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Abstract
We apply tools from topological data analysis to two mathematical models inspired by bio-

logical aggregations such as bird flocks, fish schools, and insect swarms. Our data consists

of numerical simulation output from the models of Vicsek and D'Orsogna. These models are

dynamical systems describing the movement of agents who interact via alignment, attrac-

tion, and/or repulsion. Each simulation time frame is a point cloud in position-velocity space.

We analyze the topological structure of these point clouds, interpreting the persistent ho-

mology by calculating the first few Betti numbers. These Betti numbers count connected

components, topological circles, and trapped volumes present in the data. To interpret our

results, we introduce a visualization that displays Betti numbers over simulation time and to-

pological persistence scale. We compare our topological results to order parameters typi-

cally used to quantify the global behavior of aggregations, such as polarization and angular

momentum. The topological calculations reveal events and structure not captured by the

order parameters.

Introduction
Biological aggregations are groups of organisms such as fish schools, bird flocks, insect swarms,
and mammal herds [1–3]. Social interactions between members can play a crucial role in the
formation and behavior of these groups [4–6]. Social interactions are behaviors like attraction,
repulsion, and alignment, which are activated when one organism senses another via sight,
sound, smell, touch, or perhaps some combination of senses [7]. Aggregations take on a vast
array of morphologies: advancing fronts of running wildebeest, branched dendritic structures
of bacteria, tornado-like vortices of swimming anchovy, and much more. Beyond serving as ex-
amples of emergent pattern formation, organisms moving in groups can affect resource con-
sumption, disease transmission, and at the longest spatiotemporal scales, evolution itself [8].
Beyond the realm of biology, the understanding of biological aggregations has inspired applica-
tions from computer algorithms to robotic self-assembly [9].

Quantitative understanding of aggregations has been developed in part through mathemati-
cal modeling. Modeling of aggregations dates back (at least) to the 1950s with the seminal work
of [10], which describes the motion of individual fish as particles obeying Newton’s law. The
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forces in the model are social forces between two fish—namely attraction and repulsion—and
are described by a simple functional form dependent on the distance between individuals, akin
to gravitational or intermolecular forces in physics. Since then, hundreds of aggregation models
have been created; some of the most well-studied include [6, 11, 12]. The common approach is
to envision organisms as point particles with motion laws that are first or second order in time,
and with behavioral rules that are some combination of self-propulsion and/or social align-
ment, attraction, and repulsion. An alternative modeling approach, also the subject of a rich lit-
erature, is to treat a sufficiently large population as a continuum and describe its dynamics
with a partial integrodifferential equation as in, e.g., [13–17]. The discrete and continuum
models that we have mentioned here are largely phenomenological. They are minimal models
inspired to greater or lesser degree by biological observation, and their minimalism allows one
to understand the basic behaviors necessary or sufficient for a particular type of
aggregation phenomenon.

Quantitative understanding of aggregations has also been developed through the explora-
tion and modeling of rich data sets measured in the field or in experiment. This type of study
has a much more recent history, as the technology necessary to gather and process large, accu-
rate data sets did not exist several decades ago. Notable examples include data-based modeling
of starlings [18], ducks [19], aphids [20], golden shiner fish [21], and desert locusts [22]. In
data based studies, one typically collects time series of organisms’ positions, and possibly, ve-
locities. One may use this data in two different ways: to infer the rules for motion that each in-
dividual follows and/or to characterize the collective dynamics of the group.

In a classical approach to characterizing collective dynamics, one begins with N organisms’
positions xi and velocities vi, either from biological observation or numerical simulation of a
model. One then calculates some global metric hoped to give insight into macroscopic dynam-
ics. For instance, [6] simulates discrete swarmers who interact via attraction, repulsion, and
alignment, and measures the group polarization P and angular momentumMang,

P ¼
PN

i¼1 viPN
i¼1 jvij

�����

�����; Mang ¼
PN

i¼1 ri � viPN
i¼1 jrijjvij

�����

�����; ð1Þ

where ri = xi − xcm and xcm is the center of mass of the group. By varying parameters that con-
trol the social interactions and plotting P andMang, [6] identifies different regimes of behavior,
including swarming, motion on a torus, and a highly parallel (polarized) group. A different ag-
gregation model, from [12], can produce a rotating annulus of individuals (a “single mill”) or
superposed, counterrotating annuli (a “double mill”). Metrics P andMang cannot distinguish a
single from a double mill, so [12] introduces the absolute angular momentum

Mabs ¼
PN

i¼1 jri � vijPN
i¼1 jrijjvij

�����

�����; ð2Þ

whose numerator differs fromMang. Together,Mang andMabs can distinguish single from dou-
ble mills. Other examples of metrics include the average number of neighbors with whom an
individual interacts (which requires knowledge of interaction rules) and the mean distance to
nearest neighbor [23].

Our discussion here provides a sampling of metrics in the literature. Most are inspired by
order parameters from physics, and many have been constructed a posteriori, based on knowl-
edge of the dynamic whose detection was desired. In our present work, we explore whether to-
pology offers a natural way to characterize collective behavior. In brief, we use the methods of
topological data analysis to compute the persistent homology of spatiotemporal aggregation
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data sets arising from numerical simulation of models. We introduce a new visualization to ex-
plore homological persistence over spatial scales and over time. As we will explain at length,
this visualization displays a data point cloud’s Betti numbers in a contour diagram. We refer to
this plot as the Contour Realization Of Computed k-dimensional hole Evolution in the Rips
complex (CROCKER). We show that our topological analysis reveals dynamical events not
captured in time series of the classically studied order parameters. Our primary goal is to dem-
onstrate the utility of topological data analysis for biological aggregations and
similar applications.

We note that the term topology has been invoked in the aggregation literature in a different
sense than we use it here. In both the biological modeling literature and the robotics literature,
“topology” sometimes refers to the coupling scheme between agents, that is, by which members
of the group a given individual is influenced [18, 24]. For instance, in some models or algo-
rithms, a given agent might be influenced by the closest agent, or the closest two agents, or the
closest few agents within an agent’s field of view. In this sense, topology is an input of the
model. In a different sense, we are using topological tools to analyze the outputs of a model.

The rest of this paper is organized as follows. We begin with an overview of persistent ho-
mology. This discussion aims to present some of the key concepts to a mathematical reader un-
familiar with algebraic topology. Brief descriptions of computational methods and our data
visualization follow. Then, we proceed to topological analyses of the models of Vicsek, et al.
[11] and D’Orsogna, et al. [25] before concluding.

