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Abstract

Flowering time is an important agronomic trait, attributed by multiple genes, gene–gene inter-

actions and environmental factors. Population stratification and polygenic effects might con-

found genetic effects of the causal loci underlying this complex trait. We proposed a two-step

approach for detecting epistasis interactions underlying rice flowering time by accounting pop-

ulation structure and polygenic effects. Simulation studies showed that the approach used in

this study performs better than classical and PC-linear approaches in terms of powers and false

discovery rates in the case of population stratification and polygenic effects. Whole genome

epistasis analyses identified 589 putative genetic interactions for flowering time. Eighteen of

these interactions are located within 10 kilobases of regions of known protein–protein interac-

tions. Thirty-seven SNPs near to twenty-five genes involve in rice or/and Arabidopsis (ortho-

logue) flowering pathway. Bioinformatics analysis showed that 66.55% pairwise genes of the

identified interactions (392 out of the 589 interactions) have similarity in various genomic fea-

tures. Moreover, significant numbers of detected epistatic genes have high expression in differ-

ent floral tissues. Our findings highlight the importance of epistasis analysis by controlling

population stratification and polygenic effect and provided novel insights into the genetic archi-

tecture of rice flowering which could assist breeding programmes.
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1. Introduction

Rice (Oryza sativa) is one of the most important staple foods for a
large part of the world’s population and the main source of caloric
intake. To meet the consumer demands for food by the growing

world population from 7.4 billion today to 9.1 billion by 2050, it is
needed to increase the cereal production for the food security.1,2

Grain production increases when crop plant flowers at the optimal
time.3 Flowering, the transition from vegetative stage to reproductive
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stage, is controlled by complex internal genetic network and external
factors (depends on different biotic and abiotic conditions).4

Therefore, comprehensive understanding about the genetic control
of flowering time is essential in crop breeding.

Flowering time is a complex trait, which is tightly governed by ge-
netic factors, environmental cues as well as affected by population strat-
ification.5,6 One of the major goals of the modern genetics is identifying
the genetic markers or factors those are associated with complex trait.7

For revealing the genetic association of a trait, genome-wide association
studies (GWAS) have emerged as one of the most powerful tool. In
GWAS, single-nucleotide polymorphisms (SNPs) are typically examined
for association across the genome with the trait of interest. Single-locus
analyses are commonly used to estimate the marginal effects of individ-
ual SNPs. However, single-locus analysis could identify only the SNPs
with relatively large effects, potentially miss the small effect SNPs.8,9

Moreover, the loci identified by single-locus analysis collectively explain
only a small fraction of genetic variation of complex trait, leading to
the mystery of missing heritability.10,11 Therefore, identification of
causal genetic-interaction through epistasis analysis could possibly im-
prove our understanding about genetic regulation of complex traits.12

For a pair of genes, each of them may have weak association or
no association, but their interactions might have strong association
with trait.13 Moreover, epistasis effects could be affected by the addi-
tive effects of multiple genes and other environmental factors.14 In
addition, population stratification could confound the epistasis ef-
fect. As a consequence, the estimated effects could be biased upwards
or downwards and standard error of the effects could be largely in-
flated. Simple epistatic models, those are not considering such impor-
tant phenomenon may provide biased results.

In the past decades several methods and tools have been developed
for studying epistasis. Among them PLINK,15 FastEpistasis,16

EpiGPU17 are the widely applied tools for detecting epistasis underlying
quantitative trait. These tools focused on parametric or nonparametric
based linear regressions which do not control population stratification.
In GWAS several methods have been proposed to control population
stratification, including principal component analysis18 and mixed lin-
ear model.5,19 In epistasis analysis some studies also used principle com-
ponents (PCs) as covariate for controlling population stratification20,21

which could perform well when the pattern of population stratification
is simple22 but may perform poorly in presence of polygenic back-
ground effect or multiple level of relatedness.23 However, mixed linear
model could control both population stratification and polygenic effect
in detecting epistasis which is considered as a best practice in GWAS
but creates the additional computational burden and model complexity.

