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HDXmodeller: an online webserver for
high-resolution HDX-MS with auto-validation
Ramin Ekhteiari Salmas1 & Antoni James Borysik1✉

The extent to which proteins are protected from hydrogen deuterium exchange (HDX)

provides valuable insight into their folding, dynamics and interactions. Characterised by mass

spectrometry (MS), HDX benefits from negligible mass restrictions and exceptional

throughput and sensitivity but at the expense of resolution. Exchange mechanisms which

naturally transpire for individual residues cannot be accurately located or understood because

amino acids are characterised in differently sized groups depending on the extent of pro-

teolytic digestion. Here we report HDXmodeller, the world’s first online webserver for high-

resolution HDX-MS. HDXmodeller accepts low-resolution HDX-MS input data and returns

high-resolution exchange rates quantified for each residue. Crucially, HDXmodeller also

returns a set of unique statistics that can correctly validate exchange rate models to an

accuracy of 99%. Remarkably, these statistics are derived without any prior knowledge of the

individual exchange rates and facilitate unparallel user confidence and the capacity to eval-

uate different data optimisation strategies.
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Hydrogen deuterium exchange mass spectrometry (HDX-
MS) is a biophysical technique that probes time-
dependent mass changes in proteins arising from the

spontaneous exchange of labile protons for deuterium in D2O
solvent1,2. Information on the kinetics of isotope exchange can
reveal important information on protein dynamics, structure, and
interactions3–6. Recent commercialisation has facilitated greater
accessibility of HDX-MS to non-specialists contributing to an
upsurge in popularity of the technique. HDX-MS benefits from
high sensitivity and throughput and this, coupled to an excep-
tional mass range and a tolerance for background contaminants
such as lipids, has helped HDX-MS become established as an
enabling method to investigate challenging protein systems of
high biological importance7–9. A significant limitation of HDX-
MS is its poor resolution and while HDX occurs for every amino
acid except proline, exchange rates are evaluated by MS as time-
dependent mass shifts in proteolytically cleaved peptides. Isotope
uptake cannot be pinpointed to individual residues and important
metrics of protein stability and folding, such as HDX protection
factors (PFs), cannot be determined. HDX-MS is limited to ask-
ing qualitative questions about changes in protein behaviour such
as those arising from point mutations or binding. While this
information can provide significant insight into protein function,
the utility of HDX-MS would be extended significantly if
exchange rates could be characterised for each residue.

Extracting residue resolved exchange rates from experimental
HDX-MS data requires some form of exchange rate model-
ling10–15. Unfortunately, modelling HDX-MS data has proven
challenging and in the few cases where systematic validation
has been provided, the accuracy of modelled outputs have not
been encouraging. Underdetermination is the main limitation
as the variables typically greatly outnumber the constraints
such that many different microscopic exchange rate models are
equally consistent with an experimental profile. A potential
remedy for this limitation is to use additional restraints enco-
ded by the peptide ion envelopes which can reveal clues
regarding the distribution of isotope along a peptide16–18.
However, the interpretation of ion spectra can be challenging
and any changes in peak shapes arising from extraneous isotope
exchange may be impossible to properly account for. A related
and often overlooked problem with modelling HDX-MS data
relates to insufficient understanding of what constitutes
appropriate input data for modelling, beyond an acceptance
that a high peptide redundancy is preferable. Differences in the
success of exchange rate modelling should be anticipated for
different datasets, but it is currently impossible to deduce the
utility of any given input file or evaluate the accuracy of a model
output without prior knowledge of the residue resolved rates.
An acceptance of the challenges associated with modelling
HDX-MS data, combined with an inability to validate exchange
rate models, has resulted in scepticism towards these approa-
ches. High-resolution HDX-MS would represent a significant
breakthrough in the field but at present this challenge remains
unresolved.

Here we report HDXmodeller the world’s first online webser-
ver for high-resolution HDX-MS. HDXmodeller is a fully auto-
mated advanced programming tool capable of calculating residue
resolved HDX protection factors (PFs) from peptide level HDX-
MS input data. Through an extensive search of different algo-
rithms and procedures, HDXmodeller is able to provide the most
accurate high-resolution exchange rate models currently reported,
depending on the input. The standout feature of HDXmodeller
however, is an auto-validation function that takes into con-
sideration the quality of the entire optimisation process through
the use of a novel method based on a covariance matrix over
different replicates. Crucially, the auto-validation feature can

quantify the fidelity of the model output to an accuracy of 99%
without prior knowledge of the underlying residue exchange
rates. HDXmodeller will provide the growing number of HDX-
MS practitioners easy access to high-resolution HDX-MS along
with essential insight into the reliability of their data.