Topological Data Analysis and Persistent Homology
Homology is a tool from algebraic topology that measures the features of a topological space
such as an annulus, sphere, torus, or more complicated surface or manifold. In particular, ho-
mology can distinguish these spaces from one another by quantifying their connected compo-
nents, topological circles, trapped volumes, and so forth. A finite set of data points can be
viewed as a (noisy) sampling from an underlying topological space. One can measure the ho-
mology of the data by creating connections between proximate data points, varying the scale
over which these connections are made, and looking for features that persist across scales. This
is called persistent homology. Persistent homology has been used in a wide array of applica-
tions to uncover the topological structure of data, including neuroscience, language processing,
natural images, signal analysis, bioinformatics, computer vision, and sensor networks [26–32].

We explain these ideas in greater detail for the remainder of this section. Our discussions in
the first two subsections below recapitulate presentations in texts such as [33, 34].

Forming a Simplicial Complex
To build a global object from a discrete set of N data points, we construct a simplicial complex
S. A simplicial complex is a set consisting of a finite collection of k-simplices (simple pieces),
where a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, a 3-simplex is a
tetrahedon, and so on; see Fig 1. These simplices satisfy two properties. First, for every set σ in
S, every non-empty subset τ� σ also belongs in S. For instance, if tetrahedron abcd is in S, then
the triangles abc, abd, acd, bcd, the edges ab, ac, ab and the vertices a, b, c, d are also in S. Sec-
ond, two k-simplices are either disjoint or they intersect in a lower dimensional simplex.

To form k-simplices, we use the Vietoris-Rips complex, sometimes simply called the Rips
complex. To build this complex, one first defines a distance metric which can be realized as a
symmetric N × Nmatrix of pairwise distances between points. For each ε> 0, called the prox-
imity parameter, we construct a simplicial complex Sε in the following way. In Sε, every collec-
tion of k+1 data points is a k-simplex if the pairwise distance between points is less than ε.
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Thus, the 0-simplices are the data points themselves. A 1-simplex (an edge) is formed whenev-
er two points are within ε of one another. A 2-simplex (a triangle) is formed whenever three
points are pairwise within ε of one another; this occurs when there is a 3-cycle in the underly-
ing graph formed by the vertices and edges in Sε (this graph is sometimes called the 1-skeleton
of Sε). A 3-simplex (a tetrahedron) is formed whenever four points are pairwise within ε of one
another. See Fig 2, in which the yellow circles represent ε/2 balls so that two vertices are con-
nected by an edge if their ε/2-balls intersect.

For purposes of homology, it is necessary to impose an orientation on the vertices of each k-
simplex. A k-simplex [v0, v1, . . ., vk] of k+1 data points is ordered such that if elements are per-
muted with an odd permutation, the order is negated. Thus, [v0, . . ., vi, . . ., vj, . . ., vk] = − [v0,
. . ., vj, . . ., vi, . . ., vl]. The simplices in Fig 1 are illustrated with a given orientation.

There are other methods one could use to form a simplicial complex. The Rips complex is
the flag or clique complex that is the maximal simplicial complex built from the underlying

Fig 1. Oriented k-simplices for k = 0, 1, 2, 3. These k-simplices are the building blocks used to construct a simplicial complex from a point cloud of data.

doi:10.1371/journal.pone.0126383.g001

Fig 2. Example of a Vietoris-Rips complex. The 18 points are 0-simplices. Two 0-simplices form a 1-simplex (an edge) if their ε/2-neighborhoods (yellow
circles) intersect. Three vertices form a 2-simplex (a triangle) if they are pairwise connected by edges. Four vertices form a 3-simplex (a tetrahedron) if they
are pairwise connected by edges.

doi:10.1371/journal.pone.0126383.g002
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graph. Another commonly used method is the Cech complex, where k-simplices are formed if
the ε/2-balls around k+1 vertices have a nonempty intersection. We use the Rips complex since
it is more computationally tractable than the Cech complex; see the discussion in Section 1.3 of
[35]. The witness complex is another method to form a simplicial complex. It is particularly
useful with large data sets as it subsamples the data in a way that uses information from the en-
tire data set; see [36].

Homology
Homology is a way to uncover k-dimensional “holes” in a simplicial complex. This requires im-
posing an algebraic structure on the simplicial complex Sε. For each k� 0, we create an abstract
vector space Ck with basis consisting of the set of k-simplices in Sε, so that the dimension of Ck

equals the number of k-simplices. The elements of Ck are called k-chains. In practical computa-
tions, the coefficients of this vector space come from a finite field Zp (integers modulo p) for a
small prime p. These vector spaces consist of all formal linear combinations c = ∑i ai σi, where
ai 2 Zp and the sum is over all k-simplices σi in Sε.

To compute homology, one must be able to describe the boundary of a k-simplex algebrai-
cally. The boundary of a k-simplex σ is the union of the (k − 1)-subsimplices τ� σ. For each
k� 1, the boundary map @k : Ck ! Ck�1 is the linear transformation defined on a k-simplex σ
= [v0, v1, . . ., vk] by

@k ½v0; v1; . . . ; vk�ð Þ ¼
Xk

i¼0

ð�1Þi½v0; . . . ; v̂i ; . . . ; vk�; ð3Þ

where ½v0; . . . ; v̂i ; . . . ; vk� is the (k − 1)-simplex obtained from [v0, . . ., vk] by removing the ver-
tex vi. For example,

@1ð½v0; v1�Þ ¼ ½v1� � ½v0� and @2ð½v0; v1; v2�Þ ¼ ½v1; v2� � ½v0; v2� þ ½v0; v1�:

Observe that for a k-simplex σ, @k(σ) is an algebraic representation of its boundary. For in-
stance, in the second example above, [v0, v1, v2] represents a triangle and [v1, v2] − [v0, v2] +
[v0, v1] are the oriented edges that form its boundary.

Boundary operators connect the vector spaces Ck into a chain complex,

� � � �! Ckþ1�!
@kþ1

Ck�!
@k

Ck�1�!� � ��! C2�!
@2

C1�!
@1

C0�!
@0

0: ð4Þ

Consider the following two subspaces of Ck, which are determined by the kernel and the image
of the boundary operators,

k�cycles : Zk :¼ kerð@k : Ck ! Ck�1Þ;

k�boundaries : Bk :¼ imð@kþ1 : Ckþ1 ! CkÞ:
ð5Þ

The boundary operator satisfies the following fundamental property: @k�@k+1 = 0. That is, “a
boundary has no boundary”. For example,

@1 � @2ð½v0; v1; v2�Þ ¼ @1ð½v1; v2�Þ � @1ð½v0; v2�Þ þ @1ð½v0; v1�Þ ¼ ½v2� � ½v1� � ½v2� þ ½v0� þ ½v1� � ½v0� ¼ 0:

It then follows that Bk is a subspace of Zk. Thus,Ck is the vector space of all k-chains in the sim-
plicial complex Sε, Zk is the subspace of Ck consisting of k-chains that are also k-cycles, and Bk

is the subspace of Zk consisting of k-cycles that are also k-boundaries.
The goal of homology is to “discard” cycles that are also boundaries. To this end, we put an

equivalence relation on Zk as follows. Two cycles z1; z2 2 Zk are homologous (equivalent),
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written z1 * z2, if they differ by a boundary, i.e., z1 � z2 2 Bk. Consider the example in Fig 3.
The blue 1-chain b = [v0, v1] + [v1, v2] + [v2, v3] + [v3, v4] + [v4, v0] and the red 1-chain r = [v1,
v2] + [v2, v3] + [v3, v4] + [v4, v1] are cycles because @1(b) = @1(r) = 0. These cycles are homolo-
gous because their difference is a (green) boundary, g = b − r = [v0, v1] + [v4, v0] − [v4, v1] = [v1,
v4] − [v0, v4] + [v0, v1] = @[v0, v1, v4].

