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Abstract

Bone mineral density (BMD) and lipid levels are two of the most extensively studied risk fac-

tors for common diseases of aging, such as cardiovascular disease (CVD) and osteoporosis

(OP). These two risk factors are also correlated with each other, but little is known about the

molecular mechanisms behind this correlation. Recent studies revealed that circulating lev-

els of several metabolites involved in the biosynthesis of androsterone correlate significantly

with BMD and have the capacity to affect cholesterol and lipids levels. A main aim of the

present study was to investigate the hypothesis that androsterone-related metabolites could

provide a link between CVD and OP, as a common cause of lipid levels and BMD. The pres-

ent study employed data from the NIHR BRC TwinsUK BioResource, comprising 1909 and

1994 monozygotic and dizygotic twin pairs, respectively, to address the causal relationships

among BMD and lipids, and their associated metabolites, using reciprocal causation twin

modelling, as well as Mendelian randomization (MR) using large publicly-available GWAS

datasets on lipids and BMD, in conjunction with TwinsUK metabolite data. While results

involving the twin modelling and MR analyses with metabolites were unable to establish a

causal link between metabolite levels and either lipids or BMD, MR analyses of BMD and lip-

ids suggest that lipid levels have a causal impact on BMD, which is consistent with findings

from clinical trials of lipid-lowering drugs, which have also increased BMD.

Introduction

Bone mineral density (BMD) and serum total cholesterol (TC) are among two of the most

extensively studied clinically-oriented phenotypes, associated with the two of the most com-

mon polygenic age-related pathologies, osteoporosis (OP) and cardiovascular disease (CVD).

There is an abundant literature showing correlation between these biomarkers and possible

mechanisms underlying it [1–4], although the views and the data remain controversial [5,6].

In particular, it is unclear whether BMD and lipids are related due to pleiotropic genetic

influences or through direct causal influence of one on the other. One of the most convincing

studies employed conditional false-discovery rate and other approaches on large genome-wide
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association studies (GWAS) of BMD and cholesterol and found pleiotropy among the signifi-

cant single nucleotide polymorphisms (SNPs) for the two phenotypes [4]. A comprehensive

GWAS in a combined sample of the TwinsUK study and the Cooperative Health Research in

the Region of Augsburg (KORA) study including nearly 8000 individuals identified 145 SNP

associations with over 400 blood metabolites [7]. Of these, four independent SNPs were

robustly associated with four metabolites previously shown to be involved in a single biological

pathway and significantly correlated with BMD [8]: androsterone sulfate (ATS), dehydroi-

soandrosterone sulphate (DHEA-S), epiandrosterone sulfate (EAS), and 4-androsten-

3beta,17beta-diol disulfate 2� (Δ4-dione). Two independent SNPs (rs7809615 on chromosome

7 [intronic variant in TMEM225B] and rs182420 on chromosome 19 [intronic variant in

LINC01595]) were most associated with ATS and also had large and significant effects on

DHEA-S and rs7809615 had a significant effect on EAS, Two additional independent SNPs

were most associated with Δ4-dione (rs2762353 on chromosome 6 [intronic variant in

SLC17A1] and rs4149056 on chromosome 12 [missense variant in SLCO1B1]) and these SNPs

were not significantly associated with the other three metabolites. On the other hand, it is cur-

rently well established that cholesterol is involved in the biosynthesis of androsterone via ste-

roidogenesis in the adrenal cortex [9,10]. These findings suggest possible mechanistic links

between BMD and lipids via shared metabolic axis. However, studies evaluating possible casual

associations between serum lipid profiles and BMD are few and contradictory.

In the current study, we addressed the question of whether the four steroid-pathway corre-

lated metabolites causally influence BMD or the reverse, whether the four metabolites cause

lipid levels or the reverse, and whether lipid levels cause BMD or the reverse. We applied two

approaches: direction of causation twin modelling [11] and Mendelian randomization (MR)

to investigate whether the metabolic pathways connecting BMD and lipid profiles could be

causally identified. The twin modelling approach infers causation through differences in heri-

tability and environmental variances of the variables of interest. The gold standard for estab-

lishing causation in medicine is the randomized controlled trial (RCT) [12], but performing

RCTs is often not feasible or even ethical. However, with advances in genomics, MR was pro-

posed and has been extensively implemented [13,14]. MR relies on the presence of genetic fac-

tors which cause a modifiable exposure and which do not directly cause the outcome of

interest and only cause the outcome via modifying the exposure. Such genetic markers may

then be used as instruments to examine whether there is in fact a causal link between the mod-

ifiable exposure (metabolite level, lipid level, or BMD) and the medically-relevant outcome

(lipid level or BMD). Using large publicly-available datasets, combined with our metabolomic

data, we addressed the same questions as in the twin causal modelling using MR.