Results
The optimisation method. The time-dependent mass shifts of
proteolytically cleaved peptides, commonly reported as the ratio
of the observed mass change to the total possible mass change or
relative fractional uptake (RFU), provide a potential framework
for exchange rate modelling because multiple peptides typically
sample the same amino acids19. Global optimisation of HDX-MS
data should, therefore, be feasible but will depend on poorly
understood parameters relating to the quality of the input data. A
bottom-up optimisation strategy was utilised to develop
HDXmodeller wherein HDX-MS data were built using experi-
mental protein-peptide maps onto which RFU were projected
using predefined exchange rates (kobs) for each residue. This
allowed the preparation of reference HDX-MS data for which the
underlying kobs of each amino acid was known, such that the
accuracy of HDXmodeller could be evaluated fully for every
residue within a dataset across a wide range of exchange rates.
Simulated datasets were used to be certain that all reference data
are error-free thereby providing an unambiguous benchmark
based on currently accepted HDX theory. To ensure that simu-
lated datasets best maintained the overall character of HDX all
lnP values were simulated from protein structures using well-
known expressions of protein HDX behaviour. (Methods, Sup-
plementary Fig. 1).

HDXmodeller is based on constrained nonlinear optimisation
and utilises sequential quadratic programming (SQP) to solve an
objective function defined by the error between the model and
input RFU across all timepoints. Minimisation is initiated with
random initial guess data for kobs which are then optimised
sequentially with respect to the objective function. Multiple
replicate runs are made each with different initial guess values for
kobs after which the data from all replicates are combined. In all
cases kobs is expressed as the natural log of the PF (lnP) which
considers the chemical exchange rate (kch) of each residue, Eq. (1)
(Methods)20,21.

PF ¼ kch
kobs

ð1Þ

Critical to the success of HDXmodeller is an advanced
algorithm which manages the optimisation process, and which
allows automatic handling of the constraints over the objective
function in every iteration. During the development of HDXmo-
deller, many different reference datasets were tested across
different peptide maps and varying RFU timepoints. Following
optimisation, the performance of HDXmodeller was remarkable
with R2 between model and reference lnP >0.9 in some instances
and with >80% of the projected values within ±1 lnP of
reference data.

The ability of HDXmodeller to accurately calculate lnP values
varied throughout different HDX-MS datasets (Fig. 1a, b).
Changes in the fidelity of modelled lnP was anticipated, however,
and presumably reflects variations in redundancy, which reports
the number of different peptides that are occupied by each
residue. High redundancy is considered important for good
optimisation outcomes as it should constrain the range of
available kobs increasing precision across multiple optimisation
replicates. There is also potential for the variation introduced
from poorly constrained regions to propagate into the amino
acids of neighbouring peptides, such that the elimination of
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peptides that comprise these regions may be preferable. To
account for this a quality control measure was introduced to score
peptides based on their occupancy, which is the sum of residue
redundancies for any peptide, or density, divided by the number
of residues excluding proline and the amino-terminus (Eq. (2)),
where D and n represent the density and total number of amino
acids numbers, respectively.

Occupancy ¼ 1
n

Xn
k¼1

Dk ð2Þ

An occupancy threshold of 2.5 was deemed optimal for the
identification of weak peptides that should be excluded prior to
analysis (Fig. 1h–i, Supplementary Fig. 2). Where possible, HDX-
MS data were also split into different subsections and each
subsection optimised independently.

Because the accuracy of HDXmodeller naturally varies in
response to changes in the quality of input data, subdivided
inputs provide more scope for guiding potential users on
anticipated modelling outcomes at a local level. However, the
ability to provide this information requires a greater under-
standing of the relationship between input data and the accuracy
of the model outputs. No significant deterioration in the
performance of HDXmodeller was observed when protein data
was optimised by subsection and in many cases, this improved
the accuracy of the model lnP (Fig. 1a–d).

We next investigated different HDX-MS datasets to understand
aspects that had the greatest impact on the optimisation. Given
the dependence between model accuracy and input data, guidance
regarding anticipated optimisation outcomes is essential for user
confidence. Contrary to our expectations, redundancy is a poor