The equivalence relation* defined above partitions the k-cycles Zk into a union of disjoint
subsets, called homology classes. We let [z] denote the homology class of z 2 Zk and define the
kth homology of Sε as the set of homology classes

Hk :¼ f ½z� �� z 2 Zk g: ð6Þ

Algebraically, Hk ¼ Zk=Bk, a quotient of vector spaces. The kth Betti number, bk, is defined as
the dimension

bk ¼ dimðHkÞ ¼ dimðZkÞ � dimðBkÞ: ð7Þ
In terms of boundary operators, bk ¼ ½nk � rankð@kÞ� � rankð@kþ1Þ, where nk is the dimension
of the vector space Ck.

In terms of the topological characteristics one might hope to measure, bk equals the number
of independent holes of dimension k, and this is the key point for our analysis later in this
paper. For instance, b0 is the number of connected components, b1 is the number of topologi-
cal circles, b2 is the number of trapped volumes, and so on. The topology of a simplicial com-
plex may be described by the sequence of Betti numbers, b ¼ ðb0; b1; b2; . . .Þ. For instance, a
topological circle has b ¼ ð1; 1; 0; . . .Þ, a topological torus has b ¼ ð1; 2; 1; 0; . . .Þ, and a topo-
logical sphere has b ¼ ð1; 0; 1; 0; . . .Þ. Betti numbers are a topological invariant, meaning that
topologically equivalent spaces have the same Betti number. See, e.g., [33, 34] for these and
other examples.

Persistence
Given a collection of N data points, the resulting Rips complex and its homology are highly de-
pendent on the choice of proximity parameter ε. Fig 4 presents an example. The data pictured
in the four small snapshots are the same as Fig 2, but different values of ε are chosen for form-
ing connections. Distinct simplicial complexes result. For small values of ε, the simplicial com-
plex consists of isolated vertices. At the largest value of ε shown, the entire data set is a single
connected component. As ε changes, other topological events occur which we will describe
momentarily. A natural question is what is the optimal ε to use for any data set. This can hardly
be selected without a priori knowledge of the underlying space.

To reconcile this ambiguity, one exploits the fact that as ε grows so do the Rips complexes,
giving an inclusion of complexes for small ε into those for larger values. That is, if ε1 	 ε2 	

Fig 3. Example of homologous cycles. The blue 1-cycle and the red 1-cycle are homologous (equivalent),
because their difference is the boundary of a triangle, shown in green; see text for a detailed explanation.

doi:10.1371/journal.pone.0126383.g003
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� � � 	 εM, then we have an inclusion of simplicial complexes

Sε1 � Sε2 � � � � � SεM�1
� SεM : ð8Þ

This sequence is called a filtration. “Persistent” homology, then, tracks topological features
which persist across a range of values of ε. Those features which persist over a large range are
considered signals of the underlying topology, while the short lived features are taken to be
noise inherent in approximating a topological space with a finite sample. Foundational papers
on this methodology include [35, 37, 38].

A convenient way to visualize persistent homology is through a graphical representation
called a barcode. There is a distinct barcode for each homology space Hk from which we infer
the Betti number bk. As an example, see Fig 4. The horizontal axis corresponds to the proximity
parameter ε, and the vertical axis is an (arbitrary) ordering of the homology generators, i.e., the
distinct homology classes of dimension k. Each homology class is visualized by a bar that per-
sists for a given range of ε. Its leftmost endpoint is at the ε value at which the homology class
forms, and its rightmost endpoint is the ε value at which it disappears. At any given ε, the Betti
number bkðεÞ is the number of bars that intersect the vertical line through ε. Those bars which
persist over longer intervals generally correspond to real topological features, whereas short
bars are considered noise. In the figure, we see the following sequence of Betti numbers. For ε
= 1.5, b ¼ ð18; 0; . . .Þ because there are no connections amongst the 18 vertices. For ε = 5,
b ¼ ð11; 0; . . .Þ, reflecting the fact that some vertices have joined into larger connected compo-
nents. For ε = 7, b ¼ ð4; 1; 0; . . .Þ, reflecting even further joining of components as well as the
formation of one topological circle. Finally, for ε = 9.5, b ¼ ð1; 2; 0; . . .Þ, meaning that all of
the data has joined into one connected component that contains two topological circles.

Fig 4. Example of the topological barcode of a Vietoris-Rips complex. The top four figures display the simplicial complex of 18 points for different values
of the proximity parameter ε. The vertical lines in the barcode correspond to these four levels of ε. The number of horizontal bars intersecting each line give
the values of bðεÞ ¼ ðb0ðεÞ;b1ðεÞÞ. For the parameters selected, bð1:5Þ ¼ ð18; 0Þ, bð5:0Þ ¼ ð11; 0Þ; bð7:0Þ ¼ ð4; 1Þ; and bð9:5Þ ¼ ð1; 2Þ. See text for
further discussion.

doi:10.1371/journal.pone.0126383.g004
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Another method of displaying homological information is through a persistence diagram.
Each bar in the barcode is represented in the Cartesian plane with the horizontal and vertical
axes encoding the leftmost and rightmost ε values of the bar. Points near the diagonal are in-
ferred to be noise while points further from the diagonal are considered topological signal. Fig
5(D) shows the persistence diagram corresponding to two barcodes in panels (B) and (C). This
data is generated by a biological aggregation model which we discuss later.

Because our data sets are obtained from numerical simulation, they are noiseless. Still, one
might wonder whether small perturbations of data would impact the topological features that
are measured. For biological aggregations, this question would be especially relevant in analyz-
ing experimental data, for which measurement error might introduce noise. As shown in [39],
small perturbations of data result in small perturbations of persistence diagrams, indicating sta-
bility of topological features.

