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Abstract

Reliability analysis allows for the estimation of a system’s probability of detecting and identi-

fying outliers. Failure to identify an outlier can jeopardize the reliability level of a system. Due

to its importance, outliers must be appropriately treated to ensure the normal operation of a

system. System models are usually developed from certain constraints. Constraints play a

central role in model precision and validity. In this work, we present a detailed investigation

of the effects of the hard and soft constraints on the reliability of a measurement system

model. Hard constraints represent a case in which there exist known functional relations

between the unknown model parameters, whereas the soft constraints are employed where

such functional relations can be slightly violated depending on their uncertainty. The results

highlighted that the success rate of identifying an outlier for the case of hard constraints is

larger than soft constraints. This suggested that hard constraints be used in the stage of

pre-processing data for the purpose of identifying and removing possible outlying measure-

ments. After identifying and removing possible outliers, one should set up the soft con-

straints to propagate their uncertainties to the model parameters during the data

processing.

Introduction

It is very common to build models (i.e., the equation systems) based on some initial knowledge

about a given problem. In other words, models are often set up in a way that the model param-

eters need to fulfill certain constraints. Such constraints are a priori knowledge embedded into

a model to avoid a trivial solution; to guarantee the stability of estimates; to improve the preci-

sion and accuracy of the results by reducing the number of unknown parameters, or
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accordingly, by increasing the redundancy of the system; and to mitigate (or even estimate) a

possible systematic effect [1, 2].

The models are usually formulated with minimal constraint or extra (redundant) con-

straints. In that case, we refer to the so-called equality constraints, which are usually incorpo-

rated into a system of equations to create a well-posed model [3]. For the most part, minimal

constraints are introduced to solve to the problem of rank deficiency in linear (or linearized)

systems. The rank deficiency is often caused by the lack (or insufficient) information about a

problem. In the field of geodesy, for example, minimal constraints are external information

whose primary role is to specify the coordinate system to which the network station posi-

tions will be estimated by the least-squares method (LS). This problem is known as datum
definition (or also zero-order design or datum choice problem) [4–9]. Several works have

investigated the minimum-constrained adjustment and the datum choice problem in the

geodetic literature, focusing on topics like free-adjustment and the role of inner constraints

[10–13].

If the number of constraints exceeds the minimum needed to solve the rank deficiency of

the equation systems, we say that we have redundant (or extra) constraints. Extra constraints

are also used to check the stability of points in geodetic deformation analysis [14–16] to test

the compatibility of constraints with the observations and the rest of the constraints [17–19].

So far we have only distinguished the constraints in terms of numerical quantity. The

model can also be subject to a hard and soft (or weighted) constraints. Hard constraints can

often represent a case in which there exist known functional relations between the unknown

parameters. Soft constraints (or looser constraints) are, however, for when functional relations

can be slightly violated depending on their uncertainty [2, 19]. Soft constraints may also be

referred to as a pseudo-observation model [20].

The well-known least-squares (LS) is widely used as a standard method of estimating model

parameters in geodetic applications and many others branches of modern science [21–41].

This is due to the flexibility of the LS, since no concepts from probability theory are used in

formulating the least-squares minimization problem.

LS is a linear unbiased estimator (LUE), and in some special cases, it coincides with the

best linear unbiased estimator (BLUE). The estimator that has the smallest variance of all

LUEs is called the best linear unbiased estimator (BLUE). If we have full knowledge of the

probability density function (PDF) of the measurements, the method of maximum likeli-

hood estimation (MLE) can also be applied. In case of normally distributed measurements

(Gauss–Markov model), the MLE estimators are identical to the BLUE ones, and therefore

the LS and MLE principles provide identical results [24, 42]; however, the presence of

undesirable outliers in the dataset makes LS no longer unbiased and not coincide with MLE

[43].

Here, we assume that an outlier is an observation that has deviated from its most probable

value to the point of jeopardizing the mathematical model (functional and stochastic) to which

it should belong. Due to its importance, outliers must be appropriately treated to ensure the

quality of data analysis [44–50].

In this study, we employed iterative data snooping (IDS), which is a hypothesis test-based

outlier. It is important to mention that IDS is not restricted to the field of geodetic statistics,

but is a generally applicable method [51, 52]. IDS is an iterative outlier elimination procedure,

which combines estimation, testing and a corrective action [44, 53]. Parameter estimation is

often conducted using LS. Then, hypothesis testing is performed with the aim to identify any

outlier that may be present in the dataset. After identification, the suspected outlier is then

excluded from the dataset as a corrective action (i.e., adaptation), and the LS is restarted with-

out the rejected measurement. If the model redundancy permits, this procedure is repeated
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until no more (possible) outliers can be identified (see e.g., [23], pp. 135). Although in this

study, we restricted ourselves to the case of one outlier at a time, IDS can also be applied for

cases containing multiple (simultaneous) outliers [54]. For more details about multiple (simul-

taneous) outliers, the reader is referred to [55–57]. Because ÌDS is based on statistical hypothe-

sis testing, there are chances of both correct and incorrect decisions. Recently, Rofatto et al.

[44] provided an algorithm based on Monte Carlo to determine the probability levels associ-

ated with IDS. In that case, they described six classes of decisions for IDS, namely probability

of correct identification (PCI), probability of missed detection (PMD), probability of wrong

exclusion (PWE), probability of over-identification positive (Poverþ), probability of over-identi-

fication negative (Pover� ) and statistical overlap (Pol), as follows:

• PCI : Probability of identifying and removing correctly an outlying measurement;

• PMD: Probability of not detecting the outlier (i.e., Type II decision error for IDS);

• PWE: Probability of identifying and removing a non-outlying measurement while the ‘true’
outlier remains in the dataset (i.e., Type III decision error [58] for IDS);

• Poverþ: Probability of identifying and removing correctly the outlying measurement and

others;

• Pover� : Probability of identifying and removing more than one non-outlying measurement,

whereas the ‘true outlier’ remains in the dataset;

• Pol: occurs in cases where one alternative hypothesis has the same distribution as the another

one. These hypotheses cannot be distinguished because their test statistics are numerically

the same, violating the IDS rule of one outlier at a time. In that case, they are non-separable

and an outlier cannot be identified. In other words, it corresponds to the probability of flag-

ging simultaneously two (or more) measurements as outliers.

Based on the probabilities of correct detection (PCD ¼ 1 � PMD) and correct identification

(PCI), the minimal biases, MDB (minimal detectable bias) and MIB (minimal identifiable

bias), can be computed as sensitivity indicators for outlier detection and identification, respec-

tively. “Outlier Detection” only informs whether or not there might have been at least one out-

lier; however, the detection does not tell us which measurement is an outlier. The localization

of the outlier is a problem of “outlier identification”, i.e., “Outlier Identification” implies the

execution of a search among the measurements for the most likely outlier [44]; therefore, the

smallest value of an outlier that can be detected, given a certain PCD, defines the MDB. On the

other hand, the smallest value of an outlier that can be identified, given a certain PCI , defines

the MIB.

