been confirmed by MS/MS only in the case of 45CBS.
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Since this structural module contains many flexible loops,
additional restraints were applied; namely, residues 466-472 and
537-549 of the CBS were forced to R-helix formation according
to secondary structure prediction, and the distance between CR
atom of L412 and CD2 of L539 was restrained to 4 Å according
to structural data of the template.The resulting structure was
evaluated by Prosa and yielded a value of -6.38 which is com-
parable to values usual for experimental structures of the same
size and similar to the score for the single subunit of the template
(-7.50). Moreover, statistical coupling/protein sector analysis
was used for evaluation of themodel. Protein sectors are coevolv-
ing networks of residues supposed to play a common role (i.e.,
catalytic, stabilizing etc.) and thus showing a spatial proximity.

Two sectors with evolutionary coupled residues were identified in
the autoregulatory domain (Figure 3A), showing a strong coevolu-
tion within each sector but a loose one between each other
(Figure 3B). The residues from the particular sector were found
next to each other in the homology model which indicated a high
plausibility of the resulting structure. In addition, the residue I483
was located at the sector interface and revealed strong coupling
with both sectors (further details on SCA/sectors can be obtained
in the Supporting Information).

In the next step, the modeled C-terminal domain (residues
410-545) was docked onto the available structure of 45CBS. The
initial docking was not successful, indicating that certain con-
formational changes in the catalytic domain may be associated

FIGURE 2: Differentially reactive peptides and their modification sites (A) together with corresponding representative spectra (B). Reactivity of
the peptides is shown in 45CBS, wtCBS, and thermally activated wtCBS.
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with the binding of the regulatory domain. Therefore, the sterically
hindering C-terminal helical region of the catalytic domain
(residues 385-397) was deleted, and the truncated structure
was used as bait with residues K172, K177, and R336 being
forced to interaction. Other differentially reactive residues (K384
andW408/409/410) were not involved in docking as they are located
in the linker between the catalytic and autoregulatory domains;
their topology was used rather for verification of the resulted
models. Thismodifieddockingprocedure resulted in the generation
of 79 structures;model no. 32was selected by visual inspection on
the basis of the location of the differentially modified residues,
protein symmetry, and general stereochemistry. Using the result
from the docking procedures, the structure of the full-length
dimer was built. Plausibility of the structural model is greatly
supported by data from surface mapping experiments: differen-
tially reactive residues are located at the regulatory interface
while residues modified in 45CBS as well as in wtCBS are still
solvent-accessible (see Figure 3D,E; structural model is available
in the Supporting Information). However, the resulting model
represents a possible structural interpretation of our experimental
data and should not be interpreted as an atom-resolved structure
due to limitations of homology modeling and protein-protein
docking procedures.

DISCUSSION

Regulatory Interface in CBS. A cross-talk between the
active core and the regulatory domain in CBS modulates its
enzyme activity. The main aim of the study was to compare
residue reactivity in 45CBS and wtCBS as the differences may
reveal the regulatory network. In 45CBS, we identified 50 labeled
residues in total, and we found only 4 modification sites which
were not detected in wtCBS (Table 2). Using the thermally

activated wtCBS as a surrogate of the AdoMet activated enzyme,
we tested whether the abolished side-chain reactivity could be
restored by the allosteric stimulation. The only differentially
reactive peptide 164-181 was labeled in the thermally activated
wtCBS, suggesting that this region (namely, residues K172 and/
or K177) increases surface accessibility during enzyme stimula-
tion and that it is involved in regulatory motions of CBS. Three
other differentially reactive peptides were not labeled in wtCBS
even upon thermal activation. Therefore, these side chains (R336,
K384, W408 and/or W409 and/or W410) are probably localized
at the fixed domain interface.
Contact Area between the Catalytic Core and the Regu-

latory Domain. Three differentially modified residues (K172
and/or K177, R336, K384) were located in the same region of the
45CBS crystal structure (see Figure 2E), and docking procedure
showed that these residues may form an interface between the
catalytic core and the regulatory domain. The region possessing
differentially reactive sites was also predicted to form inter-
domain contact area due to the presence of hydrophobic residues on
the surface of the 45CBS crystal structure (44). Several CBS patient-
derived mutations, namely, the p.V173M (45), the p.E176K (46),
and the p.E302K (47), which are located at this putative interface,
exhibited enzyme activity similar to wtCBS and failed to be
allostericaly stimulated by AdoMet. These observations indicate
that mutations of these residues affect interdomain interactions
and the CBS allostery.