Computational Methods and Data Visualization
In the next two sections, we will present topological analyses of simulation output from the two
aggregation models of [11] and [25]. We perform the simulations in MATLAB. For the Vicsek
model [11], as we describe in more detail in the next section, the simulation output consists of
the two dimensional position and the angular heading of each agent in a group of interacting
agents. The physical domain is a square with sides of length ℓ and periodic boundary condi-
tions. Heading is defined on [0, 2π). To avoid issues arising from disparities between the posi-
tion coordinates and the heading coordinate, we rescale position coordinates, multiplying
them by 2π/ℓ. For the D’Orsogna model [25], the simulation output consists of the two dimen-
sional position and two dimensional velocity of each agent in an interacting group. The spatial
domain is an unbounded plane and velocity is (theoretically) unbounded, so we perform no re-
scaling of coordinates.

The computational complexity of computing bk depends on the number of k-simplices. For

n data points, the number of k-simplices is at most n
kþ1

� �
¼ Oðnkþ1Þ; of course, the actual num-

ber depends on the proximity parameter ε and the configuration of the data. Once the simpli-
cial complex is constructed, computing homology over a field reduces to methods in linear
algebra. The boundary operator @k : Ck ! Ck�1 is the linear transformation realized as an inte-
ger matrix with entries {−1, 0, 1} over the basis elements of each vector space. The null space of
this matrix corresponds to Zk, and the range space corresponds to Bk�1. The computational al-
gorithm uses Gaussian elimination over a finite field, which is at worst caseO(m3), wherem is
the actual number of k-simplices. One needs efficient algorithms when computing over large
data sets and recording homological information over a range of proximity parameter ε. See
[40–43] for implementations and algorithms used in computing persistent homology. The de-
velopment of faster algorithms is an active area of investigation.

To extract topological information, we process simulation data in the statistical computing
environment R. Each time step of the simulation consists of a static point cloud of data in posi-
tion-heading or position-velocity space. We use the phom package [44] to construct the Rips
complex and calculate the topological barcodes of the point cloud. More specifically, we calcu-
late the first two Betti numbers b0ðεÞ and b1ðεÞ where the proximity parameter ε takes on dis-
crete but closely-spaced values. Calculating bkðεÞ for k� 2 is computationally costly, and we
do this only for selected simulation snapshots.

Because we have a series of simulation time steps, we introduce a visualization that captures
homological persistence over both scale ε and time t. That is, we now imagine the kth Betti num-
ber as bkðε; tÞ, a function of the proximity parameter ε> 0 and simulation time t� 0. A natural
way to display bkðε; tÞ is as a contour diagram, which we refer to as a Contour Realization Of
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Fig 5. A random initial condition used to simulate the Vicsek model (9) and topological analysis of this initial state. (A) Random initial positions (x, y)
and headings θ of N = 300 particles in a square of size ℓ = 25 with periodic boundary conditions. The underlying space in which the data lives is a three-torus
T
3 which has Betti numbers b ¼ ð1; 3; 3; 1; 0; . . .Þ. (B) Barcode for Betti number b0ðε; 0Þ, showing topological connected components. The zoomed box shows

a single persistent bar, corresponding to the entire ensemble of particles. (C) Barcode for Betti number b1ðε; 0Þ, showing topological circles. The zoomed
box shows three persistent bars, representing the three circles comprising the three-torus. (D) Persistence plot, which displays the information in (B) and (C)
by encoding each bar’s starting and ending value of ε as a point in the Cartesian plane. Red points show b0 and blue points show b1. The zoomed box shows
the three points representing the three persistent topological circles of the random initial condition in (A).

doi:10.1371/journal.pone.0126383.g005
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Computed k-dimensional hole Evolution in the Rips complex (CROCKER). To facilitate visual
interpretation of the contour diagram, we make two simplifications. First, we do not include
every time step, but rather only every jth time step, where j is chosen to preserve at least several
hundred snapshots per simulation. We found that this downsampling did not noticeably alter
the appearance of our CROCKER plots. Second, focusing only on the most coarse and coherent
topological structures, we only plot level curves for when bkðε; tÞ < 5. All of the topological data
for which bkðε; tÞ � 5 is lumped together in the contour diagram; that is, we do not draw distinct
contours for bkðε; tÞ � 5. For the models we study, these regions of the contour diagram typical-
ly represent many topological structures that do not persist over scales.

As an example, consider Fig 6. Panels (B) and (C) show contour diagrams of b0ðε; tÞ and
b1ðε; tÞ for a particular simulation of the Vicsek model (described and analyzed later). In these
plots, simulation time t appears along the horizontal axis and the topological proximity param-
eter ε appears on the vertical axis. Focus first on panel (B), which shows b0ðε; tÞ. Below the
purple (lowest) contour, b0ðε; tÞ � 5, and thus in this region, the point cloud has many con-
nected components; we interpret these as noise. Above the yellow (top) contour, b0ðε; tÞ ¼ 1,
demonstrating that at large enough ε, the entire point cloud of data joins together into one con-
nected component. Less trivially, there are regions between the intermediate contours that per-
sist over scale and time. For example, centered near t = 2000 there is a somewhat triangular
region between the yellow and green contours. In this region, b0ðε; tÞ ¼ 2, showing a strong,
persistent signal of two connected components in the data. Panel (C) is similar, but shows
b1ðε; tÞ. Towards the bottom of the diagram, there is an oblong region enclosed by a purple
contour. In this region, b1ðε; tÞ � 5, which we again interpret as topological noise. There are
two large regions enclosed by a red contour in which b1ðε; tÞ ¼ 0, indicating an absence of to-
pological circles. However, there is also a region between red and yellow contours in which
b1ðε; tÞ ¼ 1, showing a strong signal of a persistent topological circle.

In summary, large regions in the contour diagram (excluding bk � 5) represent topological
features that persist over scale ε and simulation time t. When interpreting the contour dia-
grams, it is important to remember that the function bkðε; tÞ inherently takes on only nonnega-
tive integer values.

Analysis of the Vicsek Model
Using persistent homology, we now analyze data generated by aggregation models. One of the
most referenced aggregation models is that of Vicsek and collaborators [11], cited thousands of
times as of the writing of this manuscript. A complete discussion of results related to this
model is beyond our present scope. The review paper [45] provides a broad look, and mentions
some of the systems that have been described with Vicsek-like models, including cells, bacteria,
insects, fish, and birds.