In this study, we investigated the effects of models subject to constraints (minimum, redun-

dant, hard and soft) on the probability levels associated with IDS. It is important to emphasize

that if a standard deviation of a constraint (or a set of a constraint) is changed from zero to a

non-zero value, it is called a “relaxation” of the constraint [20].

We also evaluated the effect of relaxing constraints on the MIB and MDB. This kind of

assessment is a kind of sensitivity analysis. We also highlight that the task of clustering a set of

geodetic measurements was applied for the first time in this study. We intend to show that the

clusters can be defined according to two deterministic parameters: local redundancy and cor-

relation between the outlier test statistics.

Critical values optimized by the Monte Carlo method were used here [44, 51] in order to

compute the decision classes associated with IDS, i.e., PCI , PMD, PWE, Poverþ, Pover� and Pol.
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Material and methods

We used the procedure provided by Rofatto et al. [44] to compute the probability levels associ-

ated with IDS, as well as to estimate the both MDB and MIB. The procedure is summarized in

Fig 1.

The probability levels associated with IDS were computed for each observation individually

and for each outlier magnitude; however, they were grouped into clusters based on number of

local redundancy (ri) and maximum absolute correlation between the outlier test statistics

(rwi ;wj
). Furthermore, we took care to control the family-wise error rate. See Supporting Infor-

mation for more details S1 Appendix.

Problem description

To analyze the effects of the constraints on the IDS, an example was taken from a geodetic

leveling network with 12 height differences between the points. The equipment used to mea-

sure the level difference was an electronic digital level. In that case, the leveling measurement

system comprises of a special bar-coded staff (also called barcode rod) and a digital level

(instrument). A digital level is basically a telescope that enables a horizontal line of sight. Digi-

tal levels consist of additional electronic image processing components to automatically read

and analyze digital (bar coded) leveling staffs, where the graduation is replaced by a manufac-

turer dependent code pattern. Generally, the result is automatically stored in the data collector

of the digital level. An example of a “digital level—bar-code staff” system is displayed in the Fig

2. For more details about digital level see e.g., [59–61].

The standard deviation of the uncorrelated measurements were the same and taken equal

to σ = 1mm. The points are indicated as A to G. The eight network configuration are displayed

in Fig 3a–3e and their details are given as follows:

1. Fig 3a: Network with 1 hard constraint (i.e., network minimally constrained). Since the

dimension of the network is 1D, the minimum information necessary to estimate the

unknown heights is one. The height of G was fixed as a control point (hard constraint),

and 6 unknown heights (A,B,C,D,E,F) were minimally constrained; therefore, the redun-

dancy of the system (or overall degrees of freedom) was r = n-rank(A) = n − u = 12 −
6 = 6.

2. Fig 3b: Network with 1 extra hard constraint (i.e., two hard constraints). The heights A and

D were taken as hard constraints (i.e., heights A and D were fixed). The redundancy of the

system in that case was r = 12 − 5 = 7 with 5 unknown heights (B,C,E,F,G) over-

constrained.

3. Fig 3c: Network with 2 extra hard constraints (i.e., three hard constraints). The heights A,

D and G were taken as hard constraints. In that case, the redundancy of the system was

r = 12 − 4 = 8.

4. Fig 3d: Network with 2 soft constraints (A and D). In that case, a standard deviation larger

than zero was assigned to both constraints i.e., σc> 0. In other words, A and D were pro-

cessed as being both observations and unknown parameters, i.e., A and D were pseudo-

observations. Both constraints were simultaneously relaxed by considering their uncertain-

ties 10 times worse than the measurements (i.e., σc = 10 × σ = 10mm); 10 times better than

measurements (i.e., σc = 0.1mm); their uncertainties equal to the measurements (σc = 1mm).

In that case, the redundancy of the system was r = 14 − 7 = 7.
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Fig 1. Flowchart of the algorithm. Flowchart of the algorithm to compute the probability levels of Iterative Data Snooping (IDS) for each

measurement in the presence of an outlier [44].

https://doi.org/10.1371/journal.pone.0238145.g001
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5. Fig 3e: Network processed with A, D and G as pseudo-observations. Those three constraints

were simultaneously relaxed by considering their standard deviations equal to σc = 10mm
(10 times worse than measurements); σc = 0.1mm (10 times better than measurements); σc
= 1mm (the same as the measurements). In that case, the redundancy of the system was

r = 15 − 7 = 8.

The following system of equations for that problem is given by:

y1 þ e1 ¼ hB � hA

y2 þ e2 ¼ hC � hB

y3 þ e3 ¼ hD � hC

..

.

y7 þ e7 ¼ hB � hG

y8 þ e8 ¼ hC � hG

..

.

y11 þ e11 ¼ hB � hF

y12 þ e12 ¼ hC � hE

ð1Þ

Fig 2. Digital level—Bar-code staff system. Example of a digital level—bar-code staff system [44].

https://doi.org/10.1371/journal.pone.0238145.g002
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The design matrix (A) for the system of equations in 1 is given by:

A ¼

� 1 1 0 0 0 0 0

0 � 1 1 0 0 0 0

0 0 � 1 1 0 0 0

0 0 0 � 1 1 0 0

0 0 0 0 � 1 1 0

1 0 0 0 0 � 1 0

0 1 0 0 0 0 � 1

0 0 1 0 0 0 � 1

0 0 0 0 1 0 � 1

0 0 0 0 0 1 � 1

0 1 0 0 0 � 1 0

0 0 1 0 � 1 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð2Þ

Note that the rank defect of the matrix A is u-rank(A) = 7 − 6 = 1. In that case, at least one

constraint is needed in order to avoid rank the deficiency of the matrix A. This is guaranteed

when one height is known. For example, from the network in Fig 3a, we have added the height

Fig 3. Different constraint scenarios. Leveling geodetic network subject to different constraint scenarios.

https://doi.org/10.1371/journal.pone.0238145.g003
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G as known (i.e., as a hard constraint). In that case, the constraint equation should be added

into the system in 1, i.e.,

y13 ¼ hG with sy13
¼ 0; ð3Þ

noticing that because the standard deviation is zero, the observation is non-stochastic (hard

constraint) and the residual ey13
¼ 0. This can generate problems in the inversion of the covari-

ance matrix of the observations Qe for the calculation of the weight matrix W, because the

weight for that constraint would be undefined, i.e., 1

0
. In order to avoid that problem, we have

eliminated the rank deficiency of matrix A by removing the seventh column of matrix A in 2

associated with the height G. Now, we have u-rank(A) = 6 − 6 = 0. The constraint defines the

geodetic datum, i.e., the S-system [62]. Another approach to solving the system of equations in

1 could be based on generalized (pseudo) inverses [63].