Materials and methods

Subjects

The twin data used in the present study were from the TwinsUK Adult Twin Registry,

described in detail previously [15]. The subsample employed in the present study comprised

1909 monozygotic (MZ) and 1994 dizygotic (DZ) twin pairs.

Phenotypes

Metabolites were assayed from fasting plasma or serum samples by the service provider Meta-

bolon, Inc. (Durham, NC, USA) [16]. The present study focusses on four of those metabolites:

androsterone sulfate (ATS), dehydroisoandrosterone sulfate (DHEA-S), epiandrosterone sul-

fate (EAS), and 4-androsten-3beta, 17beta-diol disulfate 2� (Δ4-dione).

Causal relationships between blood lipid levels and BMD
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Lipid measures in the TwinsUK sample included four traits: total cholesterol (TC), high-

density lipoprotein cholesterol (HDL-C), triglycerides (TG) and low-density lipoprotein cho-

lesterol (LDL-C) calculated using the formula: LDL-C = ¾ (TC–HDL-C) [17]. Subjects were

followed up and assessed at multiple time points, over a period of up to 17 years.

DEXA was used to measure BMD at the lumbar spine (L1 to L4) and hip regions (following

manufacturer’s recommendations (QDR 4500W system, Hologic Inc, Bedford, MA) and

described elsewhere [18]. In total, 15,491 DEXA scans were performed in 7056 twins during

17 years of follow-up; control scans were performed using the spine phantom.

Data analysis

The overall analysis strategy, along with data employed, is presented in Fig 1.

All the analyses were carried out in the R statistical environment. DEXA scans and lipid

profiles were obtained at multiple ages, therefore we used the lme4 package (https://cran.r-

project.org/web/packages/lme4/lme4.pdf) to perform linear mixed-effects modelling to pro-

duce a single phenotype per individual by regressing out the age effect and using the intercept

from those regressions as the individual score for each phenotype. This has the advantage of

using all available data while adjusting for age.

Both standard univariate and multivariate twin modelling was performed using the umx

package [19] to estimate the additive genetic (A) and shared in common by a twin pair (C) and

nonshared (E) environmental variances and covariances. Direction of causation in twin

modelling was performed using the OpenMX package [20–22]. We fitted the model illustrated

in Fig 2, depicted for a single member of a twin pair. Models were fitted to the raw data and fit

functions minimized with the CSOLNP optimizer [23]. The model contained three metabo-

lites, two lipid measures, and two BMD measures (lumbar spine and left hip), with the omis-

sion of one metabolite and two other lipid measures as explained at the beginning of the

results section. The model had a single latent factor for the metabolites, a latent factor for the

lipids, and a latent factor for BMD. Parameters were fitted to allow for each latent factor to

causally influence other latent factors in both possible directions (6 reciprocal causation

parameters). The variances of each of the three latent factors were partitioned into genetic,

shared environmental, and unique environmental components (9 parameters). To identify

these three latent factors, the first loading on the observed variables for each factor was fixed to

unity, leaving two free parameters loading on the metabolites, and one each on TG and left hip

BMD (4 measurement model parameters). Finally, each observed variable had genetic, shared

environmental, and non-shared environmental phenotype-specific variances estimated (3

components x 7 phenotypes = 21 parameters). All models equated means to be equal across

twin pairs and zygosity (7 mean parameters). The total number of parameters estimated in the

full model was therefore 47. Variables were re-scaled to have approximate unit variance to aid

in optimization. Results of a standardized solution are presented, with all observed and latent

variables standardized to unit variance.