Another differentially reactive site, the tryptophan clusterW408/
9/10, was not previously assigned by the diffraction analysis of
the 45CBS crystal; thus we propose that it forms a flexible region
in 45CBS and a loop between the active core and the C-terminal
domain which is sterically hindered in the wtCBS. As mentioned
in the Results, findings dealing with the residues W408/9/10

FIGURE 3: Computationalmodeling ofCBS structure. (A)Model ofC-terminal domain generated by homologymodeling. Reliability of the built
structure was assessed by protein sector analysis. Each sector is depicted by its particular color (green and orange, respectively); residue I483,
coupled in both sectors, is indicated in magenta. The dashed line indicates the axis of pseudo-2-fold symmetry of the subunit; arrows show the
potential binding sites for AdoMet. (B) Statistical coupling between sector residues. It illustrates that these positions in the structure of the
autoregulatory domain are strongly coupled within each sector but loosely coupled between the two sectors. Colors of the sectors are consistent
with panel A. (C) Scheme of tetrameric assembly in CBS using available structural data. Dimer-dimer interface is located between the
autoinhibitory domains. Dimers of catalytic core are colored in dark color, autoinhibitory modules are depicted in light colors. (D) Structural
model of dimericwtCBS. Positionof differentially reactive clusterW408/9/10 is indicated in green.Each subunit is depicted in particular color, red
andblue, respectively.Autoinhibitorymodule is colored in light colors; catalytic core is depicteddarkly. (E)Differentially reactive residues located
in crystal structure of 45CBS, indicated in green. Each subunit in dimer is colored in blue and red, respective.
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should be takenwith care asmodification of 45CBSwithNBS led
to apparent decrease in enzymatic activity. On the other hand, the
electromigration of modified 45CBS was undistinguishable from
the unmodified control, indicating that quaternary structure was
preserved after the labeling. We assume that the protein structur-
al integrity was not essentially disrupted and that the enzyme
activity was affected due to the local conformational changes.
Moreover, conclusions about different microenvironment along
the tryptophan cluster are also supported by changes in trypto-
phan flourescence spectra reported previously (3, 4).

However, a previously published study involving H/D exchange
(10) revealed the interdomain contact at a different region of the
CBS structure. Although the changes in microenvironment of
K384 were observed by both the H/D exchange and the covalent
labeling in the present study, other differentially solvent-accessible
regions were found using just single technique. We observed
changes in residues K172/K177, R336, and W408/W409/W410,
but they were not reported by Sen et al. On the contrary, H/D
exchange study revealed differences in the segment of 359-370,
but our covalent labeling experiments did not confirm them; in
this region, threemodification sites (K359, R369, andC370) were
identically observed in the both proteins, 45CBS and wtCBS.
Similarly to our study, results from H/D exchange were further
supported by properties of certain mutant proteins, namely of
double-linked mutant p.P78R/K102N (48). Its amino acid sub-
stitutions are located in the proximity of the differentially solvent-
accessible region 359-370, and this mutant affects the protein
allostery driven by AdoMet binding.

The discrepancies between results of covalent labeling and H/D
exchange are unclear. The inconsistency may reflect the methodo-
logical limitations of each technique. Our experimental setup was
designed for identification of differentially reactive sites rather
than for quantification of small changes in extent of modification.
Mass spectrometry analyses of the reactions were performed quali-
tatively (with exception of labeling with NBS; see Experimental
Procedures) which enabled determination of totally blocked
residues only. On the other hand, wemight have lost information
about subtle conformational motions that would be revealed
by quantitative evaluation. Conformational study using H/D
exchange has its own limitations as well. It determines the rate
of deuterium incorporation to protein backbone from several
seconds to hours, and consequently any differences on a short
time scale of the exchange may be missed. Therefore, each of
these two approaches might locate only particular changes in the
CBS protein. Unfortunately, an attempt to generate amodel con-
sistent with both data sets was not successful (data not shown).
We can speculate that the discrepancies between these studies
might arise from different conditions and procedures during
preparation of CBS proteins. Consequently, each study would
have analyzed only limited set of all possible states from the con-
formational ensemble. Nevertheless, the inconsistency needs to
be examined by additional structural techniques.
Allostery of CBS Is Not Associated with Extensive Con-