The location of the constraints can be chosen in some circumstances, for example, during

the design stage of a geodetic network. For the special case of having a minimally constrained

system, the location of the constraint will not influence the w-test statistics and the sensitivity

indicators (MIB and MDB) [9]; however, more constraints than the minimum necessary to

have a solution (i.e., extra constraints or redundant constraints) can change the least-squares

residuals and hence w-test statistics and the minimal biases.

From the network with one extra constraint (2 constraints) in Fig 3b, for example, both the

first (height A) and fourth column (height D) of matrix A in 2 were eliminated in the case of

having the two heights as hard constraints. For the case where these two heights (A and D)

were taken as soft constraints, however, two observation equations were added to Eq 1, i.e.,

y13 þ e13 ¼ hA; sy13
> 0

y14 þ e14 ¼ hD; sy14
> 0

ð4Þ

In the case of soft constraints in Eq 4, 2 lines were added in matrix A. In other words, A and

D were taken as pseudo-observations. In that case, the rank deficiency was also null (i.e., u-

rank(A) = 7 − 7 = 0), the redundancy of the system was r = n-rank(A) = n − u = 7 and the

matrix A was given as follows:

A ¼

� 1 1 0 0 0 0 0

0 � 1 1 0 0 0 0

0 0 � 1 1 0 0 0

0 0 0 � 1 1 0 0

0 0 0 0 � 1 1 0

1 0 0 0 0 � 1 0

0 1 0 0 0 0 � 1

0 0 1 0 0 0 � 1

0 0 0 0 1 0 � 1

0 0 0 0 0 1 � 1

0 1 0 0 0 � 1 0

0 0 1 0 � 1 0 0

1 0 0 0 0 0 0

0 0 0 1 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð5Þ
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For this example of 2 soft constraints, and by considering the both soft constraints with

standard deviation σc = 10mm, the symmetric and positive semi-definite covariance matrix of

the observations (Qe) was given as follows:

Qe ¼

1 0 0 � � � 0 0

0 1 0 � � � 0 0

0 0 1 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � 100 0

0 0 0 � � � 0 100

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð6Þ

The last two rows and columns of the matrix Qe in 6 refer to the variances

(s2
c ¼ ð10mmÞ2 ¼ 100mm2) of the heights constraints A and D, respectively. Similarly, matri-

ces A and Qe were constructed for the other cases studied here.

Although the measurements are able to identify an outlier for the case of having only one

single soft constraint, the pseudo-observation (constraint) is not. In that case, the defect con-

figuration is associated with the additional parameter in the constraint (i.e., the presence of an

outlier in the constraint). In other words, an additional parameter on the soft constraint will

not estimable. For example, if the height point G was taken as a soft constraint, the presence of

an outlier in pseudo-observation G would lead to rank deficiency of matrix A, i.e., u-rank(A) =

8 − 7 = 1; therefore, the case of having only one single soft constraint was not considered here.

Result of the hard constraint effects on the iterative outlier

elimination procedure

The scenarios in Fig 3a (network minimally constrained), Fig 3b (two hard constraints) and

Fig 3c (three hard constraints) were considered here for the analysis. Table 1 gives the local

Table 1. Local redundancy (ri), standard deviation of the least-squares (LS)-estimated outlier sri
and the maximum absolute correlation (maxrwi ;wj ) for each scenario

of hard constraint.

1 hard constraint 2 hard constraints 3 hard constraints

Measurement ri sri
maxrwi ;wj ri sri

maxrwi ;wj ri sri
maxrwi ;wj

y1 0.396 1.589 1.00 0.583 1.309 0.36 0.708 1.188 0.41

y2 0.500 1.414 0.47 0.583 1.309 0.36 0.583 1.309 0.32

y3 0.396 1.589 1.00 0.583 1.309 0.36 0.708 1.188 0.41

y4 0.396 1.589 1.00 0.583 1.309 0.36 0.708 1.188 0.41

y5 0.500 1.414 0.47 0.583 1.309 0.36 0.583 1.309 0.32

y6 0.396 1.589 1.00 0.583 1.309 0.36 0.708 1.188 0.41

y7 0.563 1.333 0.47 0.583 1.309 0.36 0.708 1.188 0.41

y8 0.563 1.333 0.47 0.583 1.309 0.36 0.708 1.188 0.41

y9 0.563 1.333 0.47 0.583 1.309 0.36 0.708 1.188 0.41

y10 0.563 1.333 0.47 0.583 1.309 0.36 0.708 1.188 0.41

y11 0.583 1.309 0.43 0.583 1.309 0.36 0.583 1.309 0.32

y12 0.583 1.309 0.43 0.583 1.309 0.36 0.583 1.309 0.32

https://doi.org/10.1371/journal.pone.0238145.t001
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Fig 4. PCI and PCD for the case of hard constraints and for α0 = 0.001. Cluster 1(A,b), Cluster 2(c,d), Cluster 3(e,f)

and Cluster 4(g,h).

https://doi.org/10.1371/journal.pone.0238145.g004
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redundancy (ri), the standard deviation of the LS-estimated outlier sri
and the maximum

absolute correlation (maxrwi ;wj ) for each scenario of hard constraint set out in this study, i.e.,

Fig 3a–3c.

Next, the twelve leveling measurements were clustered into four clusters. The four cluster

were defined as follows:

• Cluster 1: y1, y3, y4 and y6.

Table 2. MDB (minimal detectable bias) and MIB (minimal identifiable bias) for the case of hard constraints based on α0 = 0.001 and ~PCD ¼
~PCI ¼ 0:8.

1 hard constraint 2 hard constraints 3 hard constraints

Cluster MDB (σ) MIB (σ) MDB (σ) MIB (σ) MDB (σ) MIB (σ)

1 7.5 - 6.3 6.3 5.7 5.7

2 6.7 6.8 6.3 6.4 6.3 6.4

3 6.4 6.4 6.3 6.3 5.8 5.8

4 6.4 6.4 6.4 6.4 6.4 6.4

https://doi.org/10.1371/journal.pone.0238145.t002

Fig 5. PWE for the case of hard constraints and for α0 = 0.001. Cluster 1(A), Cluster 2(b), Cluster 3(c) and Cluster 4

(d).

https://doi.org/10.1371/journal.pone.0238145.g005
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• Cluster 2: y2 and y5.

• Cluster 3: y7, y8, y9 and y10.

• Cluster 4: y11 and y12.

The probability levels associated with IDS were averaged for each of these clusters. The criti-

cal values were k̂ ¼ 3:89, k̂ ¼ 3:93 and k̂ ¼ 3:93 for one hard constraint, two hard constraints

and three hard constraints, respectively. These critical values were found for α0 = 0.001. PCI

and PCD and are displayed in Fig 4 for each number of hard constraint (denoted by h.c.).