Mendelian randomization analyses were performed using the MR-Base platform [24]. Four

independent SNPs were chosen as instruments for the metabolites of interest. For ATS, the

two independent SNPs which were most significantly associated in TwinsUK (rs7809615 on

chromosome 7 and rs182420 on chromosome 19, significantly associated at p<10−106 and

2x10-8, respectively) were selected as instruments. These two SNPs also had large and signifi-

cant effects on DHEA-S and rs7809615 had a significant effect on EAS, but no other indepen-

dent SNPs were associated with these two metabolites, so no instruments were available for

them. Additionally, the two independent SNPs most associated with Δ4-dione in TwinsUK

(rs2762353 on chromosome 6 and rs4149056 on chromosome 12, significantly associated at
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p<3x10-9 and 2x10-11, respectively) were also selected as instruments. The large meta-GWAS

of lipids [25] and GWAS for BMD established by heel ultrasound in the UK Biobank [26] were

used as outcomes for this series of MR analyses (described below and in Fig 1). We also per-

formed bidirectional MR with SNPs for lipids as instruments and BMD as outcome and the

Fig 1. Flowchart of study design.

https://doi.org/10.1371/journal.pone.0212464.g001
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Fig 2. Path diagram of reciprocal causation twin model. Depiction is only for a single individual, including standardized

parameter estimates from fitting the full model. For further explanations please see text.

https://doi.org/10.1371/journal.pone.0212464.g002
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reverse. All MR analyses were performed using default options in MR-Base version 0.2.0 (17

December 2017), web app version 1.2.1 e646be (5 December 2018), and TwoSampleMR ver-

sion 0.4.14, with clumping to prune SNPs in linkage disequilibrium.

Results

Twin modelling

Pearson correlations between phenotypes of interest (4 metabolites, 4 lipid measures, and 2

BMD measures) were estimated (Table 1). ATS and AES were highly correlated, as were

LDL-C and TC. As expected, HDL-C was negatively correlated with the other lipid measures,

but also with the BMD measures. TG was positively correlated with BMD. TC showed no cor-

relation with BMD, while LDL-C was weakly correlated with one of the BMD measures.

All metabolites were significantly correlated with TG and TC, while only Δ4-dione was corre-

lated with HDL-C and only DHEA-S and EAS were correlated with LDL-C. To avoid collinearity

due to strong correlation of ATS with EAS (r = 0.94) and LDL-C with TC (r = 0.93), we omitted

EAS and LDL-C from the standard multivariate genetic model (8 phenotypes analyzed). Also, we

used only TG and HDL-C for the reciprocal causation modelling (7 phenotypes analyzed).

A multivariate (multiphenotype) full genetic model was first fitted to the twin data to

explore the underlying genetic and environmental architecture. For estimating the genetic and

environmental covariance matrices among the 8 measures, 36 genetic, 36 shared environmen-

tal, and 36 nonshared environmental variances and covariances were directly estimated (108

parameters). In addition, means were estimated for each variable, equated across twin pairs

and zygosity (8 parameters). Tables 2–4 present the genetic, shared environmental, and non-

shared environmental phenotypically-standardized covariance matrices, respectively. Sum-

ming these three covariance matrices yields the expected phenotypic correlation matrix

among the 8 measures. All phenotypes were highly heritable, ranging from .50 for TC to .82

for lumbar spine BMD (diagonal elements in Table 2), and all the heritability estimates were

statistically significant (p< .001). Shared environmental influences were generally low, rang-

ing from -.01 for triglycerides to .21 for DHEA-S (diagonal elements in Table 3). While nega-

tive variances make no theoretical sense, in the standard twin model, they do imply that the

DZ correlation is less than half the MZ correlation, which would suggest dominance variance

rather than shared environmental variance, but this negative parameter was not statistically

significant. Finally, nonshared environmental variance (diagonal elements in Table 4), while

small, is somewhat higher for the metabolite measures and lipids, on average, than for BMD.

Examining the sources of variance underlying the correlations among measures, first

genetic variation within domains, all metabolites were significantly genetically inter-correlated

(off-diagonal elements in Table 2). All but one (TC with HDL-C) genetic covariance among

lipids was significant, and the genetic covariance between BMD measures was substantial and

significant. Examining the genetic components of cross-domain correlation, of all the genetic

covariances between metabolites and lipids, only ATS with HDL-C was significant, though

modest (.07). Five of 6 genetic covariances between metabolites and BMD measures were sig-

nificant. Finally, of the lipids, only HDL-C was significantly genetically correlated with both

BMD measures, while TG was correlated with hip BMD.

Shared environment also contributed significantly to all correlations between the metabo-

lites (off-diagonal elements in Table 3), but did not significantly contribute to BMD variance

or covariance, nor to lipid covariances. Some of the covariation between metabolites and lipids

was due to shared environmental influences, with 4 out of 9 covariances statistically signifi-

cant, although all rather small. Finally, the shared environment did not contribute to the corre-

lations between metabolites and BMD measures.