To reduce the computational cost and model complexity, the authors
of GRAMMAR introduced a two-step approach as an alternative of
mixed linear model for single-locus analysis.24 Motivated from this idea,
in this study we developed a two-step approach for whole genome epista-
sis analysis that can control additive polygenic background and popula-
tion structure. Like GRAMMAR method, in the first step we calculated
the breeding values and deducted from the trait values and finally used
epistasis model instead of simple GWAS model. We have conducted ex-
tensive simulation studies to check the consequence of population stratifi-
cation and polygenic effect in epistasis analysis and compared the
performance of the method under different scenarios. Finally, we applied
this method to analyse rice flowering time trait for detecting epistasis.

In epistasis analysis, detection of significant epistatic variants con-
tribute to trait of interest is the primary and ultimate goal; however, fur-
ther functional analysis of the interacting variants is necessary for
characterizing the identified genes and constructing the biological link
with phenotype.25 Various functional assays such as gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analysis, protein–protein interactions (PPIs), subcellu-
lar location (SCL) of the gene/protein, tissue-specific gene expression
and others biological information could help to find significant relation-
ship among the candidate genes and phenotypes. With the rising avail-
ability of genomic data from different species, functional annotation of
orthologous of the identified rice genes may help to reveal novel biologi-
cal insights. A number of previous studies showed that a large per cent
of interactions generally occur between proteins located in the same
SCL or/and with a common functional assignment.26,27 Localization
and ontology of the candidate genes were used as important indicator
for functional study and characterizing epistatic interactions. Moreover,
epistasis interactions network could facilitate to reveal the underlying
relations, biological mechanisms and important clustering information.
We did literature curation to find previously reported flowering time-re-
lated genes, seek out various public databases for collecting PPIs and
other biological information for intensive functional studies.

2. Materials and methods

2.1. Plant materials

Genotype and phenotype data used in this study were obtained from
the rice diversity research platform (www.ricediversity.org). The popu-
lation was recruited for a large-scale GWAS which included 413 diverse
accessions of O. sativa at 36,901 SNPs of the Affymetrix Genome-
Wide SNP Array after quality assurance screening.28 All of the SNPs
were selected by genotype call rate >70%, minor allele frequency
>0.015. Individuals with missing phenotype were also removed from
the study population. Missing genotypes were imputed with weighted
k-Nearest-Neighbors method,29 based on the five weighted nearest vari-
eties present in the data set. Four hundred and thirteen O. sativa sam-
ples were used in the diversity panels that composed of six rice
subpopulations, indica, aus, temperate japonica, tropical japonica, aro-
matic and admixed, which contains 87, 57, 96, 97, 14 and 62 acces-
sions, respectively. Field data of flowering time were collected as the
number of days until the inflorescence was 50% emerged from the flag
leaf counted from the day of planting. The phenotype data used in this
study for flowering time were measured at Faridpur, Bangladesh.

2.2. Statistical model

Multi-locus major and epistatic effects may control a complex trait.
One of the major assumptions in GWAS is—complex traits are con-
trolled by a large number of common variants with small effects. These
genetic effects rarely exceed genome-wide significance threshold.
Ignoring effects of the multiple common genetic variants may have large
impact on epistasis analysis results. Controlling background genetic
effects in time of testing main and epistatic effects were largely studied
in QTL mapping era.30–32 Significant background genetic markers se-
lected by using stepwise regression are used as cofactors for controlling
genetic background. Phenotype-adjusting method30 was proposed for
QTL analysis, and showed that adjusted approach (inclusive composite
interval mapping, ICIM) has more power than cofactor model (com-
posite interval mapping, CIM) approach. In GWAS, mixed model ap-
proach can control the effects of common variants, where background
effects are considered as random. Best linear unbiased prediction using
genetic relationship matrix of individual observations exhaust the
effects of common variants33 and the prediction generally highly corre-
late with phenotype.34 We have used a two steps approach for epistasis
analysis: (i) predicting the total additive genetic breeding value using
mixed model approach and adjusting phenotypic data, and (ii) using
the adjusted phenotypic data for whole genome epistasis analysis.