The outlier magnitude were defined from |5σ| to |9σ|. The outlier of |5σ| was chosen because

it is approximately the lowest MDB0(i) of the network when a single hypothesis testing is in

play (See Supplementary Material for more details S1 Appendix). That MDB0(i) of |5σ| was

computed for a significance level of α0 = 0.001 and a power of the test γ0 = 0.8. This strategy

reduces the search space for an MIB, because we will always have the following inequality MIB
�MDB0(i) [52, 64]. Remember that the IDS procedure is an example of multiple hypothesis

testing. The success rate for outlier detection and outlier identification were taken as being

~PCD ¼
~PCI ¼ 0:8, respectively. Table 2 provides the values of MDB and MIB for that case of

hard constraints.

Fig 5 shows the PWE. Poverþ and Pover� were smaller than 0.001 (i.e., they were practically

null). There were not Pol for clusters 2, 3 and 4. We will discuss more about Pol later.

Result of the soft constraint effects on the iterative outlier

elimination procedure

Both configurations in Fig 3d and 3e were analyzed in terms of soft constraints. In that case,

the critical values were k̂ ¼ 3:95, k̂ ¼ 3:95 and k̂ ¼ 3:92 for two soft constraints with σc =

0.1mm, σc = 1mm and σc = 10mm, respectively. In the case of three soft constraints, the critical

values found were k̂ ¼ 3:99, k̂ ¼ 3:99 and k̂ ¼ 3:96 for σc = 0.1mm, σc = 1mm and σc = 10mm,

respectively. All these critical values were computed for α0 = 0.001. Table 3 gives the local

Table 3. Local redundancy (ri), standard deviation of the LS-estimated outlier sri
(mm) and the maximum absolute correlation (maxrwi ;wj ) for each scenario of two

soft constraints.

σc = 0.1mm σc = 1mm σc = 10mm
Measurement ri sri

maxrwi ;wj ri sri
maxrwi ;wj ri sri

maxrwi ;wj
y1 0.581 1.312 0.564 0.471 1.457 0.681 0.397 1.587 0.994

y2 0.582 1.311 0.376 0.533 1.369 0.423 0.501 1.413 0.471

y3 0.581 1.312 0.564 0.471 1.457 0.681 0.397 1.587 0.994

y4 0.581 1.312 0.564 0.471 1.457 0.681 0.397 1.587 0.994

y5 0.582 1.311 0.376 0.533 1.369 0.423 0.501 1.413 0.471

y6 0.581 1.312 0.564 0.471 1.457 0.681 0.397 1.587 0.994

y7 0.583 1.310 0.359 0.571 1.324 0.423 0.563 1.333 0.471

y8 0.583 1.310 0.359 0.571 1.324 0.423 0.563 1.333 0.471

y9 0.583 1.310 0.359 0.571 1.324 0.423 0.563 1.333 0.471

y10 0.583 1.310 0.359 0.571 1.324 0.423 0.563 1.333 0.471

y11 0.583 1.309 0.358 0.583 1.309 0.398 0.583 1.309 0.433

y12 0.583 1.309 0.358 0.583 1.309 0.398 0.583 1.309 0.433

y13 0.007 1.163 1.000 0.300 1.826 1.000 0.497 14.189 1.000

y14 0.007 1.163 1.000 0.300 1.826 1.000 0.497 14.189 1.000

https://doi.org/10.1371/journal.pone.0238145.t003
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Fig 6. PCI and PCD for the measurements subject to the scenarios of two soft constraints for α0 = 0.001. Cluster 1(a,

b), Cluster 2(c,d), Cluster 3(e,f) and Cluster 4(g,h).

https://doi.org/10.1371/journal.pone.0238145.g006
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redundancy (ri), the standard deviation of the LS-estimated outlier sri
and the maximum

absolute correlation (maxrwi ;wj ) for the scenarios of two constraints.

From Table 3, five clusters were defined for each case of two soft constraints, i.e., for the

case where heights A and D were given as soft constraints in Fig 3d, as follows:

• Cluster 1: y1, y3, y4 and y6.

• Cluster 2: y2 and y5.

• Cluster 3: y7, y8, y9 and y10.

• Cluster 4: y11 and y12.

• Cluster 5: y13 and y14.

PCI and PCD for the measurements (Cluster 1 to Cluster 4) subject to the scenarios of two

soft constraints (heights A and D) are displayed in Fig 6.

Note that Cluster 5 is associated with the two soft constraints (i.e., y13 and y14). The PCI for

these both soft constraints were null; however, PCD were not. Fig 7 shows PCD for these two

soft constraints (i.e., heights A and D).

The PWE for the measurements (Cluster 1 to Cluster 4) subject to the scenarios of two soft

constraints (heights A and D) are displayed in Fig 8. Fig 9 gives PWE for two constraints (i.e.,

heights A and D). The Poverþ and Pover� and the Pol were practically null for that case. The sen-

sitivity indicators (MDB and MIB) for each scenario of two soft constraints are displayed in

Table 4.

Table 5 gives the local redundancy (ri), the standard deviation of the LS-estimated outlier

sri
and the maximum absolute correlation (maxrwi ;wj ) for the scenarios of three soft

constraints.

The PCI and PCD in Fig 10 were computed for the clusters based on Table 5, as follows:

• Cluster 1: y1, y3, y4 and y6.

• Cluster 2: y2 and y5.

Fig 7. Probability of PCD and PCI for the two soft constraints and for α0 = 0.001. Cluster 5: heights A and D.

https://doi.org/10.1371/journal.pone.0238145.g007
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• Cluster 3: y7, y8, y9 and y10.

• Cluster 4: y11 and y12.

• Cluster 5: y13 and y14.

• Cluster 6: y15.

Fig 11 shows PCI and PCD for the three soft constraints, i.e., for Cluster 5 (heights A and D)

and Cluster 6 (height G) in Fig 3e. The PWE for the measurements (Cluster 1 to Cluster 4) sub-

ject to the scenarios of three soft constraints (heights A, D and G) are displayed in Fig 12. Fig

13 gives PWE for three constraints (i.e., heights A, D and G). The Poverþ, Pover� and Pol were

also practically null for that case of three soft constraints. The sensitivity indicators (MDB and

MIB) for each scenario of three soft constraints are displayed in Table 6.

Fig 8. The PWE for the measurements subject to the scenarios of two soft constraints for α0 = 0.001. Cluster 1(a),

Cluster 2(b), Cluster 3(c) and Cluster 4(d).

https://doi.org/10.1371/journal.pone.0238145.g008
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Discussion

We started by analyzing the scenario of one hard constraint in Fig 3a. Table 1 shows that the

maximum correlation between w-test statistics for the measurements constituting Cluster 1 is

exactly equal to 1.00 (i.e., maxrwi ;wj ¼ 1:00). This means that the measurements belonging to

Cluster 1 are connected with unknown heights whose connections are limited to only two.