Causal relationships between blood lipid levels and BMD
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Nonshared environment contributes substantially to the covariances between metabolites,

likely reflecting day-to-day co-variation of metabolites involved in the same biochemical path-

way (off-diagonal elements in Table 4). Nonshared environment also contributed significantly

to the covariances among lipids and among BMD measures, though the magnitude of the

covariances among lipids were smaller than for BMD. Nonshared environment generally did

not contribute to correlations between metabolites and lipids, between metabolites and BMD,

nor between lipids and BMD, though a few of the covariances were statistically significant.

Next, we fitted a direction of causation twin model to the data, with common factors under-

lying the covariation among metabolites, lipids, and BMD measures, with standardized

Table 1. Phenotypic correlations.

ATS DHEA-S AES Δ4-dione TC HDL-C TG LDL-C Spine Hip

ATS 6031 6030 6001 4964 4956 4958 4898 4953 4125 4006

DHEA-S 0.72 6052 6006 4979 4971 4972 4913 4967 4142 4023

< .0001

EAS 0.94 0.74 6007 4944 4938 4940 4880 4935 4111 3992

< .0001 < .0001

Δ4-dione 0.64 0.84 0.65 4979 3949 3950 3892 3945 3301 3198

< .0001 < .0001 < .0001

TC -0.02 -0.04 -0.03 -0.05 6371 6366 6302 6365 4471 4383

< .02 < .002 < .05 < .004

HDL-C 0.00 -0.01 0.00 -0.05 0.18 6374 6299 6365 4472 4384

.7364 .3774 .7276 < .002 < .0001

TG -0.07 -0.10 -0.09 -0.04 0.31 -0.32 6304 6296 4402 4315

< .0001 < .0001 < .0001 < .03 < .0001 < .0001

LDL-C -0.02 -0.04 -0.03 -0.03 0.93 -0.19 0.44 6365 4465 4377

.1025 < .003 < .003 .0626 < .0001 < .0001 < .0001

L Spine

BMD

0.04 0.05 0.04 0.07 -0.02 -0.06 0.06 0.01 5320 5161

<0.01 < .002 < .02 < .0001 0.1838 < .0001 < .0004 .6921

Left Hip

BMD

0.07 0.10 0.08 0.14 -0.01 -0.12 0.07 0.04 0.68 5171

< .0001 < .0001 < .0001 < .0001 0.6164 < .0001 < .0001 < .02 < .0001

Correlations are presented in the lower triangle, with p-values underneath them, and sample sizes in the upper triangle.

https://doi.org/10.1371/journal.pone.0212464.t001

Table 2. Phenotypically standardized genetic variance components.

ATS DHEA-S Δ4-dione TC HDL-C TG Spine BMD Hip BMD

ATS 0.68���

DHEA-S 0.41��� 0.53���

Δ4-dione 0.37��� 0.47��� 0.59���

TC 0.01 0.02 0.02 0.50���

HDL-C 0.07� 0.05 −0.01 0.05 0.55���

TG −0.01 −0.02 0.04 0.15��� −0.27��� 0.72���

L Spine BMD 0.07� 0.05 0.07� −0.06 −0.09�� 0.05 0.82���

Left Hip BMD 0.08� 0.08�� 0.10�� −0.01 −0.10�� 0.06�� 0.54��� 0.75���

���p < .001

��p < .01

�p < .05

https://doi.org/10.1371/journal.pone.0212464.t002
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parameter estimates from the full model presented in Fig 2. We tested all parameters (with the

exception of measure-specific E, which contains measurement error) against the full model

(Table 5). We first tested the common factor A, C, and E variances. All three common factors

(metabolites, lipids, and BMD) had significant genetic and nonshared environmental variance

components, but only the metabolites had a significant shared family environmental compo-

nent. Looking at the measure-specific variances, DHEA-S, TG, and hip BMD did not have spe-

cific genetic variance components (the genetic common factor was sufficient to explain the

genetic variance present), but the other four measures did. Only HDL-C had a significant mea-

sure-specific shared environmental component.

To test the direction of causation, each causal path was dropped and tested against the full

model that allows for reciprocal causation. No evidence for causal relationships was found

after Bonferroni correction (p = 0.05/6 = .008 for 6 possible causal paths) except for the causal

path from BMD to the metabolite common factor. Looking at the underlying correlations

among latent factors, ultimately they were likely too low to establish direction of causation,

though not too low to establish correlation. As can be seen when testing both causal directions

simultaneously, the BMD common factor was found to be phenotypically correlated with just

the metabolites, with the other two tests being not statistically significant.

Table 4. Phenotypically standardized non-shared environmental variance components.