120 Epistasis analyses of rice flowering time

http://www.ricediversity.org


If p individual loci with main effects and q pairs of loci with epi-
static effects control a complex trait then statistical genetic model for
additive and epistasis effects can be written as

yj ¼ lþ
Xp

k¼1

akxAkj
þ
Xq

k¼1

iaak
xAAkj

þ ej;

where yj is the phenotype of the jth individual observation, l is the
general mean, ak is the additive effect of kth locus; iaak

is the epistasis
effect; individual level genotypes were coded for additive effects as
xAkj = 2 for QQ, 1 for Qq and 0 for qq, and for epistasis effects as
xAAkj = 4 for QQ�QQ, 2 for QQ�Qq, 1 for Qq�Qq and 0 for
QQ�qq, Qq�qq and qq�qq; and ej is the random error.

In matrix notation the above equation can be written as

y ¼ XBþXAaþXAAiþ e;

where XA and XAA are the design matrices for additive and epistasis
effects, respectively.

In real situation the number and chromosomal locations of causal
loci are unknown, and need to use a powerful statistical approach to
identify them from huge number of loci. By searching the causal loci
for a complex trait, we can identify a few numbers of detectable causal
loci and large number of causal loci with relatively small effects might
remain undetectable.34,35 Therefore estimating the total genetic effects
for additive effect loci by searching significant loci is practically infea-
sible for GWAS. However, we can estimate the total additive genetic
effects by utilizing additive kinship matrix via mixed model ap-
proach.19,35 For example, the total genetic effects due to additive
effects of loci can be predicted by the linear mixed model approach

y ¼ Xbþ gþ e:

In this case, XAa � ~g, g � Nð0;KAr2
AÞ and KA are additive kin-

ship matrix. After predicting the total estimated effects for additive
main effects, we can calculate the adjusted phenotype as

Dy ¼ y� ~g:

The adjusted phenotypic data was used for epistasis analysis and
the statistical model for epistasis analysis is

Dyj ¼ lþ a1xA1j þ a2xA2j þ iaaxAAj þ ej:

We compared the approach with PLINK and PC-linear
approaches in terms of power and false discovery rate (see Methods
S1 and S2). We conducted Monte-Carlo simulation study for check-
ing performance of the approaches. Details about of genotype and
phenotype simulations were discussed in Methods S3 and S4.

2.3. Gene annotation of the flowering time associated

epistatic SNPs

In total, 589 interactions comprised 499 SNPs were identified by
whole genome epistasis analysis (Supplementary Data S1). We used
MSU Rice Genome Annotation Project (RGAP) Release 7 (http://rice.
plantbiology.msu.edu/) database to annotate the identified 499 SNPs
(Supplementary Data S2). Among them 297 SNPs were annotated
with protein-coding genes and rest of them were non-coding
(Supplementary Table S1). For the non-coding SNPs the nearest genes
were used for functional characterization. NCBI (https://www.ncbi.
nlm.nih.gov/) database was used for gathering more information
about identified genes (Supplementary Data S3).

2.4. GO and pathway enrichment analysis

To determine whether the annotated genes were enriched for biologi-
cal or functional significance, GO enrichment analysis was per-
formed using GO analysis toolkit implemented in CARMO.36

A gene set was considered as significantly enriched for GO terms if
P < 0.05. The GO treemap showing the biological process (BP) was
generated using REVIGO.37 We also performed KEGG pathway en-
richment analysis. For KEGG enrichment analysis, Rice Information
GetWay (RIGW) database was used.38

2.5. PPI search

A large number of rice PPIs were collected from three databases,
PRIN,39 RIGW38 and RicePPINet.40 We mapped our detected gene–
gene (SNP–SNP) interactions to known PPIs and we hypothesized that
some of the 589 epistasis interactions may arise from PPIs. We found
18 pairs of SNP interactions those were within 10 kb of known PPIs.