The Vicsek model is a dynamical system in discrete time and continuous space that de-
scribes the motion of interacting point particles in a square with periodic boundary conditions.
The model appears in the literature written in different forms; we write it as

yiðt þ DtÞ ¼ 1

N

X
jxi�xj j	R

yjðtÞ
0
@

1
Aþ Uð�Z=2; Z=2Þ; ð9aÞ

viðt þ DtÞ ¼ v0ðcos yiðt þ DtÞ; sin yiðt þ DtÞÞ; ð9bÞ

xiðt þ DtÞ ¼ xiðtÞ þ viðt þ DtÞDt: ð9cÞ
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Fig 6. Aggregate behavior of the Vicsek model, simulation #1. The simulation that generated these data was seeded with the initial condition in Fig 5(A)
and a typical snapshot is shown in Fig 7(A). (A) Normalized average velocity order parameter φ(t). (B) Contour plot of Betti number b0ðε; tÞ. (C) Contour plot of
Betti number b1ðε; tÞ. The topological analysis reveals dynamics not captured by the order parameter, namely cluster formation and the loss of topological
circles consistent with particles aligning and covering only one dimension of the periodic simulation domain. See text for a more comprehensive analysis.

doi:10.1371/journal.pone.0126383.g006
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Here, xi(t) 2 R
2 is the position of particle i = 1, . . ., N at time t, and vi is velocity. We refer to

the angle of the velocity vector vi as θi, the heading. Additionally, v0 is a constant, U is a uni-
form random variable on the specified interval, and Δt is the time step.

For clarity, let us re-state the model in prose. To update the model, each particle must be
given a new heading. This heading is the average of the previous headings of all other particles
within a radius R, plus some added noise parameterized by η. With this new heading deter-
mined, each particle moves a fixed distance v0Δt, thus completing the time step. The model is
posed on a square with sides of length ℓ and periodic boundary conditions. For all simulations
performed, the initial particle positions and headings are random.

The parameters in the model are the number of particles N, the particle interaction radius R,
the noise η, the fixed particle speed v0, the box size ℓ, and the time step Δt. One may nondimen-
sionalize the problem to reduce the number of free parameters. We adopt the standard conven-
tion R = 1 and Δt = 1. This leaves the remaining parameters N, η, v0, and ℓ. Some studies refer
to three effective parameters: η, v0, and ρ = N/ℓ2, a particle density.

Two preliminary matters will build understanding prior to a discussion of results. First, we
analyze the topology of an initial condition. Second, we discuss the classic order parameter
used in the physics literature to characterize the global dynamics of the system.

Fig 5(A) shows a random initial condition for N = 300 particles and a square with sides of
length ℓ = 25. This gives rise to a cloud of 300 points whose coordinates are (x, y, θ). However,
since the simulation domain is periodic and since θ is an angle, this space is not R3 but rather
S1 × S1 × S1 = T

3, the three-torus, which has Betti numbers b ¼ ð1; 3; 3; 1; 0; . . .Þ. Panel (B)
shows the topological barcode for b0ðε; 0Þ, which has one persistent bar. This topological sig-
nature indicates no clusters other than the trivial connected component formed by the entire
point cloud on the longest scales. Panel (C) shows the barcode for b1ðε; 0Þ. There are three per-
sistent bars (which terminate for larger values of ε not shown) representing three topological
circles. This signature captures the fact that the point cloud is well-spread over the three-torus
due to the randomness of the initial condition. We have also calculated the barcode (not
shown) for b2ðε; 0Þ, which displays three persistent bars, representing the three trapped vol-
umes of the three-torus. Panel (D) shows the persistence diagram, which combines the infor-
mation captured in (B) and (C). The particular initial condition we have analyzed is used to
seed our first simulation below. The initial conditions of the other two simulations that we will
perform are topologically equivalent. Below, we will see that key dynamics involve the forma-
tion of nontrivial topological connected components and/or the destruction of
topological circles.

As discussed in the introduction, a traditional approach is to characterize global behavior
via an order parameter. For (9), the order parameter most often studied is the normalized aver-
age velocity of the group,

φðtÞ ¼ 1

Nv0

XN
i¼1

viðtÞ
�����

�����: ð10Þ

The order parameter 0	 φ(t)	 1 measures global polarization. For a group of particles mov-
ing in approximately the same direction, φ(t) will be near one. If particle headings are spread
out randomly, φ(t) will be near zero. As a simple additional example, two groups of particles
that are highly polarized within each group but are traveling in opposite directions will also
have φ(t)
 0. This simple example sheds some light on the limited information the order
parameter carries.

The model (9) can display three qualitatively different global behaviors, depending on pa-
rameters. We visualize snapshots of these states in Fig 7, which is analogous to Fig 1 of Vicsek’s
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Fig 7. Simulation snapshots of the Vicsekmodel (9). These simulations are analogous to Fig. 1 in [11].
Circles indicate particle positions and line segments represent heading. For all simulations, N = 300 particles,
the particle speed is v0 = 0.03, and the initial state consists of uniform random positions and headings. We
vary box size ℓ and noise η. Dotted lines indicate the bounds of the periodic domain. (A) Groups moving in
different directions with ℓ = 25, η = 0.1, t = 3000. (B) Randommovement with some correlation with ℓ = 7, η =
2, t = 600. (C) Highly polarized motion with ℓ = 5, η = 0.1, t = 300.

doi:10.1371/journal.pone.0126383.g007
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original paper [11]. When noise η is small and particle density ρ is small, the system tends to
form clusters each of which moves in a different direction, as in (A). For higher η and ρ, parti-
cles are somewhat correlated but still move randomly, as in (B). Finally, for large ρ but small η,
the motion becomes polarized, that is, all particles travel in the same direction, as in (C). For
the simulations represented by these three panels, we will now view the global behavior
through the lens of the order parameter φ(t) and through a topological lens. The topological
analysis gives rich information which is detected neither by the order parameter nor, as we will
show, by the eye.

Vicsek Simulation #1
Fig 6 displays the analysis of our first set of simulation results, the same simulation that began
with the initial condition in Fig 5(A) and produced the state in Fig 7(A). Here, N = 300, ℓ = 25,
and η = 0.1. The order parameter φ(t) increases steeply (with two small plateaus) before level-
ing off to a value very close to one, signaling a high degree of alignment. After time t = 1000,
φ(t) varies little.

Fig 6(B) shows b0ðε; tÞ, measuring the number of connected components on the three di-
mensional torus defined by position and heading. Recall that, per our previous discussion, we
have displayed only contours for levels five and below. In the large region below the purple
(bottom) contour, b0ðε; tÞ � 5. This region represents connected components existing only
over small ranges of ε; we interpret these as noise. In the region above the yellow (top) contour,
b0ðε; tÞ ¼ 1, and all the data forms a single connected component for large ε. The spaces be-
tween the other contours reveal clusters that persist over scale and simulation time. For exam-
ple, there is a triangular region between the green and yellow contours around t
 2000,
indicating a strong signal of two clusters.