ATS DHEA-S Δ4-dione TC HDL-C TG Spine BMD Hip BMD

ATS 0.25#

DHEA-S 0.18��� 0.26#

Δ4-dione 0.18� 0.22��� 0.31#

TC 0.01 0.01 0.01 0.33#

HDL-C −0.00 −0.01 −0.01 0.07��� 0.26#

TG −0.02 −0.02� −0.01 0.10��� −0.06��� 0.29#

L Spine BMD −0.00 −0.00 −0.00 0.01 0.00 0.02�� 0.16#

Left Hip BMD 0.00 0.00 0.01 0.01 −0.01 0.02� 0.10��� 0.17#

���p < .001

��p < .01

�p < .05

#not tested, since these include measurement error

https://doi.org/10.1371/journal.pone.0212464.t004

Table 3. Phenotypically standardized shared environmental variance components.

ATS DHEA-S Δ4-dione TC HDL-C TG Spine BMD Hip BMD

ATS 0.07

DHEA-S 0.13��� 0.21���

Δ4-dione 0.09� 0.15��� 0.09��

TC −0.04 −0.07� −0.07� 0.17���

HDL-C −0.07� −0.05 −0.02 0.07� 0.19���

TG −0.05 −0.06 −0.07� 0.07� 0.00 −0.01

L Spine BMD −0.02 0.01 0.01 0.04 0.03 −0.01 0.02

Left Hip BMD 0.00 0.02 0.03 −0.01 −0.01 −0.01 0.04 0.08�

���p < .001

��p < .01

�p < .05

https://doi.org/10.1371/journal.pone.0212464.t003
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Mendelian randomization

We used Mendelian randomization to test the hypothesis that changes in the levels of ATS and

Δ4-dione would cause changes in the lipid and BMD levels (Table 6). We present single SNP

tests as well as inverse variance weighted tests of the two SNPs together. Reverse causation

couldn’t be explored due to small sample size of the metabolite dataset.

We employed a conservative Bonferroni multiple testing correction for 42 tests (2 metabo-

lites x 3 instruments (two SNPs and joint test) x 7 traits) giving a p-value threshold of< .0012.

We found evidence that ATS levels causally influence TG levels for one of the SNP instruments

only (p< 0.0001). There is also suggestive evidence for ATS levels influencing TC and right

and total BMD from one SNP instrument only. There is also suggestive evidence that Δ4-dione

Table 5. Model comparisons.

Test ep1 -2LL df diff LL diff df p

Full model 47 91762.47 40085

drop A

Metabolites 46 91836.26 40086 73.78595 1 8.70642e-18

Lipids 46 91836.26 40086 73.78595 1 8.706414e-18

BMD 46 91920.44 40086 157.9722 1 3.138427e-36

drop C

Metabolites 46 91777.43 40086 14.95758 1 0.0001099557

Lipids 46 91762.48 40086 0.01065589 1 0.9177825

BMD 46 91765.26 40086 2.783978 1 0.09521143

drop E

Metabolites 46 91850.62 40086 88.14331 1 6.08798e-21

Lipids 46 91833.07 40086 70.59596 1 4.384147e-17

BMD 46 91844.32 40086 81.84881 1 1.469053e-19

drop A

ATS 46 92048.62 40086 286.1465 1 3.437298e-64

DHEA-S 46 91763.41 40086 0.9388292 1 0.3325791

Δ4-dione 46 91834.34 40086 71.87202 1 2.296169e-17

HDL-C 46 91773.70 40086 11.22382 1 0.0008075405

TG 46 91765.99 40086 3.515016 1 0.06081508

Spine BMD 46 91806.07 40086 43.60174 1 4.024813e-11

Hip BMD 46 91762.47 40086 0 1 1

drop C

ATS 46 91762.47 40086 0 1 1

DHEA-S 46 91764.67 40086 2.194953 1 0.1384635

Δ4-dione 46 91762.47 40086 0 1 1

HDL-C 46 91784.08 40086 21.60901 1 3.342781e-06

TG 46 91762.47 40086 0 1 1

Spine BMD 46 91762.50 40086 0.0267201 1 0.870154

Hip BMD 46 91762.55 40086 0.07633446 1 0.7823277

drop Metab

!Lipids 46 91762.47 40086 0.0002280452 1 0.9879515

 Lipids 46 91763.49 40086 1.016024 1 0.313464

,Lipids 45 91765.74 40087 3.265054 2 0.1954351

drop Metab

!BMD 46 91765.63 40086 3.159034 1 0.07550787

 BMD 46 91772.22 40086 9.749522 1 0.001793694

,BMD 45 91773.54 40087 11.06272 2 0.003960596

drop Lipids

!BMD 46 91763.15 40086 0.6783092 1 0.4101696

 BMD 46 91762.65 40086 0.1791145 1 0.6721353

,BMD 45 91768.11 40087 5.642096 2 0.0595435

1number of estimated parameters in model

https://doi.org/10.1371/journal.pone.0212464.t005
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levels influence right and left heel BMD, though statistical significance was not attained. The