2.6. Orthologous gene and flowering pathway gene

Gene orthologous between rice and Arabidopsis were obtained from
MSU RGAP Release 7 (http://rice.plantbiology.msu.edu/). Genes in-
volved in flowering time, flower development and seed development
pathway for rice and/or Arabidopsis were downloaded from the
database.41,42

2.7. Subcellular localization prediction

Web-based integrative SCL predictor tool called plant subcellular lo-
calization integrative predictor (PSI)43 was used to predict the SCL of
the candidate epistatic genes. Finally the genetic network from
SNP–SNP interactions projecting various biological information was
visualized using Cytoscape 3.5.1.44

2.8. Tissue-specific expression

We explored the expression profile of the candidate genes in the six
different tissues (i.e. post-emergence inflor, pre-emergence inflor,
embryo-25DAP, anther, pistil and panicle). Tissue-specific expres-
sion of the epistatic genes were obtained from the comprehensive
annotation of rice multi-omics data (CARMO)36 annotation plat-
form. The heatmap plot of the expression profile of the genes with
dot plot of SCL was constructed using iTOL v3.45 The clustering of
the genes presented in the heatmap represents hierarchical clustering.

3. Results

3.1. Simulation results

We used an adjusted statistical approach to detect epistasis in pres-
ence of complex polygenic background and population structure.
The adjusted approach was compared with two methods: (i) the sim-
ple linear regression that implemented in PLINK which do not
account population stratification and polygenic effect and (ii) princi-
pal component (PC) based linear regression where PCs are used as
covariate to control population stratification (Methods S1 and S2).
These two methods were abbreviated as PLINK and PC-linear, re-
spectively. Simulations under different scenarios were conducted for
comparing the methods in terms of statistical power and FDR
(Methods S4). At each scenario, simulations were performed 1,000
times to estimate the average power and FDR.

To investigate the effect of population structure for detecting epis-
tasis, we applied previously mentioned three methods to the simu-
lated data that generated from heterogamous population. We
calculated the power and FDR for the three methods with varying
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per cent of genetic heritability and three subpopulation structures
(k = 3). Figure 1 shows the effect of population stratification on
power and FDR for different genetic heritability. With increasing
rates of genetic heritability, the powers of all three methods were in-
creased. It was observed that detection power could be significantly
decreased without controlling population stratification. The use of
PC as covariate for PC-linear approach could increase the statistical
power. Similar increasing rate of powers was also observed for the
adjusted method. Besides, it was observed that with increasing rate
of the genetic heritability, the FDR of the PLINK was increased,

however FDR for PC-linear and adjusted approach were under con-
trol. These results suggested that, both power and FDR of classical
approach could be poor when the samples come from structured
population (Supplementary Table S2). PC-linear and adjusted
method could effectively control FDR as well as improve the detec-
tion power in presence of population stratification.

Next, the influence of polygenic effect on epistasis detection was
assessed under homogeneous population (scenario-II). For this pur-
pose, polygenic effects were added to the simulated phenotypes,
where their contributions to the phenotypic variation were varied

Figure 1. Model comparisons under structured population. (a) Power and (b) FDR comparison at different genetic heritability for structured population and sam-

ples were considered from three different populations (1,000 sample size with 400, 300 and 300 sample for three populations, respectively). This figure is avail-

able in black and white in print and in colour at DNARES online.

Figure 2. Model comparisons under assumption of (i) polygenic effect (ii) both population structure and polygenic effect. Power and FRD for (a, b) 15% fixed ep-

istatic variance and; (c, d) 40% fixed error variance under the assumption of polygenic effect. Power and FRD for (e, f) 15% fixed epistatic variance and; (g, h)

40% fixed error variance under the assumption of both population stratification and polygenic effect. Different proportions of polygenic effects (0–40%) were

varied presented in x-axis. In all cases the additive variance and epistatic variance were equal. With fixed epistatic variance to 15%, the error variance was 70%

when the polygenic variance was 0% and error variance was 30% when polygenic variance was 40% (Supplementary Table S8). Again with fixed error variance

to 40%, the epistatic variance was 30% when polygenic variance was 0% and epistatic variance was 10% when polygenic variance was 40% (Supplementary