Both unknown heights A and D are tied only to two measurements (i.e., y1 and y6 linked to A,

and y3 and y4 linked to D); therefore, if an outlier occurred in one of these measurements, we

would only be able to analyze the consistency between them, but we would not be able to dis-

tinguish which of them was contaminated by an outlier. This means that we would only be

able to detect them, because the w-test statistics could be larger than a critical value k̂; however,

Fig 9. The PWE for the two soft constraints and for α0 = 0.001. Cluster 5: heights A and D.

https://doi.org/10.1371/journal.pone.0238145.g009

Table 4. MDB and MIB for the case of two soft constraints based on α0 = 0.001 and ~PCD ¼
~PCI ¼ 0:8.

σc = 10mm σc = 1mm σc = 0.1mm
Cluster MDB (σ) MIB (σ) MDB (σ) MIB (σ) MDB (σ) MIB (σ)

1 7.5 25 7 7.1 6.3 6.3

2 6.8 6.8 6.6 6.6 6.3 6.3

3 6.4 6.4 6.4 6.4 6.3 6.3

4 6.3 6.3 6.3 6.3 6.3 6.3

5 6.8 - 8.8 - 57 -

https://doi.org/10.1371/journal.pone.0238145.t004
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in that case, the values of w-test statistics would be the same, and we would not have only one

unique maximum w-test statistics, but would actually have four maximum w-test statistics. In

other words, the equation systems associated with the measurements of Cluster 1 are linearly

dependent [65]; therefore, there is no reliability in terms of outlier identification for Cluster 1,

as can be seen in Fig 3a.

From Fig 3b, we note that there is reliability in terms of outlier detection for Cluster 1, and

it is caused by overlapping w-test statistics. The probability of statistics overlap (Pol) for Cluster

1 in the scenario of a minimally constrained network is displayed in Fig 14.

The problem of not having more connections (i.e., more measurements) for the unknown

heights A and D in the case of one hard constraint with G fixed is overcome when these heights

(A and D) are taken as hard constraints in Fig 3b or when the heights A, D and G are hard con-

straints in Fig 3c. Fig 3a and 3b show that the measurements of Cluster 1 are able to identify an

outlier when two hard constraints (A and D fixed) are in play. The case of three hard con-

straints (A, D and G fixes) in Fig 3e and 3f is also verified by our results i.e., there is reliability

in terms of both outlier detection and identification for these measurements in those

conditions.

From Table 2, we observe different behavior for the clusters as follows:

• Cluster 1: there was no MIB for the case of having only one single hard constraint, whereas

there was MDB = MIB for the other cases; however, both MDB and MIB decrease signifi-

cantly with the increase in the number of hard constraints.

• Cluster 2: MDB was slightly smaller than MIB. Both MDB and MIB were practically the

same for the case of having two or three hard constraints.

• Cluster 3: MDB = MIB for all cases of hard constraints; however, both MDB and MIB

decrease significantly with the increase in the number of hard constraints.

• Cluster 4: MDB and MIB were equal for all cases.

Table 5. Local redundancy (ri), standard deviation of the LS-estimated outlier sri
(mm) and the maximum absolute correlation (maxrwi ;wj ) for each scenario of the

three soft constraints.

σc = 0.1mm σc = 1mm σc = 10mm
Measurement ri sri

maxrwi ;wj ri sri
maxrwi ;wj ri sri

maxrwi ;wj
y1 0.702 1.194 0.660 0.502 1.411 0.577 0.398 1.586 0.992

y2 0.582 1.311 0.326 0.533 1.369 0.412 0.501 1.413 0.470

y3 0.702 1.194 0.660 0.502 1.411 0.577 0.398 1.586 0.992

y4 0.702 1.194 0.660 0.502 1.411 0.577 0.398 1.586 0.992

y5 0.582 1.311 0.326 0.533 1.369 0.412 0.501 1.413 0.470

y6 0.702 1.194 0.660 0.502 1.411 0.577 0.398 1.586 0.992

y7 0.704 1.192 0.415 0.602 1.289 0.412 0.563 1.333 0.470

y8 0.704 1.192 0.415 0.602 1.289 0.412 0.563 1.333 0.470

y9 0.704 1.192 0.415 0.602 1.289 0.412 0.563 1.333 0.470

y10 0.704 1.192 0.415 0.602 1.289 0.412 0.563 1.333 0.470

y11 0.583 1.309 0.326 0.583 1.309 0.385 0.583 1.309 0.433

y12 0.583 1.309 0.326 0.583 1.309 0.385 0.583 1.309 0.433

y13 0.012 0.904 0.660 0.425 1.534 0.542 0.663 12.283 0.501

y14 0.012 0.904 0.660 0.425 1.534 0.542 0.663 12.283 0.501

y15 0.019 0.718 0.63 0.5 1.414 0.542 0.665 12.268 0.501

https://doi.org/10.1371/journal.pone.0238145.t005
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Fig 10. The PCI and PCD for the measurements subject to the scenarios of three soft constraints for α0 = 0.001.

Cluster 1(A,b), Cluster 2(c,d), Cluster 3(e,f) and Cluster 4(g,h).

https://doi.org/10.1371/journal.pone.0238145.g010
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In terms of outlier detection and identification: Cluster 1 was more sensitive to constraints;

Cluster 3 was relatively sensitive to constraints; Cluster 4 was completely insensitive to con-

straints; Cluster 2 was relatively insensitive to constraints; see Fig 4. The reason for this is that

the local redundancy (ri) of Cluster 1 increased with the increase of the number of hard con-

straints, whereas Cluster 4 remained the same; see Table 2.

Leaving aside the cases of Pol, the network presents low least-squares residuals correlation

(rwi ;wj
< 0:5) and high local redundancy (ri> 0.5). Because of this, PWE were less than 1%, see

Fig 5. The Poverþ and Pover� were practically null. Consequently, PCI � PCD. Due of this fact,

the family-wise error rate (α0) should be increased in order to have more success rate in the

outlier detection and identification [44].

From Fig 15, we observe that increasing the α0 increases both the PCI and PCD for outlier

magnitude from 5σ to 6σ in the case of three hard constraints and from 5σ to 6.8σ in the case

of two hard constraints. Although the rates of Poverþ and PWE also increase, they are not

Fig 11. The PCI and PCD for the three constraints and for α0 = 0.001. Cluster 5(a,b) and Cluster 6(c,d).

https://doi.org/10.1371/journal.pone.0238145.g011
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significant when compared to the improvement of PCI and detection (PCD). This same analysis

can be done for the other clusters.