rs4149056 SNP, however, had a significant effect on TG levels, but not on HDL-C, LDL-C, or

TC.

Table 6. MR tests for metabolite instruments on lipid and BMD outcomes.

Exposure Outcome SNP b se p

ATS

HDL

rs7809615 -0.0379 0.0272 0.164

rs182420 0.0588 0.0784 0.453

Both (IVW) -0.0275 0.0300 0.359

LDL

rs7809615 0.0193 0.0296 0.515

rs182420 0.1510 0.0843 0.073

Both (IVW) 0.0337 0.0411 0.413

TC

rs7809615 0.0279 0.0289 0.334

rs182420 0.2549 0.0824 0.002

Both (IVW) 0.0528 0.0709 0.457

Triglycerides

rs7809615 0.0282 0.0269 0.294

rs182420 0.2980 0.0765 9.7×10−5

Both (IVW) 0.0580 0.0845 0.492

BMD left

rs7809615 0.0389 0.0244 0.111

rs182420 -0.0658 0.0965 0.496

Both (IVW) 0.0326 0.0249 0.191

BMD right

rs7809615 0.0530 0.0243 0.029

rs182420 -0.2002 0.0959 0.037

Both (IVW) 0.0377 0.0602 0.531

BMD total

rs7809615 0.0540 0.0183 0.003

rs182420 -0.1625 0.0716 0.023

Both (IVW) 0.0407 0.0520 0.433

Δ4-dione

HDL rs2762353 0.1094 0.1062 0.303

rs4149056 0.0060 0.0920 0.948

Both (IVW) 0.0503 0.0696 0.470

LDL rs2762353 0.1375 0.1156 0.234

rs4149056 -0.1520 0.1000 0.129

Both (IVW) -0.0281 0.1432 0.844

TC rs2762353 0.2125 0.1094 0.052

rs4149056 -0.0380 0.0960 0.692

Both (IVW) 0.0710 0.1242 0.568

Triglycerides rs2762353 0.0719 0.1031 0.486

rs4149056 0.4800 0.0940 3.3×10−7

Both (IVW) 0.2948 0.2032 0.147

BMD left rs2762353 0.1369 0.1311 0.296

rs4149056 0.2249 0.1166 0.054

Both (IVW) 0.1860 0.0871 0.033

BMD right rs2762353 0.0984 0.1302 0.450

rs4149056 0.2820 0.1159 0.015

Both (IVW) 0.2008 0.0912 0.028

BMD total rs2762353 0.0219 0.0981 0.824

rs4149056 0.2014 0.0869 0.020

Both (IVW) 0.1225 0.0891 0.169

https://doi.org/10.1371/journal.pone.0212464.t006
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We also explored the question of whether lipid levels cause BMD, BMD causes lipid levels,

or both (Table 7). We used lipid level and BMD SNPs from the same public datasets as instru-

ments. We calculated several MR test statistics, though present results for the new weighted

mode estimator, which has been shown to be robust even when the majority of instruments

violate assumptions of MR [27].

There is evidence of LDL-C levels causing BMD. Even with a conservative Bonferroni cor-

rection for 8 tests, 4 lipid levels causing total BMD and total BMD causing 4 lipid measures

(threshold of .05/8 = .0063), LDL-C significantly causes total heel BMD, with p-values also

nominally significant for right and left heel measures separately. There was no evidence of

directional horizontal pleiotropy for LDL-C, with the MR-Egger intercepts found not to be sta-

tistically significant. In addition, with the exception of HDL exposure on BMD, all other

MR-Egger intercepts were also not nominally statistically significant. All tests of trait heteroge-

neity, however, were statistically significant.

Fig 3 contains plots of the MR analysis of the LDL-C exposure on total heel BMD outcome.

Panel a presents the forest plot of individual SNP effects, along with 95% confidence intervals.