guide of HDX-MS data quality. Although it is apparent that the
overall redundancy should exceed a certain threshold it has little
additional bearing on the quality of model outputs. HDX-MS
datasets with the same overall redundancy scores can yield
markedly different errors in lnP estimations and data with
exceptionally high redundancy can perform significantly less well
than data for which the redundancy score is low (Fig. 1c–g). We
developed our own metrics to score input data that were based on
redundancy, but which also considered the overall peptide
distribution. Many different methods were developed and tested
but predicting the quality of modelling outcomes from the HDX-
MS peptide maps was not possible. To understand this further
three different RFU datasets were prepared and projected onto an
identical peptide map prior to optimisation by HDXmodeller.
Despite these data being built from the same peptides there were
large differences in the capacity of HDXmodeller to accurately
model the lnP (Supplementary Fig. 3). This indicates that
modelling outcomes cannot be predicted at the peptide level
alone and have a strong additional dependence on the RFU. This
is a problem because RFU values cannot be easily separated from
the underlying kobs of each residue on which they depend. The
capacity to successfully gauge modelling outcomes deductively
from HDX-MS data may not, therefore, be possible as it could
rely on knowledge of the microscopic exchange rates for which
HDX-MS cannot provide direct access.

The auto-validation method. Although it was not possible to
predict the quality of modelling outcomes directly from input
data, gauging the accuracy of modelled lnP post-optimisation
may be feasible. To achieve this, we developed a novel auto-
validation matrix that calculates the pair-wise correlation

Fig. 1 Example optimisation outputs for HDXmodeller. a, b Comparison of reference and model lnP values built onto experimental peptide maps obtained
for alpha lactalbumin (a) and barnase (b). Reference lnP values are shown as grey bars and model lnP are also shown for the whole submission (black
lines) or subsections (coloured lines) as the median values across all optimisation replications. Different subsection submissions are denoted (S), breaks in
the plots occur from missing data or from proline residues. c, d Comparison of the residue redundancy and lnP residuals of alpha lactalbumin (c) and
barnase (d). Redundancy is shown as grey bars (right axis scale) and the residual lnP are shown as coloured lines as displayed in (a, b) (left axis scale).
Shaded area represents the RMSE of the residuals for each subsection and the average redundancy for each subsection is also given in parenthesis
(n= 100). e–g Residual histograms for data shown in (a, b) with data colouring matching the respective subsections. The R2 between the reference lnP and
the median model lnP are also shown in parenthesis. h, i Peptide occupancy for alpha lactalbumin (h) and barnase (i) data shown in (a, b). Peptides for
different subsections are denoted (S), red bars indicate peptides with an occupancy threshold below the 2.5 cut off, blue bars denote bridging peptides that
were deleted to create subsections S3 and S4 (Supplementary Fig. 2).
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coefficients for every replicate over the course of a whole opti-
misation run. A library of reference HDX-MS data was prepared
comprising of 30 different input files encompassing a total of over
500 peptides with a broad range of different sizes, redundancies,
peptide distributions, RFU and lnP (Fig. 2a, b). Each dataset was
submitted for optimisation by HDXmodeller and an auto-
validation matrix prepared for each output from which the
mean correlation coefficient (R̂-matrix) was obtained (Fig. 2d, e).
The mean correlation coefficients were then recalculated for each
replicate run but with the values obtained using the reference lnP
values (R̂-reference) rather than pairwise between replicates
(Methods). The R̂-matrix and R̂-reference scores were then
compared across all datasets to see if the accuracy of the opti-
misation could be predicted from the matrices. On comparison,
the ability of the auto-validation matrices to predict the accuracy
of the optimisation was outstanding with a R2 value of 0.99
(Fig. 2c). We also compared the accuracy of different central
tendencies and clustering approaches including the mean, med-
ian, and k-means clustering. For data bins with R̂-matrix values
of 1.0–0.7, 0.5–0.69, and 0–0.49, the median was the best per-
forming with regard to overall accuracy and ability to distinguish
between the different R̂-matrix bin classifications (Fig. 2f).
Without prior knowledge of the underlying exchange rates the R̂-
matrix score can provide highly accurate information on the
fidelity of modelled outputs allowing HDXmodeller to assign
confidence to the models. Furthermore, since the matrices
operate post-optimisation they have the additional advantage of

providing potential users with the flexibility to test and score
different optimisation strategies for their data.

The workflow for HDXmodeller entails data optimisation
following calculation of R̂-matrix values to ascertain the accuracy
of the modelled lnP. Data should also be submitted in subsections
to provide more local guidance on the fidelity of the outputs.
However, even poorly restrained input data, that yield low R̂-
matrix values, can contain many highly accurate model lnP
accounting for 50% of the residues with values that are within
±1.0 lnP of the true value. Conversely, many datasets with strong
optimisation outcomes contain a small fraction of outlying data
with lnP values >2.0. It would be useful therefore, if the
capabilities of HDXmodeller could be extended so that it was
capable of capturing individual residues with highly accurate lnP
or was able to highlight outliers. We prepared optimisation
histograms for each residue which report the density of lnP values
over all replicates. These histograms serve as the primary guide
for the accuracy of each residue and in-house benchmarking has
shown that a high degree of confidence should be ascribed to
residues that produce unimodal histograms with narrow
distributions.