Table S9). This figure is available in black and white in print and in colour at DNARES online.
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(Methods S4). In this scenario, with increasing rate of variance due to
polygenic effects (decreasing error variance) the powers of the ad-
justed method were significantly increased (Fig. 2a and Supplementary
Table S3). It increased from 61% to 99% with respect to increasing
rate of polygenic variation. Powers of PLINK and PC-linear were
mostly constant (within 47–51%), because the epistatic variance was
fixed. This result advocating that both PLINK and PC-linear methods
cannot account polygenic variance and treated as error variance. For
case (b) in scenario-II [fixed error variance (40%)], with increasing rate
of polygenic variation, the powers were reduced due to decreasing the
epistatic variance. However, in this case the adjusted method also per-
formed better. The results in both cases of scenario-II, clearly suggest
that, epistasis detection powers of the PLINK and PC-linear
approaches could largely reduce due to increasing rate of polygenic ef-
fect variation (Fig. 2c and Supplementary Table S4). However, the
FDR were almost similar for all of the methods (Fig. 2b and d).

Finally, we investigated the consequence of both polygenic effects and
population stratification for epistasis analysis (scenario-III). The results for
two different cases: (a) the epistatic variance fixed to 15% and (b) error
variance fixed to 40%, were presented in (Fig. 2e and h, Supplementary
Tables S5 and S6). The patterns of power comparisons of this scenario
were very similar to scenario-II. The difference was that, there had impact
of population stratification on the detection power in the cases of
scenario-III. In this scenario, the powers were smaller for all methods as
compared with scenario-II. Although PC-linear method cannot capture
polygenic effect, the power of this method was larger than PLINK because
of controlling population stratification. However, adjusted method had
superior power due to capturing the polygenic variations and controlling
population stratification. The FDR of PC-linear and adjusted methods
were reasonable, but PLINK had inflated results (Fig. 2f and h).

3.2. Genome-wide epistasis analysis of rice flowering

time

We analysed the flowering time trait to identify the epistatic loci
influencing this complex trait. Previous study analysed this trait to
identify only the underlying individual loci.28 It was surprising that
the previous analysis identified only 2 loci which explain 5% genetic
variation, referring most of the variations may come from others
types of genetic variants or environment factors. We were interested
to identify the epistatic loci for flowering time trait. We used two-
step adjusted approach for analysing this complex trait by control-
ling population stratification and polygenic effects of multiple indi-
vidual loci (see Method). One of the assumptions about complex
trait is that it could be controlled by multiple individual loci with rel-
atively small effects. Before analysing epistatic effects our goal was to
control those effects to improve detection power and reducing the
FDR. With extensive simulation studies, we showed that adjusting
population stratification and polygenic effects could improve the de-
tection power and reduce FDR (Figs 1 and 2).

Since, the diverse accession of O. sativa is from admixed popula-
tion, so it is expected that epistasis analysis using classical model could
be bias due to population stratification. We conducted whole genome
epistasis analysis using adjusted method by considering the polygenic
effect and population structure. Due to small sample size a liberal sig-
nificance threshold P < 9:98� 10�8 was used for summarizing the
results.10 We identified a total of 589 pairs of SNPs among the
680823450 possible SNP interactions (Supplementary Data S1). We
also analysed the trait by using PLINK and PC-linear approaches. We
constructed QQ-plot for whole genome P-value for three approaches.
QQ-plot showed that the PC-linear and adjusted methods better fitted
as compared with PLINK approach (Supplementary Fig. S1).

Altogether the discovered 589 epistatic interactions comprised
499 unique SNPs. As the number of unique SNPs are smaller than
the number of interactions there should have some hub SNPs those
are interacted with many other SNPs. The hub SNPs could be biolog-
ically important for the flowering time trait.46 Of the discovered 499
unique epistatic SNPs, more than half (59.51%) were located within
known annotated genes (Fig. 3a, d and e, Supplementary Table S1
and Data S2) and approximately one-third (31.86%) were located in
chromosome 1 (Fig. 3d, Supplementary Data S2 and S3).