Its symmetry suggests no pleiotropic effects. While the MR-Egger regression wasn’t statistically

significant, the inverse variance weighted (IVW) analysis did yield an overall significant effect

of LDL-C. Panel b compares the slopes from the various MR methods employed and shows

the weighted mode estimator that we presented above has a slope very similar to the other

methods employed. Panel c presents the funnel plot showing the relationship between the

causal effect of LDL-C on BMD estimated by each SNP against the inverse of the standard

Table 7. Bidirectional MR tests for lipids and BMD.

Weighted mode MR-Egger Intercept

Outcome Exposure n SNPs b se p a se p
Heel BMD left

HDL cholesterol

87 0.01399 0.01842 0.4495 -0.0064 0.0023 0.00718

Heel BMD right 0.001238 0.01705 0.9423 -0.0056 0.0023 0.0187

Heel BMD total -0.005529 0.01254 0.6602 -0.0045 0.0022 0.0472

Heel BMD left

LDL cholesterol

78 -0.02709 0.01077 0.01396 -0.0023 0.0015 0.128

Heel BMD right -0.02755 0.01183 0.02244 -0.0031 0.0016 0.0569

Heel BMD total -0.03555 0.00947 0.0003356 -0.0015 0.0015 0.34

Heel BMD left

Total cholesterol

86 -0.0195 0.01455 0.1836 -0.0024 0.0016 0.125

Heel BMD right -0.01757 0.01372 0.2037 -0.0024 0.0016 0.136

Heel BMD total -0.02885 0.01066 0.008255 -0.0019 0.0015 0.198

Heel BMD left

Triglycerides

54 -0.04249 0.02048 0.04285 0.0025 0.0029 0.39

Heel BMD right -0.01824 0.01992 0.3638 0.0017 0.0029 0.573

Heel BMD total -0.001395 0.01542 0.9282 0.0023 0.0027 0.407

HDL cholesterol Heel BMD left 94 -0.01867 0.03411 0.5854 -0.00068 0.0018 0.713

LDL cholesterol -0.06013 0.02546 0.0203 0.0012 0.0017 0.502

Total cholesterol -0.05498 0.02243 0.01612 -6e-04 0.0016 0.711

Triglycerides -0.03376 0.02491 0.1786 -0.0011 0.0015 0.479

HDL cholesterol Heel BMD right 80 -0.04655 0.03048 0.1308 0.00058 0.0021 0.784

LDL cholesterol -0.04991 0.02869 0.08576 0.0015 0.002 0.434

Total cholesterol -0.04585 0.02786 0.1038 8e-04 0.0019 0.671

Triglycerides -0.01676 0.02914 0.5668 4e-05 0.0017 0.982

HDL cholesterol Heel BMD total 157 0.02457 0.03074 0.4254 0.00049 0.0015 0.739

LDL cholesterol 0.0001458 0.03974 0.9971 -0.00036 0.0014 0.797

Total cholesterol -0.002038 0.02785 0.9418 -0.00034 0.0014 0.808

Triglycerides -0.05696 0.02938 0.05432 -0.0012 0.0013 0.34

https://doi.org/10.1371/journal.pone.0212464.t007
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error of the estimate. The vertical lines show the MR estimates using all SNPs for MR-Egger

and IVW methods. The relative symmetry of the funnel plot suggests a lower risk of horizontal

pleiotropy leading to unreliable associations, as does the MR-Egger intercept. Finally, panel d

presents the results of a leave-one-out sensitivity analysis, using the IVW method, and suggests

no major outliers were present.

Fig 3. Plots of the MR analysis of the LDL-C exposure predicting total heel BMD outcome. Panel a: forest plot of individual SNP effects, along with 95%

confidence intervals. MR-Egger and IVW results are also presented. Panel b: a comparison of the slopes obtained from the various MR methods employed.

Panel c: funnel plot showing causal effect of each SNP against the inverse of the standard error of the estimate. The vertical lines show the MR estimates using

all SNPs for MR-Egger and IVW methods. Panel d: leave-one-out sensitivity analysis, using the IVW method, along with IVW overall result in red.

https://doi.org/10.1371/journal.pone.0212464.g003

Causal relationships between blood lipid levels and BMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0212464 February 22, 2019 12 / 16

https://doi.org/10.1371/journal.pone.0212464.g003
https://doi.org/10.1371/journal.pone.0212464


Discussion

There are many studies on subjects of different ethnic backgrounds that have demonstrated a

significant association between serum lipid profile, specifically TC and LDL-C, and BMD,

both in the general population and in alcoholic people [28]. These observations raise the ques-

tion of possible underlying mechanisms that explain the association between serum lipids and

bone metabolism. One such mechanism could be related to metabolism of endogenous steroid

hormones. TC is a major structural component of membranes and a substrate for the biosyn-

thesis of other steroids, including ATS and DHEA-S [9]. On the other hand, the important

role of endogenous and exogenous steroid hormones in osteoporosis etiology is well known.