However, most residues with accurate lnP yield more varied
histograms from which the accuracy of the output is more difficult
to assign. This is due to the requirement to report a central
tendency which can occupy a range of distances from the true
value depending on the details of each optimisation (Fig. 3a, b).
We tested a range of metrics to report the accuracy of the model

Fig. 2 Validating the accuracy of model lnP for data subsections. a, b Library of 30 different HDX-MS datasets used to validate R̂-matrix values obtained
from the auto-validation matrices. An example reference dataset is shown displaying the RFU of different peptides at 7 different labelling times from 15 s
(indigo) to 8 h (red). c Relationship between R̂-reference and R̂-matrix calculated following optimisation of the HDX-MS reference library. Three different
classifications are shown depending on whether the accuracy of modelled lnP values are predicted to be high (>0.7), fair (0.5–0.69), or low (<0.5).
d, e Library of auto-validation matrices for reference data depicted (a, b). An example matrix is shown for an optimisation performed with 100 replicates
(n= 100) with each datapoint colour reporting the correlation coefficient between any 2 runs. The scalebar to the right of the plot reports the correlation
coefficients of respective datapoints with the dark line across the scalebar denoting R̂-matrix, which is obtained from the average or all pairwise
calculations. f Boxplot showing the distribution of R2 between modelled and reference lnP calculated for each reference dataset. The plot shows the effect
of different central tendencies, median, mean and k-means clustering on the R2 with the data binned into three different classifications as shown (c). Plot
demonstrates the superior accuracy of the median for reporting the lnP of replicate optimisation runs along with an improved capacity to maintain
separation between the high, fair, and low accuracy classifications.
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lnP for each residue, but none were successful. Ultimately, we
returned to the auto-validation matrices and used them to report
the change in the R̂-matrix value (ΔR̂-matrix) for a dataset
following the sequential removal of each residue. A positive ΔR̂
value should result following the deletion of residues with low
error and the opposite should be true for less accurate amino
acids. Equivalent calculations were then made but with ΔR̂
calculated against the reference lnP (Methods). In most datasets
the trend in ΔR̂-reference was mirrored by ΔR̂-matrix showing
that information regarding the accuracy of each residue could be
predicted from the ΔR̂-matrix score (Fig. 3c). We then calculated
the direction of ΔR̂-matrix for all residues in the HDX-MS
reference library and investigated the capacity of this metric to
rank individual residues by their error (Methods). The results
indicated that the error in the model lnP of each residue could
assign positive and negative ΔR̂-matrix values with an accuracy of
72%. Over the whole HDX-MS reference library residues with
positive ΔR̂-matrix values contained 60% more highly accurate
lnP with RMSE < 1.0 lnP. Conversely, outlier lnP values with
errors >2.0 lnP were approximately three times more likely to
occur in residues with a negative ΔR̂-matrix (Fig. 3d). Gauging the
accuracy of modelled data at residue resolution is extremely
challenging and no readymade method can be successfully applied
to this problem. Nevertheless, the ΔR̂-matrix value of a residue
can provide important clues regarding model accuracy and
confidence to the lnP of individual amino acids.

Discussion
HDXmodeller is available at https://hdxsite.nms.kcl.ac.uk/. The
website provides guidance on data submission and processing
along with all of the reference datasets used for code development
including all the simulated lnP values and their associated pep-
tide/RFU data. Users should upload their HDX-MS data as text
files reporting the RFU of each isotope labelling time. It is critical
that users correct their HDX-MS data for extraneous exchange
prior to optimisation. Results obtained from data where the RFU
have not been corrected for back and forward exchange will
produce unreliable results and we recommend the method of
Zhang for data correction1. After users have uploaded their input
files they are sent to a production area for optimisation and the

outputs returned to users by email once the calculations are
complete.