In terms of soft constraints for the cases of two constraints in Fig 3d, we observe from

Table 3 that the larger the relaxation of the constraint (i.e., the larger the standard deviation of

the constraint σc), the larger the residuals correlation (rwi;wj
) and the standard deviation of the

outlier sri
, and the smaller the local redundancy (ri). Consequently, PCI and detection (PCD)

get smaller and smaller with the relaxation of the constraints, whereas PWE gets larger (PWE).

This can be more clearly verified in Fig 6a, 6b and 8a for Cluster 1, whose measurements are

connected with the constraints A and D (i.e., y13 and y14 in Table 3, respectively).

Note from Fig 8a that the PWE increases as the magnitude of the outlier (ri) increases; how-

ever, this is only true up to a certain limit of outlier magnitude. The effect of residuals correla-

tion rwi ;wj
on the rates of PWE and PCI tends to decrease with the increase in the magnitude of

Fig 12. The PWE for the measurements subject to the scenarios of the three soft constraints and for α0 = 0.001.

Cluster 1(a), Cluster 2(b), Cluster 3(c) and Cluster 4(d).

https://doi.org/10.1371/journal.pone.0238145.g012
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the outlierri. This effect is more clearly verified for Cluster 1, in a case where the precision of

the constraints are ten times worse than the measurements σc = 10σ = 10mm.

Note from Fig 6 that identifying an outlier in Cluster 1 (i.e., y1, y3, y4 and y6) when σc =

10mm is more difficult than the other clusters. This is due to the fact that Cluster 1 has a higher

residuals correlation rwi ;wj
¼ 0:994 than other clusters. We observe that the larger the relaxa-

tion of the constraints, the larger the effect of the correlation rwi ;wj
on the success rate of outlier

identification (PCI). Consequently, the higher the sensitivity indicator for outlier identification

(MIB). Table 2 reveals that the ratio between MIB and MDB for Cluster 1 and for the scenario

where the standard deviations of that two soft constraints are σc = 10mm is MIB/MDB = 25/

7.5 = 3.3. On the other hand, the relationship between MIB and MDB is practically one (i.e.,

MIB/MDB = 1.0) for the others scenarios.

If the family-wise error rate (FWE) rate (α0) were increased for the case where the two soft

constraints of σc = 10mm are in play, we would not have great advantages for Cluster 1, due to

its high residuals correlation (rwi;wj
¼ 99:4%). From Fig 16, we can observe that the PCI for

outlier magnitudes from 5σ to 8σ is effectively larger for a user-defined α0 = 0.1 than α0 = 0.001;

however, the success rate is still less than 80%, i.e., PCI < 0:8. Note, for example, the correct

Fig 13. The PWE for the three constraints and for α0 = 0.001. Cluster 6(b).

https://doi.org/10.1371/journal.pone.0238145.g013

Table 6. MDB and MIB for the case of the three soft constraints based on α0 = 0.001 and ~PCD ¼
~PCI ¼ 0:8.

σc = 10mm σc = 1mm σc = 0.1mm
Cluster MDB (σ) MIB (σ) MDB (σ) MIB (σ) MDB (σ) MIB (σ)

1 7.5 22 6.8 6.9 5.8 5.9

2 6.8 6.9 6.6 6.7 6.4 6.4

3 6.4 6.4 6.3 6.3 5.8 5.8

4 6.3 6.3 6.3 6.3 6.3 6.3

5 5.9 6.0 7.4 7.5 43.5 45

6 5.9 5.9 6.9 6.9 34.6 35.5

https://doi.org/10.1371/journal.pone.0238145.t006
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identification rate is PCI ¼ 56% for an outlier magnitude ofri = 8σ and α0 = 0.1. For α0 = 0.1

the MIB = 33.5σ = 33.5mm, whereas for α0 = 0.001 is MIB = 25σ = 25mm; therefore, in that

case, the MIB for PCI ¼ 0:8ð80%Þ and α0 = 0.1 would be 34% larger than user-defined α0 =
0.001.

The soft constraints A and D were grouped in Cluster 5 (i.e., A and D were treated as

pseudo-observations in the model). There is no reliability in terms of outlier identification for

the constraints, because the residual correlation between them is rwi ;wj
¼ 100%, as can be seen

in Table 3 for y13 and y14; however, these soft constraints are able to detect an outlier. In that

case, the PCD in Fig 7 is mainly caused by the Pol, as can be seen in σc = 10mm in Fig 17. From

Table 4, we observe that the larger the relaxation of the constraints, the larger the MDB. Note

that the values of MDB are given in σ, and thus the MDB for σc = 10mm is larger than σc =

1mm and σc = 0.1mm, i.e., we had the following inequality: MDB = 6.8σc = 6.8 × 10mm =

68mm>MDB = 8.8σc = 8.8 × 1mm = 8.8mm>MDB = 57σc = 57 × 0.1mm = 5.7mm. In that

Fig 14. PCD and Pol for Cluster 1 subject to one hard constraint and for α0 = 0.001. The PCD and Pol for Cluster 1 subject to one

hard constraint and for α0 = 0.001.

https://doi.org/10.1371/journal.pone.0238145.g014
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case, if the FWE (α0) were increased, the rate of outlier detection by the Cluster 4 (i.e., by the

soft constraints) would increase.

Similar effects of the relaxation of the constraints on the performance of the IDS in case of

two soft constraints are verified in case of three soft constraints, as can be seen in Figs 10, 11,

12 and 13.

In case of having three soft constraints in Fig 3e, there is reliability in terms of outlier identi-

fication for the three pseudo-observations y13, y14 and y15 (i.e., for A, D and G), seen in Fig 10

and Table 6. In that case, we also observe that PCD of the soft constraints A and D (i.e., Cluster

5) were approximately 13% for σc = 10mm, 16% for σc = 1mm and 24% for σc = 0.1mm larger

than the scenario of the network subject to two soft constraints. Table 6 reveals that the advan-

tage of having three soft constraints instead of two constraints is that the constraints become

identifiable in the presence of an outlier. The behavior of the PCD, PCI and PWE was similar to

Fig 15. The PCI , PCD, Poverþ and PWE for Cluster 1 subject to two and three hard constraints and for α0 = 0.001 and α0 = 0.1. The

PCI (A), PCD (b), Poverþ (c) and PWE for Cluster 1 subject to two and three hard constraints and for α0 = 0.001 and α0 = 0.1.

https://doi.org/10.1371/journal.pone.0238145.g015
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the case of the two soft constraints. Furthermore, the larger the relaxation of the constraints,

the smaller the residuals correlation between the measurements and the soft constraints and

the larger the residuals correlation among the measurements.