We observed that, among the identified SNPs, 9 (1.8%) had MAF
less than 0.05 and more than 50% were in the range between 0.1
and 0.3 (Fig. 3b and Supplementary Fig. S2). Among the total identi-
fied interactions, 26.32% (155 out of 589) were cis-chromosomal
interactions through five chromosomes (1, 2, 4, 5 and 11) and the
rest 73.68% were trans-chromosomal interactions. Of the 155 cis-
chromosomal interactions, 136 were in chromosome 1 (Fig. 3c and
Supplementary Fig. S3).

3.3. Candidate epistatic genes involved in different

pathways

Gene enrichment analysis was performed to confirm the involvement
and the potential contribution of candidate genes to flowering time
and flower development. To do this, genes involved in different
flower related pathways in rice and Arabidopsis were obtained and
mapped to know whether the genes have relevant functions with
flowering related traits (Table 1 and Supplementary Data S4).
Among the detected genes nine were involved in rice flowering time
pathway and fourteen were in rice seed development pathway. One
gene (LOC_Os07g41370, MADS18) was found which involved in
all five pathways (Table 1). We have detected several genes which
were not previously reported for rice flowering, however their
Arabidopsis orthologues have biological function in regulating flow-
ering time or flower development (Table 1). For example, the gene
LOC_Os08g42640 was not found in rice flowering time pathway,
but its orthologue RFI2 (AT2G47700) was found in Arabidopsis
flowering time pathway. From Table 1 it is shown that, among the
identified genes ten (Arabidopsis orthologue) were involved in flow-
ering time pathway and four in flower development pathway. These
results are suggesting the potential role of epistasis analysis in detect-
ing novel genes.

3.4. Functional enrichment analysis of the epistatic

genes

To characterize the identified epistatic genes various functional en-
richment analyses were preformed. First, we performed GO enrich-
ment analysis and assessed whether the genes mapping to epistatic
loci are enriched for GO terms. Significant overrepresentations
(P < 0:01) were observed for the BP terms ‘defense response’, ‘re-
sponse to stress’, ‘apoptotic process’ and ‘signal transduction’
(Supplementary Data S5). Since only few BP terms were found as sig-
nificant, treemap analysis was performed to represent the overall
view of BP terms of the identified epistatic genes. As expected, many
of the GO terms ‘flower development’, ‘multicellular organism devel-
opment’, ‘reproduction’, ‘DNA metabolism’, ‘cellular process’
(Fig. 4) were found. We also compared the BP terms of the candidate
genes participating in interaction for rice flowering time trait and
gold standard genes those involved in flowering time pathway and
found a large portion of common BP terms (Fig. 4, Supplementary
Fig. S4 and Data S6).

We also investigated the overrepresentation of KEGG biochemical
pathway enrichment analysis. The most representative pathway was
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observed for DNA replication (ko03030; P < 0:0015). DNA repli-
cation is the first and vital process that occurred during cell cycle and
cell proliferation and this process is highly related to plant cell
growth and development. More recently some studies have estab-
lished a connection of DNA replication, H3.1 and H3K27me3 to
flowering time in Arabidopsis.47,48 Because of the reduction of flow
of canonical histone H3.1, propagation of H3K27me3 in the FLC
(FLOWERING LOCUS C-a repressor of flowering) is affected dur-
ing vernalization and flowering is delayed. Through vernalization the
histone variant H3.1 facilitates H3K27me3 to take place at FLC lo-
cus by DNA replication47 indicating towards the probable essential
role of DNA replication in rice flowering. Another representative
pathway term ‘phenylalanine metabolism’ was found and it involves
in biosynthesis and metabolism of amino acids, including aromatic
amino acids and these acids play important roles in plant growth, de-
velopment, reproduction, defense and environmental stimuli.49,50

We also found some KEGG pathway terms had P-values above the
threshold of 0.05 [e.g. ko04144: endocytosis (P ¼ 0:115), ko00940:
phenylpropanoid biosynthesis (P ¼ 0:131), ko00230: purine metab-
olism (P < 0:224)] (Supplementary Data S7). Ribosome biogenesis
in eukaryotes and endocytosis; phenylpropanoid biosynthesis and
purine metabolism pathway terms were reported for response to
early chilling stress of rice49 and response to vernalization of
Oriental lily,51 respectively.