Recently, a significant correlation of the metabolites selected in this study with hip and spine

BMD was reported [8]. The major aim of the present study was therefore twofold: 1) to test the

hypothesis that three physiological facets (lipids, BMD, and steroid hormones-related metabo-

lites) have a common genetic background, and 2) to examine possible causal relationships.

Using MR, we found some evidence of ATS levels influencing TG and TC, as well as BMD.

Also, it appears Δ4-dione may be causing BMD and TG levels. Given lack of statistical signifi-

cance for most of these association, or significance for one SNP instrument and not the other,

the causal relationship between these metabolites and lipids and BMD has not been convinc-

ingly demonstrated. In addition, our results are not completely consistent with a recent analy-

sis of TwinsUK data, which found evidence for both these metabolite levels influencing BMD,

and this result was also replicated in a Hong Kong sample [8]. However, our approach used

BMD outcome measures from the UK Biobank, rather than from the same individuals on

whom metabolites were assayed. Furthermore, with only two SNP instruments available for

each of the metabolites of interest, the study is not optimally powered nor can we check for

violations of MR assumptions, as can be done when employing multiple instruments.

A number of studies looked at the correlation between serum HDL and BMD [29], but no

consistent relationship was found, with some studies finding positive correlations and others

negative correlations. Addressing issues of causation, one study found lower TC and LDL lev-

els, along with an expected higher BMD in postmenopausal women taking hormone replace-

ment therapy (HRT) compared to those who were not [30]. This suggests either BMD levels

influence cholesterol levels or that there is a common cause of both BMD and cholesterol, such

as estrogen levels. Our MR results showed no evidence of BMD causing lipid levels. In a recent

meta-analysis, statin use was linked to increased BMD, though not to reduced fracture [31],

suggesting a causal relationship from cholesterol to BMD, or a common cause of the two. Con-

sistent with this, our MR results demonstrated evidence of LDL-C levels influencing BMD.

Direction of causation modelling in twin studies has been implemented successfully in a

number of medical and behavioral phenotypes [11,32–36]. While the approach relies on very

different data and methods, it can address the same questions of causation as RCT or MR stud-

ies. The major limiting factor in the twin study approach to causation is that it requires the

traits of interest to differ in heritability and shared environment, otherwise the approach lacks

power. Our twin modeling demonstrated significant genetic overlap among the analyzed traits,

but reciprocal causation modeling of twin data did not yield definitive results. This is likely

explained by the little difference in the heritability estimates between the most heritable traits

(BMD) and the least heritable traits (metabolites). Shared environmental variance was also

minimal in all the measures examined, further limiting the power of our study design. A fur-

ther limitation of the twin modelling is that because TwinsUK is a community-based sample,

detailed clinically-relevant information is unavailable, including such important covariates as

use of lipid-lowering or BMD-enhancing drugs, or use of environmental interventions, poten-

tially further attenuating power.
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The animal model literature suggests shared genes predispose to both HDL-C and BMD

[29]. Our twin analyses also found a significant genetic correlation between HDL-C and BMD.

However, using LD-score regression and results from the same large public datasets that we

analyzed [37], no significant genetic correlation between HDL levels and BMD levels was

shown, while the genetic correlation was -.14 for LDL and lumbar spine BMD (p = .0376) and

-.145 for LDL with neck BMD (p = .0109). There was also a genetic correlation of -.137 for TC

and lumbar spine BMD (p = .0135) and -.138 for TC with neck BMD (p = .0028), but no statis-

tically significant genetic correlation for TG levels. Our twin analyses failed to find a significant

genetic correlation between TC (highly correlated with LDL-C) and BMD, however.

In summary, our study confirmed previous findings on the relationship between lipid levels

and BMD, as well as their correlation with the metabolites we examined. The twin modelling

failed to establish the direction of causation. However, the MR analyses suggest that causation

goes from LDL-C level to BMD, consistent with previous studies. Further studies, particularly

of the metabolic factors, would benefit from a larger sample of twins both for reciprocal causa-

tion modelling and also to test BMD and lipid genetic variants effects on metabolite levels.
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