Further analyzing this region, consider the times marked by the two dashed gray bars,
namely t = 2080 and t = 2150. While the order parameter φ(t) (by design) does not detect clus-
ters, at t = 2080, the spaces between the contours reveal successive ranges of ε over which there
are four, three, two, and one connected components in the data, with b0ðε; 2080Þ ¼ 2 persis-
tent over the largest range of ε, as previously discussed. The corresponding simulation snap-
shot appears in Fig 8(A). The transition from four to three connected components corresponds
to the merging of two small, slightly misaligned groups in the lower left of Fig 8(A) as ε in-
creases. The transition from three to two connected components corresponds to the merging
of the two larger groups and so on. The situation for t = 2150 is similar. However, the range of
ε over which one counts three connected components has shrunk drastically. The simulation
snapshot in Fig 8(B) suggests why. In Fig 8(A), the distance between the two leftmost groups
approximately equals the distance between the two rightmost groups. Hence, there does not
exist a large range of ε over which there are three clusters. It is important to remember that the
data has three coordinates (x, y, θ), but in the discussion above, the key dynamics are in (x, y),
consistent with the fact that φ(t)
 1.

Fig 6(C) shows b1ðε; tÞ, measuring the number of topological circles formed by the data on
the three-torus. First, we note that the three topological circles present in the initial condition
(described above) are lost on a very short simulation time scale (nearly immediately). In the
bottom, oblong region of the graph enclosed by the purple contour, b1ðε; tÞ � 5 which, as be-
fore, we interpret as noise. There are two large regions enclosed by red in which there exist no
topological circles. However, for approximately t> 1800 and 1.25	 ε	 2.1 we have
b1ðε; tÞ ¼ 1, consistent with coverage of the data across one of the circles of the underlying
three-torus. This circle is visible in Fig 8 as the vertical swath of data along the right side of
each panel. The fact that there is a high degree of alignment removes one of the potential
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topological circles of the underlying space, and the lack of coverage horizontally across the spa-
tial domain removes the other.

Taken together, panels (B) and (C) of Fig 6 show the following topology. First, b0ðε; tÞ re-
veals that a small number of clusters form persistently over time and scale. The number of clus-
ters is variable as merging and fragmenting occur. Second, b1ðε; tÞ reveals that topological
circles present in the initial condition are destroyed, but eventually one circle persists, consis-
tent with coverage across one dimension of the simulation domain.

Vicsek Simulation #2
Fig 9 shows results from the same simulation as the snapshot in Fig 7(B). Here, N = 300, ℓ = 7,
and η = 2. In panel (A), the order parameter φ(t) appears more noisy than in the previous sim-
ulation, and levels off to a value less than one.

Fig 9(B) shows b0ðε; tÞ, measuring the number of connected components. In the large re-
gion below the purple (bottom) contour, b0ðε; tÞ � 5, which we interpret as noise. In the large
region at the top, above the yellow contour, b0ðε; tÞ ¼ 1, indicating one connected component
at the largest scales. The bottom and top regions in the graph are separated by a noisy boundary
of intermediate curves. These curves indicate that at scales approximately in the range 0.75< ε
< 1.6 there is sporadic coagulation and fragmentation of connected components over short
simulation time scales.

Fig 9(C) shows b1ðε; tÞ, measuring the number of topological circles. At early times, there is
a region in which b1ðε; tÞ ¼ 3, consistent with the initial condition in which agents cover the

Fig 8. Snapshots of the Vicsek model, simulation #1. These states correspond to the dashed vertical bars in Fig 6(B). (A) Time t = 2080. (B) Time
t = 2150. The topological signature in Fig 6(B) picks up subtle differences between these states. For panel (A) here, there are ranges of the persistence
parameter ε over which one observes four, three, and two connected components before coalescing into one. For (B), the transition from four connected
components to two happens over a much smaller range of ε because the two larger clusters on the right merge into one on approximately the same spatial
scale that the two smaller clusters on the left do. The topological differences between (A) and (B) are not readily visible to the eye in the snapshots, nor are
they reflected in the order parameter φ(t) in Fig 6(A).

doi:10.1371/journal.pone.0126383.g008
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Fig 9. Aggregate behavior of the Vicsek model, simulation #2. A typical snapshot is shown in Fig 7(B). (A) Normalized average velocity order parameter
φ(t). (B) Contour plot of Betti number b0ðε; tÞ. (C) Contour plot of Betti number b1ðε; tÞ. The topological analysis suggests sporadic coagulation and
fragmentation of short-lived clusters, and the loss of a topological circle, consistent with particles aligning. See text for a more comprehensive analysis.

doi:10.1371/journal.pone.0126383.g009
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spatial domain and have low alignment, with headings spread across [0, 2π). This state persists
until approximately t
 50, at which time we see noisy formation and break up of additional to-
pological circles in the range 1.5	 ε	 2. At time t
 210, a transition occurs, and we see a
clear region where b1ðε; tÞ ¼ 2, indicating two persistent topological circles. The high (albeit
not complete) alignment of particles visible in φ(t) suggests the lack of a topological circle in
the heading coordinate θ. We have calculated for one time step that b2ðε; 600Þ ¼ 1. This
trapped volume tells us that our data has the topology of a two-torus, that is, b ¼ ð1; 2; 1Þ for
the first three Betti numbers. This topology eliminates the possibility that the two topological
circles arise from holes in the data, which would have the first three Betti numbers
b ¼ ð1; 2; 0Þ. We conclude that the two topological circles correspond to the periodic spatial
domain. Neither dimension of this domain is favored, as suggested by the fact that the two to-
pological circles close at the same value of ε, demonstrated by the yellow and red contours at
the top of the plot being nearly coincident.

Vicsek Simulation #3
Fig 10 shows results from the same simulation as the snapshot in Fig 7(C). Here, N = 300, ℓ =
5, and η = 0.1. In panel (A), the order parameter φ(t) rises steeply to one with a small interme-
diate step. The order parameter here and in Fig 6(A) share some features, and yet we will see
that the topological calculations capture the differences in the dynamics already apparent in
the snapshots of Fig 7.

Fig 10(B) shows b0ðε; tÞ, measuring the number of connected components. In the large re-
gion below the purple (bottom) contour, b0ðε; tÞ � 5, which we interpret as noise. In the large
region at the top, above the yellow contour, b0ðε; tÞ ¼ 1, indicating one connected component
at the largest scales. The most noticeable intermediate region is in between the yellow and
green contours where b0ðε; tÞ ¼ 2, indicating a strong signal of two connected components at
the scale 0.6	 ε	 1. We return to a discussion of these two connected components after a dis-
cussion of b1ðε; tÞ.

Fig 9(C) shows b1ðε; tÞ, measuring the number of topological circles. At t
 20, there is a
marked transition to b1ðε; tÞ ¼ 2 in the upper portion of the contour diagram. Taking into ac-
count that the order parameter φ(t) indicates alignment—and thus the lack of a topological cir-
cle in the heading dimension—the data is reduced to living on the two-torus of the periodic
spatial domain. For the snapshot t = 300, we have computed that b2ðε; 300Þ ¼ 0 in the range
of ε where b1ðε; tÞ ¼ 2. This indicates there are no trapped volumes. The first three Betti num-
bers b ¼ ð1; 2; 0Þ are those of a punctured torus, and this interpretation is consistent with the
hole in the data seen in the upper right quadrant of Fig 7(C).