We also observe that the case of two soft constraints for σc = 0.1mm was comparable with

two hard constraints (see e.g., Tables 2 and 6) in terms of the probability levels associated with

IDS for the measurements (i.e., clusters 1, 2, 3 and 4). In the same way for the case of two soft

constraints with σc = 1mm or σc = 10mm, the probabilities levels were similar to the one hard

constraint for that measurements, with the benefit of two soft constraints having reliability in

terms of outlier identification for the Cluster 1. Finally, the three soft constraints with σc =

1mm and σc = 10mm were comparable to the two soft constraints for that scenario of con-

straints relaxation, wheres the three soft constraints for σc = 0.1mm showed similar outcomes

with three hard constraints for the measurements (see e.g., Tables 2 and 6). In that case, how-

ever, an advantage of the three soft constraints on the three hard constraints is the possibility

of analyzing the sensitivity of the constraints. We emphasize that the stochastic models of the

Fig 16. The PCI for Cluster 1 subject to two soft constraints (2 s.c.) A and D for α0 = 0.001 and α0 = 0.1. The PCI for Cluster 1

subject to two soft constraints (2 s.c.) A and D for α0 = 0.001 and α0 = 0.1.

https://doi.org/10.1371/journal.pone.0238145.g016
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measurements and constraints were assumed to be well-known and defined for the analyses

performed here.

Conclusion

We highlight the main findings of this research as follows:

• Under a system of a high local redundancy ri> 0.5 and low residuals correlation

(rwi ;wj
< 0:5), if one increases the family-wise error rate (FWE) of the test statistic, the perfor-

mance of the procedure will be improved for both scenarios of hard constraints and soft

constraints.

• PCI of the observations is larger for the case of hard constraints than soft constraints.

• The larger the relaxation of the constraints, the larger the effect of the residuals correlation

(rwi ;wj
) on the success rate of outlier identification (PCI) of the observations. Consequently,

the higher the sensitivity indicator for outlier identification (MIB), the more difficult it

becomes to identify an outlier.

Fig 17. The PCD and Pol for the two soft constraints A and D (Cluster 5) with σc = 10mm and for α0 = 0.001. The PCD and Pol for

the two soft constraints A and D (Cluster 5) with σc = 10mm and for α0 = 0.001.

https://doi.org/10.1371/journal.pone.0238145.g017
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• Under a scenario of soft constraints, one should set out at least three soft constraints in order

to identify an outlier in the constraints.

• Hard constraints should be used in the stage of pre-processing data for the purpose of identi-

fying and removing possible outlying measurements. In that process, one should opt to set

out the redundant hard constraints at points in the network where the smallest connections

exist. After identifying and removing possible outliers, the soft constraints should be

employed to propagate the uncertainties of the constraints (pseudo-observations) to the

model parameters during the process of least-squares estimation.

Supporting information

S1 Appendix. Description of the method. Provides a broad theoretical framework and

detailed description of the method used to estimate the Iterative Data-Snooping probability
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(PDF)
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35. Büchele D, Chao M, Ostermann M, Leenen M, Bald I. Multivariate chemometrics as a key tool for pre-

diction of K and Fe in a diverse German agricultural soil-set using EDXRF. Scientific Reports. 2019; 9

(1):17588. https://doi.org/10.1038/s41598-019-53426-5 PMID: 31772200

36. Zhang J, Richardson JD, Dunkley BT. Classifying post-traumatic stress disorder using the magnetoen-

cephalographic connectome and machine learning. Scientific Reports. 2020; 10(1):5937. https://doi.

org/10.1038/s41598-020-62713-5 PMID: 32246035

37. Yalage Don SM, Schmidtke LM, Gambetta JM, Steel CC. Aureobasidium pullulans volatilome identified

by a novel, quantitative approach employing SPME-GC-MS, suppressed Botrytis cinerea and Alternaria

alternata in vitro. Scientific Reports. 2020; 10(1):4498. https://doi.org/10.1038/s41598-020-61471-8

PMID: 32161291

38. Bica R, Palarea-Albaladejo J, Kew W, Uhrin D, Pacheco D, Macrae A, et al. Nuclear Magnetic Reso-

nance to Detect Rumen Metabolites Associated with Enteric Methane Emissions from Beef Cattle. Sci-

entific Reports. 2020; 10(1):5578. https://doi.org/10.1038/s41598-020-62485-y PMID: 32221381

39. Chen X, Qiao W, Miao W, Zhang Y, Mu X, Wang J. The Dependence of Implicit Solvent Model Parame-

ters and Electronic Absorption Spectra and Photoinduced Charge Transfer. Scientific Reports. 2020;

10(1):3713. https://doi.org/10.1038/s41598-020-60757-1 PMID: 32111955

40. Weaving D, Jones B, Ireton M, Whitehead S, Till K, Beggs CB. Overcoming the problem of multicolli-

nearity in sports performance data: A novel application of partial least squares correlation analysis.

PLOS ONE. 2019; 14(2):1–16. https://doi.org/10.1371/journal.pone.0211776

41. Chen Y. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.

PLOS ONE. 2016; 11(1):1–19. https://doi.org/10.1371/journal.pone.0146865

42. Kargoll B. On the theory and application of model misspecification tests in geodesy [Doctoral thesis].

University of Bonn, Landwirtschaftliche Fakultät. German, Bonn; 2007.

43. Lehmann R. On the formulation of the alternative hypothesis for geodetic outlier detection. J Geod.

2013; 87(4):373–386. https://doi.org/10.1007/s00190-012-0607-y

44. Rofatto VF, Matsuoka MT, Klein I, Roberto Veronez M, da Silveira LG. A Monte Carlo-Based Outlier

Diagnosis Method for Sensitivity Analysis. Remote Sensing. 2020; 12(5). https://doi.org/10.3390/

rs12050860

45. Goldstein M, Uchida S. A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for

Multivariate Data. PLOS ONE. 2016; 11(4):1–31. https://doi.org/10.1371/journal.pone.0152173

46. Faria B, Vistulo de Abreu F. Cellular frustration algorithms for anomaly detection applications. PLOS

ONE. 2019; 14(7):1–31. https://doi.org/10.1371/journal.pone.0218930

47. Aljably R, Tian Y, Al-Rodhaan M, Al-Dhelaan A. Anomaly detection over differential preserved privacy

in online social networks. PLOS ONE. 2019; 14(4):1–20. https://doi.org/10.1371/journal.pone.0215856

48. El Azami M, Hammers A, Jung J, Costes N, Bouet R, Lartizien C. Detection of Lesions Underlying

Intractable Epilepsy on T1-Weighted MRI as an Outlier Detection Problem. PLOS ONE. 2016; 11(9):1–

21. https://doi.org/10.1371/journal.pone.0161498

49. Gautier M, Hocking TD, Foulley JL. A Bayesian Outlier Criterion to Detect SNPs under Selection in

Large Data Sets. PLOS ONE. 2010; 5(8):1–16. https://doi.org/10.1371/journal.pone.0011913

50. George NI, Bowyer JF, Crabtree NM, Chang CW. An Iterative Leave-One-Out Approach to Outlier

Detection in RNA-Seq Data. PLOS ONE. 2015; 10(6):1–10. https://doi.org/10.1371/journal.pone.