HDXmodeller was specifically developed with a recognition of
the innate variations in the quality of input data, with regard to
differences in the restraints and to our knowledge is the first
HDX-MS optimisation method capable of reporting on model
fidelity. The exceptional accuracy with which HDXmodeller is
able to validate HDX-MS optimisation runs allows users adopt a
sandpit approach to modelling their data, and we encourage
potential users to test different input and optimisation strategies.
However, after testing many different methods and input files in-
house, our recommended workflow for the use of HDXmodeller
is as follows. Prior to a full production run, we recommend that
protein data is first split into different subsections which should
then be submitted as separate jobs. Subsections may be present
due to natural breaks in the HDX-MS data or created after the
elimination of peptides with low occupancy or following the
deletion of bridging peptides that connect two otherwise inde-
pendent subsections. https://hdxsite.nms.kcl.ac.uk/Utility: A uti-
lity workspace in HDXsite contains many useful ancillary tools
including a kch calculator (k-intrinsic), an R̂-matrix evaluator for
customised domains (R-evaluator) and a tool for determining
peptide occupancy (Occupier), which can be instructive in the
preparation of data subsections. It is difficult to provide a general
guide for the preparation of data subsections. However, since
each subsection yields a unique validation score we recommend
that users attempt to maximise data subdivision where possible as
this will best enable localised validation feedback throughout
input data. Nevertheless, users should also refrain from needless
peptide deletion in the preparation of data subsections as this
may negatively impact the level of constraint and the accuracy of
model outputs (Fig. 4a). Our recommendation is to test different
input strategies utilising the auto-validation outputs as a guide.
After the preparation of input files, we recommend that data are
first subjected to a short evaluation step involving optimisation
for 10 replicates with default settings. Users will also need to
upload a separate kch file for these calculations which can be
prepared from sequence data within our HDXutilities workspace.
Following this evaluation step the R̂-matrix score of each dataset
should be inspected for guidance on anticipated modelling out-
comes at the production phase. In-house benchmarking has

Fig. 3 Validating the accuracy of model lnP for residues. a, b Example optimisation histograms for two residues with high (a) and low (b) accuracy. The
grey bars show the frequency of different lnP bins for an optimisation performed with 100 replicates (n= 100) along with the reference and median lnP
reported as blue and red lines, respectively. c Bar chart showing the relationship between ΔR̂-reference (red) and ΔR̂-matrix (blue) values for each residue
over a single HDX-MS reference dataset. The ΔR̂-matrix value of each residue reports the change in R̂-matrix following its elimination from the dataset
with ΔR̂-reference referring to changes in R̂-refence following deletion. Plot shows the equivalence between ΔR̂-matrix and ΔR̂-reference with an R2 value
of 0.84 (insert). d Histogram of residual lnP for the modelled data separated into positive (grey bars) and negative (black line) ΔR̂-matrix values. Plot
demonstrates 60% enrichment of highly accurate modelled values, within ± 1.0 lnP of reference data, for residues with a positive ΔR̂-matrix. Conversely,
residues with negative ΔR̂-matrix values are 300% more likely to have outlying lnP >2.0 from reference data. The inset shows the associated receiver
operating characteristic (ROC) plot demonstrating the ability of the error in the modelled lnP to classify residues with positive and negative ΔR̂-matrix
values. The accuracy of the classification is 72% taken from the area under the curve (AUC). All plots in (d) report the combined trend for all residues over
the whole reference library of 30 different HDX-MS datasets (n= 30).
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shown 10 replicates to be sufficient to predict overall accuracy for
production runs with evaluation and production R̂-matrix values
typically occupying the same bins, high (>0.7), fair (0.69-0.5), or
low (<0.5) with regard to data accuracy (Supplementary Fig. 4).
Data with an R̂-matrix >0.5 at the evaluation phase should be
submitted to a full production run whereas data <0.5 at this stage
is predicted to have poor optimisation outcomes and should not
be submitted. For data <0.5 further filtering of peptides may be
required, and we also recommend that users go back to their
original HDX-MS datasets to search for additional peptides in
subsections that yield poor evaluation scores (Fig. 4b).

Additional options for data that is predicted to optimise poorly
at the production phase is to merge different subsections into a
single file and submit the combined data as one input. Some
variations in modelling outcomes can be expected depending on
whether subsections are submitted separately or merged and
submitted as a single file. Following the data evaluation or pro-
duction run, information regarding the quality of the optimisa-
tion for each subsection in the combined input can be gained
using our stand-alone R-evaluator tool, located in the HDXuti-
lities workspace. This tool can perform all matrix calculations on
users-defined regions of a single file with no loss in accuracy
provided that the evaluated regions represent discrete subsections
(Supplementary Fig. 5). The matrix evaluator tool has additional
applications, and users should be alerted to residues in either the
evaluation or production stages with high lnP values that also
display exceptionally broad inter-quartile ranges spanning 20–30
lnP. This may be indicative of data collapse for these residues and
can occur in particular if the dataset contains insufficient RFU
sampling at long timepoints and is a consequence of having a
weak constraint on the lower optimisation bound (Methods).
Ideally the longest isotope labelling timepoint should achieve an
RFU as close to 1.0 as possible. This effect can generally be
remedied if data subsections are combined and submitted as a
single file with R̂-matrix calculated manually post-optimisation
using the stand-alone evaluator tool. If the submission of a
merged file does not rescue this feature we recommend that

amino acids displaying these characteristic are ignored. A final
resort for data which is predicted to have a poor optimisation
outcome is for users to continue to the production phase but only
interpret lnP with positive ΔR̂-matrix values. However, for data
with poor scores our main recommendation is for the acquisition
of additional experimental data.