We now return attention to the region of Fig 10(B) in which b0ðε; tÞ ¼ 2 over a range of ε,
indicating two connected components. Once the group has achieved strong alignment, agents
do not change their relative configuration, and the population travels as a rigid body. Thus,
there is potential for any outliers to remain outliers terminally. This is indeed the case in our
simulation. There is a single agent in Fig 7(C) (second from the top along the right hand bor-
der) who is isolated. It is only at the scale of the distance to its nearest neighbor that the transi-
tion to b0ðε; tÞ ¼ 1 occurs.

Summary of Vicsek Model Analysis
For both the first and third simulations, the order parameter φ(t)—shown in Figs 6(A) and 10
(A)—increases rapidly to φ(t)
 1 with little variation. However, the topological structures are
distinct. The first simulation shows cluster formation and eventual coverage across one dimen-
sion of the spatial domain. The third simulation shows one cluster (with an outlier) and
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Fig 10. Aggregate behavior of the Vicsek model, simulation #3. A typical snapshot is shown in Fig 7(C). (A) Normalized average velocity order parameter
φ(t). (B) Contour plot of Betti number b0ðε; tÞ. (C) Contour plot of Betti number b1ðε; tÞ. The topological analysis shows essentially no cluster formation; the
narrow region in which b0ðε; tÞ ¼ 2 arises from an isolated agent. The two persistent topological circles are consistent with highly aligned particles covering
both dimensions of the periodic spatial domain. Topological features become fairly stagnant once the entire group forms a large, aligned cluster traveling as a
rigid body early in the simulation. See text for a more comprehensive analysis.

doi:10.1371/journal.pone.0126383.g010
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coverage across both dimensions of the spatial domain. Curiously, this is the same topological
signature as the second simulation, even though the order parameter in 9(A) is noisy and
achieves a lower degree of alignment. Thus, the persistent homology computations capture the
fact that in some sense, the second and third simulations are topologically equivalent. Also, as
previously discussed, these computations reveal dynamical events not discernible in the order
parameter, and we find them to be a helpful complement.

Analysis of the D’Orsogna Model
Another model is that of D’Orsogna and collaborators [12, 25], cited over 300 times as of the
writing of this manuscript, and itself a refinement of [46]. In contrast to the alignment-driven
Vicsek model, the D’Orsogna model hinges on attractive-repulsive interactions between parti-
cles and produces many patterns including rotating rings, traveling swarms, and vortex states
—sometimes called mills—reminiscent of fish schools.

The D’Orsogna model is a continuous-time dynamical system that describes the motion of
interacting point particles in an unbounded plane. The model takes the form of Newtonian
force equations and thus is second order in time. The equations are

_xi ¼ vi; ð11aÞ

m _v i ¼ ða� bjvij2Þvi �riQi; ð11bÞ

Qi ¼
X
j6¼i

Cre
�jxi�xj j=Lr � Cae

�jxi�xj j=La : ð11cÞ

Here, xi(t) 2 R
2 is the position of particle i = 1, . . ., N at time t, and vi(t) 2 R

2 is velocity. The
first equation simply defines velocity as the derivative of position. The second equation is New-
ton’s law, stating that mass times acceleration is equal to a sum of forces. These forces include
self-propulsion of strength α, friction of strength β, and interaction forces described by the po-
tential Q. The first term in Q describes repulsion of strength Cr and characteristic length scale
Lr. The second term is similar, but describes attraction of strength Ca and characteristic length
scale La. Put together, these two terms are similar to potentials used in molecular physics. In bi-
ological scenarios, typically Lr < La and Cr > Ca, meaning that repulsion occurs over shorter
distances and is stronger. For an isolated pair of particles interacting solely according to this at-
tractive-repulsive rule, and for appropriately chosen parameters, the potential has a unique
minimum, and there exists an equilibrium distance at which attraction and repulsion balance.
When one deals with an ensemble of N particles each experiencing pairwise interactions, the
behavior is highly nontrivial. Restated in brief, (11) prescribes that each particle obeys New-
ton’s law, with the relevant forces being self-propulsion, friction, and pairwise attraction-repul-
sion with all other particles.

Arguably, one of the most intriguing behaviors of the model is the formation of mills, occur-
ring in certain parameter regimes. These structures are annular in shape, with particles rotating
around a hollow core. In a single mill, all particles travel with the same orientation (clockwise
or counterclockwise). In a double mill, some particles travel clockwise and some travel counter-
clockwise. It is helpful to think about the topology of these states. A mill and a double mill have
distinct topologies in four dimensional position-velocity space. The single mill is one con-
nected component and one topological circle, that is, b ¼ ð1; 1; 0; . . .Þ. The double mill is two
connected components each of which is a topological circle, that is, b ¼ ð2; 2; 0; . . .Þ. The two
circles are concentric, nonplanar, and nonintersecting in four dimensional space.
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We conduct a simulation of (11) with N = 500 particles, and model parameters α = 1.5, β =
0.5, Ca = 0.5, Cr = 1, La = 2, Lr = 0.5. Fig 11 shows selected simulation snapshots. For conve-
nience, we color blue all particles traveling clockwise with respect to the center of mass of the
group; particles traveling counterclockwise are red. In panel (A), at t = 5, the particles occupy a
disk-like region with somewhat disorganized velocities. At t = 23, we see that a hollow core has
begun to form. At t = 45, the mill structure has a well defined core. The group favors the clock-
wise direction, though there is a minority group of particles traveling counterclockwise.

Fig 12(A) shows time series of three order parameter metrics used in [12] to characterize
the global behavior of the system. Polarization P, defined in (Eq 1), is similar to φ(t) for the
Vicsek model; it measures the degree to which agents are aligned. Because the group is traveling
around a circle, P (red curve) remains low for the duration of the simulation. Angular momen-
tumM, also defined in (Eq 1), helps quantify the rotation of the group. For a perfect mill struc-
ture,M = 1. For our simulation, we see an evolution fromM
 0 early in time toM
 0.93 for
later times (green curve). However, as mentioned previously, the metricM cannot distinguish
between single and double mills, and so [12] introduces the absolute angular momentumMabs,
defined in (Eq 2). The fact thatMabs approaches unity signals that the asymptotic behavior of
the group is rotational. The fact thatM approaches a number close to but less than unity signals
that a small minority of the group members are rotating counter to the majority.