0125224

51. Lehmann R. Improved critical values for extreme normalized and studentized residuals in Gauss–Mar-

kov models. J Geod. 2012; 86(12):1137–1146. https://doi.org/10.1007/s00190-012-0569-0

PLOS ONE On the effects of hard and soft equality constraints in the iterative outlier elimination procedure

PLOS ONE | https://doi.org/10.1371/journal.pone.0238145 August 26, 2020 28 / 29

https://doi.org/10.3390/rs12030448
https://doi.org/10.3390/stats3010002
https://doi.org/10.3390/s20010304
https://doi.org/10.3390/math8010062
https://doi.org/10.3390/app9193987
https://doi.org/10.3390/app9040696
https://doi.org/10.1038/s41598-019-53426-5
http://www.ncbi.nlm.nih.gov/pubmed/31772200
https://doi.org/10.1038/s41598-020-62713-5
https://doi.org/10.1038/s41598-020-62713-5
http://www.ncbi.nlm.nih.gov/pubmed/32246035
https://doi.org/10.1038/s41598-020-61471-8
http://www.ncbi.nlm.nih.gov/pubmed/32161291
https://doi.org/10.1038/s41598-020-62485-y
http://www.ncbi.nlm.nih.gov/pubmed/32221381
https://doi.org/10.1038/s41598-020-60757-1
http://www.ncbi.nlm.nih.gov/pubmed/32111955
https://doi.org/10.1371/journal.pone.0211776
https://doi.org/10.1371/journal.pone.0146865
https://doi.org/10.1007/s00190-012-0607-y
https://doi.org/10.3390/rs12050860
https://doi.org/10.3390/rs12050860
https://doi.org/10.1371/journal.pone.0152173
https://doi.org/10.1371/journal.pone.0218930
https://doi.org/10.1371/journal.pone.0215856
https://doi.org/10.1371/journal.pone.0161498
https://doi.org/10.1371/journal.pone.0011913
https://doi.org/10.1371/journal.pone.0125224
https://doi.org/10.1371/journal.pone.0125224
https://doi.org/10.1007/s00190-012-0569-0
https://doi.org/10.1371/journal.pone.0238145


52. Rofatto VF, Matsuoka MT, Klein I, Veronez MR, Bonimani ML, Lehmann R. A half-century of Baarda’s

concept of reliability: a review, new perspectives, and applications. Surv Rev. 2018; 0(0):1–17.

53. Zaminpardaz S, Teunissen PJG. DIA-datasnooping and identifiability. J Geod. 2019; 93(1):85–101.

https://doi.org/10.1007/s00190-018-1141-3 PMID: 30872905

54. Kok JJ, States U. On data snooping and multiple outlier testing [microform] / Johan J. Kok. U.S. Dept. of

Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Charting and

Geodetic Services: For sale by the National Geodetic Information Center, NOAA Rockville, Md; 1984.

55. Knight NL, Wang J, Rizos C. Generalised measures of reliability for multiple outliers. Journal of Geod-

esy. 2010; 84(10):625–635. https://doi.org/10.1007/s00190-010-0392-4

56. Gui Q, Li X, Gong Y, Li B, Li G. A Bayesian unmasking method for locating multiple gross errors based

on posterior probabilities of classification variables. J Geod. 2011; 85(4):191–203. https://doi.org/10.

1007/s00190-010-0429-8

57. Klein I, Matsuoka MT, Guzatto MP, Nievinski FG. An approach to identify multiple outliers based on

sequential likelihood ratio tests. Surv Rev. 2017; 49(357):449–457. https://doi.org/10.1080/00396265.

2016.1212970

58. Hawkins DM. Identification of Outliers. 1st ed. Springer Netherlands; 1980.

59. Algarni DA, Ali AE. Heighting and Distance Accuracy with Electronic Digital Levels. Journal of King

Saud University—Engineering Sciences. 1998; 10(2):229—239. https://doi.org/10.1016/S1018-3639

(18)30698-6

60. Takalo M, Rouhiainen P. Development of a System Calibration Comparator for Digital Levels in Finland.

Nordic Journal of Surveying and Real Estate Research. 1; 1(2).

61. Wiedemann W, Wagner A, Wunderlich T. Using IATS to Read and Analyze Digital Levelling Staffs. In:

Paar R, Marendić A, Zrinjski M, editors. SIG 2016. Varazdin, Croatia: Croatian Geodetic Society;

2016. p. 515–526. Available from: http://www.geof.unizg.hr/pluginfile.php/7437/mod_book/chapter/

173/TS6_2.pdf.

62. T P J G. The Geometry of Geodetic Inverse Linear Mapping and Non-linear Adjustment. Publications

on Geodesy, New Series. 1985; 8(1).

63. Rao CR, Mitra SK. Generalized inverse of a matrix and its applications; 1972.

64. Imparato D, Teunissen PJG, Tiberius CCJM. Minimal Detectable and Identifiable Biases for quality con-

trol. Surv Rev. 2019; 51(367):289–299. https://doi.org/10.1080/00396265.2018.1437947

65. Hekimoglu S, Erenoglu RC, Sanli DU, Erdogan B. Detecting Configuration Weaknesses in Geodetic Net-

works. Survey Review. 2011; 43(323):713–730. https://doi.org/10.1179/003962611X13117748892632

PLOS ONE On the effects of hard and soft equality constraints in the iterative outlier elimination procedure

PLOS ONE | https://doi.org/10.1371/journal.pone.0238145 August 26, 2020 29 / 29

https://doi.org/10.1007/s00190-018-1141-3
http://www.ncbi.nlm.nih.gov/pubmed/30872905
https://doi.org/10.1007/s00190-010-0392-4
https://doi.org/10.1007/s00190-010-0429-8
https://doi.org/10.1007/s00190-010-0429-8
https://doi.org/10.1080/00396265.2016.1212970
https://doi.org/10.1080/00396265.2016.1212970
https://doi.org/10.1016/S1018-3639(18)30698-6
https://doi.org/10.1016/S1018-3639(18)30698-6
http://www.geof.unizg.hr/pluginfile.php/7437/mod_book/chapter/173/TS6_2.pdf
http://www.geof.unizg.hr/pluginfile.php/7437/mod_book/chapter/173/TS6_2.pdf
https://doi.org/10.1080/00396265.2018.1437947
https://doi.org/10.1179/003962611X13117748892632
https://doi.org/10.1371/journal.pone.0238145