For HDXmodeller production runs we recommend 50 repli-
cates with default settings. Optimisations performed with >50
replicates or >1000 maximum iterations are unnecessary, and all
in-house tests performed have reported no gains in accuracy for
optimisations that exceed these values. Following optimisation,
users will receive a compressed file containing their outputs
comprising of various raw data files and interactive graphs
summarising their results. Users will receive plots of the residue
lnP with projected inter-quartile range along with different vali-
dation graphs including separate optimisation histograms for all
residues, the auto-validation matrix and R̂-matrix score and a plot
of the ΔR̂-matrix values for each amino acid. The R̂-matrix score
should first be inspected as a guide to the overall accuracy of the
lnP across a data subsection, followed by examination of the
optimisation histograms and ΔR̂-matrix values for information
regarding accuracy on the residue level. For datasets that achieve
high R̂-matrix scores (>0.7) in-house benchmarking has reported
a high abundance (60–85%) of highly accurate lnP that are
within ±1.0 lnP of the true values. While a reduction in accuracy
is expected for data with R̂-matrix scores <0.5 many of these
outputs have been shown to contain >50% highly accurate lnP
following in-house testing. Insight into the accuracy of model
outputs at the residue level should first be understood by
inspection of the optimisation histograms of all residues. Sub-
sidiary information regarding residue resolved accuracy can also
be obtained from examination of the ΔR̂-matrix values for each
residue (Fig. 4c).

Our motivation for the development of HDXmodeller was to
provide a user-friendly fully automated online platform allowing
high-resolution characterisation of proteins by HDX-MS. It is our
aim to restore the fine details of HDX that are unfortunately lost

Fig. 4 Recommended workflow for HDXmodeller. a Input files should be in the form of RFU for each isotopic labelling timepoint and peptide that have
been corrected for back and forward exchange. To increase the resolution to which optimisation outputs can be validated it is recommended for whole
datasets to be split into different subsections and each subsection submitted as a separate job. Peptide filtering should also be performed using the peptide
occupancy tool to identify poorly constrained peptides which we recommend eliminating from input files. The deletion of weak peptides with poor
occupancy scores can also assist in the preparation of data subsections. b A quality evaluation step is recommended involving 10 replicate calculations
using default settings. Following the evaluation stage, the R̂-matrix value of each output should be inspected for guidance relating to anticipated accuracy
at the production phase. Production runs for data that obtain R̂-matrix values <0.5 at the evaluation stage is not recommended (refer to main text).
c Production runs entail data optimisation using 50 replicates and users should inspect all outputs once the calculations are complete. HDXmodeller
prepares several data outputs including various text files as well as plots of the lnP of each residue along with the interquartile range. A range of plots
for data validation and scoring are also prepared, including the correlation matrix for the whole subsection as well as optimisation histograms and the
ΔR̂-matrix plot for all residues.
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as a consequence of characterisation by mass spectrometry. The
most prominent feature of HDXmodeller is its capacity for post-
optimisation validation which provides users with important
feedback on the anticipated accuracy of modelled outputs. The
auto-validation feature uses a covariance matrix to compare pair-
wise optimisation replicates and from this HDXmodeller can
quantify the degree to which input data is constrained con-
sidering the peptide map, RFU distribution, and the underlying
exchange rates. We propose that the auto-validation matrix is an
image of the error surface confronted during optimisation and
that high R̂-matrix scores are indicative of optimisations where
the global minimum can be found more readily. We expect
continued development of HDXmodeller to increase overall
performance and model accuracy as well as enhance the capacity
to assign confidence to the exchange rates of individual residues.
The overarching objective is for HDXmodeller to become a
routine tool for all HDX-MS post-processing workflows allowing
the maximum possible understanding of protein function by
HDX-MS.

Methods
Preparation of reference HDX-MS data. Reference HDX-MS data were prepared
using previously obtained HDX-MS peptides maps of alpha lactalbumin, barnase,
enolase, and serum amyloid P component with lnP simulated according to pre-
viously described methods22. To prepare reference HDX-MS data lnP values were
first simulated from protein structures according to an in-house version of a well-
known expression of protein HDX behaviour3,23. The simulated lnP were then used
to calculated kobs for each residue allowing the RFU of each peptide to be deter-
mined according to the following polyexponential function where, n and t represent
number of amino acids and experimental time point, respectively (Eq. (3)).