formationalChanges.Covalent labeling aswell asH/D exchange
showed that autoinhibition of the active core by the regulatory
domain is associated with only subtle changes at the protein
surface. These observations indicate that the CBS allostery is not
necessarily directed by extensive conformational motions, sug-
gesting that other factorsmay play an important role. Changes in
structural flexibility and “population shift” as determinants for
protein allostery were proposed in the past decade (49-51); it has
been shown that the ligand binding often leads to stabilization

and/or rigidification of certain conformations (52). As the
enzyme activity of CBS proteins (14) is directly proportional to
the conformational stability, as determined by pulse proteolysis
(Table 1; 45CBS, wtCBS in the presence of AdoMet, wtCBS
in the absence of AdoMet, in descending order), it is tempting to
speculate that CBS regulation may be driven by changes in
protein dynamics. However, detailed knowledge of this type of
CBS allostery is limited since the 3-D structure of the protein has
not yet been reliably described in sufficient resolution.
AdoMet Binding Site. Furthermore, the designed model of

wtCBS provides information about the structural features of
several sites with putative regulatory function. Since the spatial
arrangement of archeal CBS-domain pair in complex with
AdoMet was solved recently (31) and we used this structure as
a template for homology modeling of the C-terminal regulatory
domain, the possible AdoMet binding site can be proposed. An
interesting feature of the C-terminal autoinhibitory domain is its
pseudo-2-fold symmetry (the axis indicated in Figure 3A) which
forms the basis for two ligand binding sites in each regulatory
subunit (a and b in Figure 3A). The experimental structures of
the template-ligand complexes showed that the ligands bind to
either one of these sites. Sequence similarity does not provide
enough information to precisely identify the AdoMet binding site
in CBS. However, AdoMet is likely bound in site b (Figure 3A)
including the residueD444 that has been identified to be involved
in the autoinhibitory function (38).
CXXC Oxidoreductase Motif. CBS also contains the

CXXC oxidoreductase motif which spans residues 272-275.
Here we identified the C272 as a solvent-exposed residue both
in the 45CBS and in thewtCBS. This observation disagreeswith a
previous study that used three different cysteinemodifying agents
and anN-terminal sequencing of carboxymethylated peptides (5).
However, our findings are in agreement with the crystal structure
of the 45CBS. The solvent accessibility of CXXCmotif observed
in our study may thus support the notion of its possible role in
redox sensing (53), although the biological relevance of this
observation remains to be answered.
Residues Responsible for Aggregation and Allostery.

Other residues, which play important role in CBS function, were
revealed by labeling with NAI; this modification decreased the
tendency of wtCBS to form higher order oligomers and increased
its catalytic activity (Table S2 and Figure S1 in the Supporting
Information). Similar effect was also observed after modification
by NEM as reported previously (5). Frank et al. explained the
stabilizing action of the NEM by covalent blocking of C15, the
residue responsible for aggregation of wtCBS.

Interestingly, wtCBS labeled with NAI failed to be fully
activated upon AdoMet binding while modification of wtCBS
by NHS, which exhibited similar modification pattern as NAI
(Table 2), did not cause such effects. These data indicate that
certain modified residues are responsible for CBS aggregation
and also for allosteric activation, and their function can be re-
pressed by covalent blocking of the reactive groups. Comparing
the results from labeling with NAI and NHS, we can point out
three candidate residues, namely, Y308,K359, andY484, that are
modified by NAI and not by NHS. However, we could not
specify the “aggregation inducing“ and “regulation networking“
side chains in this study.
Quarternary Structure of wtCBS. The relevance of the

structural model proposed in this paper is limited as dimeric full-
length CBS does not explain the atomic basis of the protein tetra-
merization. Our results from surface mapping revealed a single
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contact area between the catalytic core and the C-terminal regu-
latory domain; this is in agreement with the solved structure of
the dimeric protein MJ0100 from M. jannaschii containing CBS
pairs binding AdoMet (31) and suggests that the autoinhibitory
module contains dimer-dimer interface responsible for the CBS
tetramer assembly (scheme in Figure 3C). This proposal is also in
agreement with the previously built structural model of wtCBS
derived from H/D exchange (54).

In summary, we covalently labeled solvent-exposed side chains
in CBS, and we identified the interface between the active core
and the regulatory domain. The data were applied for generation
of the refined full-length CBS structural model. Our results also
indicate that the allostery of CBS is not associated with extensive
conformational conversion but rather with changes in protein
dynamics.
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