Fig 12(B) shows b0ðε; tÞ, measuring the number of connected components in the four di-
mensional space defined by position and velocity. In the large region below the purple (bottom)
contour, b0ðε; tÞ � 5. The connected components in this region persist only for very short
ranges of ε; this is a noisy topological signal which we disregard. In the large region at the top,
above the yellow contour, b0ðε; tÞ ¼ 1, indicating one connected component at the largest
scales, that is, a component consisting of all the data points. The bottom and top regions in the
graph are separated by a noisy boundary of intermediate curves. These curves indicate that at
scales approximately in the range 0.5< ε< 1.0 there is, over time, sporadic coagulation and
fragmentation of connected components. For example, at times near t
 30 and t
 46, the re-
gion between the yellow and green contours is thicker, indicating a more persistent signal of
two connected components.

Panel (C) shows b1ðε; tÞ, measuring the number of topological circles in four dimensional
space. In the bottom region of the graph enclosed by the purple contour, b1ðε; tÞ � 5 which, as
before, we interpret as noise. At early times, the only non-noisy signal is the large b1ðε; tÞ ¼ 0

region above the red contour, indicating an absence of topological circles. Starting at t
 20, a
marked transition occurs, and becomes persistent by t
 30. This transition detects the forma-
tion of a hole in the simulation, as shown in Fig 11(B). For t� 30, there is a discernible region
of the contour diagram in which b1ðε; tÞ ¼ 2, indicating two topological circles in four dimen-
sional position-velocity space. For these same times, over larger values of ε, b1ðε; tÞ ¼ 1, indi-
cating the loss of a circle. A topological circle could disappear by closing across its diameter or
by merging with another circle. For our data, antipodal points in the mill with opposite orienta-
tions of travel are approximately 0.5 units apart (as seen in Fig 11) and this is (approximately)
the proximity scale at which b1 transitions from two to one, indicating that the two mills merge
into one at this scale. The remaining topological circle will be lost when it closes on itself across
its diameter for sufficiently large values of ε (not shown).

Pulling together the information from panels (B) and (C), we conclude the following. At
times below t
 20, there is little topological structure. Then, a clear topological transition oc-
curs. For later times, we have one or—intermittently—two connected components of data
points. There are two discernible topological circles for smaller ε and one circle for larger ε.
These circles survive for long periods of simulation time. The topological signature of the first
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Fig 11. Simulation snapshots of the D’Orsognamodel (11).Circles indicate positions of the N = 500
particles in an unbounded plane, line segments represent heading, and blue (red) agents are traveling
(counter)clockwise. Over time, the group develops a hollow core and a double-mill structure in which a
majority of agents travel clockwise, but a minority persists in the counterclockwise orientation. (A) Time t = 5.
(B) Time t = 23. (C) Time t = 34. The other model parameters used in this simulation are α = 1.5, β = 0.5,Cr =
1, Lr = 0.5,Ca = 0.5, La = 2.

doi:10.1371/journal.pone.0126383.g011
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Fig 12. Aggregate behavior of the D’Orsognamodel. Snapshot of the time evolution are shown in Fig 11. (A) Three order parameters: polarization P (red),
angular momentumM (green), and absolute angular momentumMabs (blue). (B) Contour plot of Betti number b0ðε; tÞ. (C) Contour plot of Betti number
b1ðε; tÞ. At times below t
 20, there is little topological structure. For t > 20, we have one or—intermittently—two connected components of data points.
There are two discernible topological circles for smaller ε and one circle for larger ε. These circles survive for long periods of simulation time. The topological
signature of the first two Betti numbers, b ¼ ð2; 2Þ, is consistent with a double mill structure. See text for a more comprehensive analysis.

doi:10.1371/journal.pone.0126383.g012
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two Betti numbers, b ¼ ð2; 2Þ, is consistent with a double mill structure. The noisiness of the
second connected component arises from the sparsity of the counterclockwise mill in four
dimensional space.

Conclusions
Inspired by physics, order parameters such as polarization and angular momentum have been
useful for characterizing the global behavior of biological aggregations. We propose topological
data analysis as an additional, valuable technology for understanding their group behavior.

We have performed numerical simulations of two well-known mathematical models of bio-
logical aggregations, resulting in point clouds of data that evolve in time. To understand the
global behavior of each model, we study the topological structure of the point clouds by calcu-
lating their persistent homology. More specifically, we compute Betti numbers, which count
connected components, topological circles, trapped volumes, and so forth.

To interpret the topological computations, we introduce a new visualization tool, namely a
Contour Realization Of Computed k-dimensional hole Evolution in the Rips complex
(CROCKER), which track Betti numbers across both proximity scale and simulation time. In
topological data analysis, persistent features in a static point cloud correspond to long bars in a
topological barcode. In our analysis, features persisting over scale and simulation time appear
as large regions in the contour plot.

In Vicsek’s model of aligning particles, the homological measures distinguish simulations
that the usual alignment order parameter cannot. They also find topological similarity between
simulations with different order parameter time series. In D’Orsogna’s model of self-propelled,
attracting-repelling particles, the topological calculations recognize the presence of a double
mill state. In our study we have, for tutorial purposes, sought to explain our CROCKER plots
by a subsequent manual examination of the data. That said, though phenomena such as group
alignment, clustering, and double mills could be seen upon detailed examination of our raw
simulation data, we would not have found them by eye if the topological methods had not first
detected them.

One limitation of our work is that we have only calculated the first two Betti numbers, b0

and b1, except for a small number of isolated cases in which we have also calculated b2. Calcu-
lating higher Betti numbers of our point clouds would yield additional information, but is com-
putationally costly. Another limitation is that topological persistence over scale is different
from persistence over time. For a fixed simulation time, the topological barcode is guaranteed
to measure the same topological features through multiple proximity scales because nested se-
quences of simplicial complexes form a filtration over which homology persists. However, this
guarantee does not hold over simulation time. For example, if b0 ¼ 4 indicating four connected
components in two successive frames of a simulation, there is no mathematical guarantee that
these are the same four connected components. Nonetheless, because the aggregation models
we study evolve smoothly in time, we expect persistent topological features to do so as well.

One attempt to address time evolution of topological features uses vineyards, which have
been applied to protein folding in the context of level set persistence [47]. Another attempt
might involve multidimensional persistence, which allows a persistence computation simulta-
neously over multiple parameters [48]. It could be useful to apply these two tools to biological
aggregations. It could also be useful to consider another topological approach, namely braids,
which have yielded insight into other dynamical systems applications such as fluids and crowd
dynamics [49, 50]. Finally, our main goal has been to demonstrate the utility of topological
data analysis for biological aggregations and similar applications. We have used the Vicsek and
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D’Orsogna models as convenient examples, and focused on a small number of simulations.
That said, it could be revealing to conduct large numbers of randomly-seeded simulations for
fixed parameters, compute the persistent homology of each one, and average this topological
data. Doing so would allow more precise quantification of the timescales and persistence scales
of the topological transitions.

Topological data analysis is an active and growing area of current research. We hope that
our work above contributes to the toolkit that applied mathematicians might bring to bear on
models they study.
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