RFU ¼ 1
n

Xn
n¼1

1� exp �kobs:tð Þ ð3Þ

RFU values were projected at 0.25, 1, 5, 20, 60, 240, and 480 min with proline
residues discounted along with amino-terminal groups of each peptide. Additional
reference datasets were also prepared from the alpha lactalbumin and barnase
peptide maps but using alternate lnP obtained from fitting of experimental data.
During the development of HDXmodeller, many different RFU reference files were
prepared and tested but it is not possible to report on all outputs. All six protein
datasets for the reference library were then subjected to filtering involving the
deletion of peptides with occupancy scores <2.5 (Eq. (2)). Data were then inspected
and where possible independent subsections prepared, generating a library of 30
independent HDX-MS RFU data for which the underlying lnP of each residue was
known. Simulated HDX-MS data was then submitted for optimisation by
HDXmodeller and the with the success of the optimisation gauged by direct
comparison of the simulated and modelled lnP. To investigate the role of peptide
maps on optimisation outcomes 3 different lnP datasets were simulated using an
identical peptide map taken from residues 309–322 of enolase. For dataset 2 the lnP
were inverted whereas for dataset 3 the lnP values were randomised. RFU were
then projected onto the peptide maps generating 3 unique RFU HDX-MS data
which were then submitted for optimisation by HDXmodeller (Supplementary
Fig. 3).

HDXmodeller. HDXmodeller is written in Python using standard Python libraries
including Scipy, Matplotlib, scikit-learn, and Numpy. The program reads experi-
mental HDX-MS data comprising of peptide RFU values for user-defined time-
points, proline residues, and the amino-terminus are ignored. HDXmodeller also
reads an additional input file that lists the chemical exchange rate constants (kch)
for each residue. This information can be provided by users or input files can be
generated online within our HDXutilities section with users simply providing the
amino acid sequence, pD, and temperature using previously reported near
neighbour correction terms21,24. HDXmodeller applies Sequential Quadratic Pro-
gramming (SQP) as a successful nonlinear optimisation method which is able to
handle different constraints and bounds25. The SQP methodology is formed as
shown in Eq. (4), where f(x) is the objective function, “R” is a real number and h(x)
presents the equality constants. Bound constraints are defined for kobs with the
upper bound of each residue equal to the kint value.

minimise f xð Þ
over x 2 R

subject to h xð Þ ¼ 0

bound constraints 10�18 < x < kint

ð4Þ

HDXmodeller first generates an initial guess for the kobs value of each amino
acid. The RFU value of each peptide is then modelled and kobs is optimised based
on the mean squared error (MSE) between the experimental and model RFU. Both

f(x) and h(x) consider the MSE of the modelled and experimental RFU and these
calculations are performed for every single iteration during the optimisation as
shown in Eq. (4), where x represents the RFU value for each peptide and k is the
number of the last peptide.

MSE x1; x2; x3; � � � ; xk½ �Mod:; x1; x2; x3; � � � ; xk½ �Exp:
� �

ð5Þ
All the RFU values for different time points are considered in the calculation as

shown in Eq. (3). The default maximum iterations and the precision goal for
termination of the optimisation are set to 1000 and 10−6, respectively. The initial
guess values for kobs of each residue are generated from an exponential distribution
scaled to achieve optimum results and using different randomly generated seed
numbers for each replicate. HDXmodeller is capable of functioning with large
input files and is able to analyse all of the input data and optimise kobs values based
on the applied bounds and constraints without any loss of performance. Bounds for
kobs are considered for each residue and are represented by kch as a maximum
bound and a minimum bound of 10−18 min−1 which facilitates good optimisation
speeds whilst providing a weak constraint for systems with extremely high
protection factors. Optimisation default settings are set to 50 replicates following
which all data is combined and various output images summarising the results of
the optimisation are prepared, including a plot of the median lnP of each residue
and the interquartile range, individual histograms showing the lnP density for each
residue, the auto-validation matrix that quantifies the overall accuracy of the
optimisation and the ΔR for each residue. Several text files are also generated
including a summary of all lnP values and RFU values of all peptide models for
each optimisation run.

Auto-validation matrix. The validation score (R̂-matrix) is calculated in the terms
of pairwise correlation coefficients (R) between the lnP values of replicate runs and
is based on a covariance matrix (C) as defined in Eq. (6) where, R and C represent
the respective correlation coefficient and covariance matrix between replicates i and
j, and Eq. (7) where PF and M are the metrices including model lnP values (r) for
all replicate runs and pair-wise correlation coefficient (R) values, respectively.

Rij ¼
Cijffiffiffiffiffiffiffiffiffiffiffiffi
Cii:Cjj

p ð6Þ

PF ¼

r1r2r3 ¼ rn½ �1
r1r2r3 ¼ rn½ �2
r1r2r3 ¼ rn½ �3

..

.

r1r2r3 ¼ rn½ �m

0
BBBBBBB@

1
CCCCCCCA

M ¼

R 1;1ð Þ R 1;2ð Þ R 1;3ð Þ ¼ R 1;mð Þ
R 2;1ð Þ R 2;2ð Þ R 2;3ð Þ ¼ R 2;mð Þ
R 3;1ð Þ R 3;2ð Þ R 3;3ð Þ ¼ R 3;mð Þ

..

. ..
. ..

. ..
. ..

.

R m;1ð Þ R m;2ð Þ R m;3ð Þ ¼ R m;mð Þ

0
BBBBBBB@

1
CCCCCCCA

ð7Þ

Following pairwise analysis R̂-matrix is reported as the arithmetic mean of all R
values in the matrix (Eq. (8)), where Rn is the correlation coefficient between
different replicate runs in the matrix and j is the total number of replicate runs.

R̂-matrix ¼
Xj:j

n¼1

Rn ð8Þ

The accuracy of the auto-validation matrix was investigated using the library of
reference data constituting 30 different HDX-MS subsections. Each subsection was
submitted to HDXmodeller for optimisation and, once complete, the R̂-matrix
score for each subsection was calculated and noted. The correlation coefficient
between the lnP of each replicate and the reference lnP was then obtained
additional R values from with the arithmetic mean was taken to obtain an R̂-
reference score for each optimisation. The accuracy of the auto-validation matrix
was confirmed by direct comparison of the R̂-matrix and R̂-reference scores across
all data (R2 0.99). The auto-validation matrix and R̂-matrix score is automatically
prepared by HDXmodeller following optimisation. Matrix calculations can also be
performed on user-defined subregions of optimised data using the output lnP text
file of all replicates. This standalone feature can be access in the HDXutilities
workspace using the R-evaluator tool and can be performed on any region of data
that constitutes an independent peptide subsection without any loss in
performance.

Validating lnP for individual residues using ΔR̂-matrix scores. The R̂-matrix
scores can also be used to estimate the accuracy of the modelled lnP for individual
amino acids. These scores are calculated using identical operations to achieve
R̂-matrix for a whole dataset but sequentially omit each amino acid in turn from
the calculations to derive the change in R̂-matrix or the ΔR̂-matrix score of each
residue. This is based on knowledge that the removal of outlying data will increase
the overall correlation coefficient resulting in a negative ΔR̂-matrix value whereas
the opposite should be true for more accurate lnP values. This approach was
validated in several ways, the first of which was to compare the ΔR̂-matrix score of
each amino acid with an equivalent score based the correlation coefficient between
the lnP of each replicate run and the reference lnP (ΔR̂-reference). Over the 30
reference HDX-MS dataset good equivalence was shown between the direction of
the ΔR̂-matrix and ΔR̂-reference scores. To understand this further an additional
validation method was used involving a binary classification test on the direction of
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the ΔR̂-matrix scores. The ΔR̂-matrix direction was calculated for all residues in the
reference library accounting for almost 800 amino acids. For each residue the lnP
RMSE was also calculated using the reference lnP values from which each dataset
was constructed. A receiver operating classification (ROC) curve was then prepared
which yielded an AUC value of 0.72 indicating that the error in the lnP of each
residue could correctly classify the direction of ΔR̂-matrix to an accuracy of 72%.
Data were also pooled for amino acids depending on the direction of their ΔR̂-
matrix scores and histograms prepared for the RMSE error with bin sizes of 1 lnP.
The histograms demonstrated that highly accurate model lnP with RMSE < ±1.0
were 60% more frequent for residues with positive ΔR̂-matrix whereas outlier
amino acids with lnP > ±2.0 were 300% more likely in residues for which
ΔR̂-matrix was negative.

Statistics and reproducibility. ROC plot statistics were calculated using embed-
ded macros in SigmaPlot v14 (Systat Software Inc. USA) and default settings. Data
were ranked according to their RMSE and classified as either positive or negative
depending on the direction of the ΔR̂-matrix.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this study is available to download https://hdxsite.nms.kcl.ac.uk/.

Code availability
All codes may be accessed for use as is from our webserver https://hdxsite.nms.kcl.ac.uk/.
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