3.5. Epistatic interactions reveal genetic network

A genetic network was constructed from the identified 589 epistatic
interactions and integrated various biological features. By analysing
the network, several genes were identified as hub genes based on
node degree (Supplementary Table S7). The SNP rs18202417 lo-
cated in the LOC_Os01g39100 gene was the top hub node (gene)
with degree 309 (Fig. 5 and Supplementary Data S1). This gene enco-
des a protein containing zinc finger CCCH domain and involved in
many BPs such as reproduction, embryo development and post-
embryonic development. Another major hub SNP (rs351342502)
was detected with node degree 66 that located in the gene
LOC_Os06g08520 (Fig. 5 and Supplementary Data S1). We also ob-
served that, both hub SNPs had common interactions with other 36
SNPs (Fig. 5). Moreover, based on the topological structure of the
network, five major groups were observed those connected with hub
genes (Fig. 5). From the network we noticed that, majority of the
gene interactions in G3 and G4 is responsible for delay flowering
(dashed line), while all of the interactions in G2 and G5 were respon-
sible for early flowering (solid lone) as compared with average flow-
ering time. In G1, only two interactions were found for delay
flowering among the total of 309 interactions. Two hub SNPs
(rs19539809 and rs19540019) in G4 are located in chromosome 3
and both the variants are near of the gene LOC_Os03g15460. The
gene is localized in cytosol and involved in the molecular function

Figure 3. Overview of the identified epistatic loci for rice flowering time. (a) The Circos plot represents the interaction of the 499 unique SNPs that comprise the

589 epistatic interactions. The outer track shows 12 chromosomes levelled by different colours. The other tracks present (1) line plot of the location of the candi-

date genes of identified SNPs, (2) Line plot of the minor allele frequency (MAF) of the SNPs. The range of the MAFs are 0.015–0.5 and more than half of the

SNPs are in the range between 0.1 and 0.3 (Supplementary Fig. S2). Track (3) presents the detected interactions through all chromosomes. (b) The distribution

of the minor allele frequency. (c) The distribution of interactions through all chromosomes. Chromosome wise (d) and overall (e) distribution of location of the

identified epistatic SNPs. This figure is available in black and white in print and in colour at DNARES online.
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(MF) phospholipase A2 activity and orthologue to Arabidopsis phos-
pholipase A2 (PLA2) gene. The MF of PLA2 genes in rice is still poorly
known. However, its orthologue plays role in jasmonic acid (JA) bio-
synthesis, pollen maturation, anther dehiscence, and flower opening in
Arabidopsis.52,53 G3 contains 38 SNPs, which are near or within 28
genes, and among the genes 67.85% localize in plastid (Supplementary
Fig. S5a), suggesting that perhaps most of the genes of the group in-
volve in photosynthesis. No nuclear gene was found in that group.

GO enrichment analysis on the basis of genes containing in the
five groups revealed that different groups genes are involved in differ-
ent BP (Supplementary Data S5). As for example, the genes in G1
were significantly enriched for chloride transport, apoptotic process
and others, while genes in G2 enriched for wounding and oxidative

stress-related process. One and three GO BPs were enriched for G3
and G4, respectively. At significance threshold P<0.05, we found no
enriched BP and other GO terms for G5. The lack of overrepresenta-
tion for G5 is likely to be only few genes was involved in this group.

3.6. Co-location and functional similarity of interacting

genes

Interacting genes or proteins are expected to have same biological
function or located in same compartment. We therefore used GO
functional similarity and colocalization as important indicator for fur-
ther evidence of detected epistatic genes. For assessing whether the
interacting genes share similar BP, cellular component (CC) and MF,

Table 1. Detected epistatic genes involved in rice and Arabidopsis (orthologue) flowering time or related pathways

SNP Gene OS_FTa OS_SDb AT_FTc AT_FDd AT_FL_IDe AT orthologuef Gene symbolg

rs53491160 LOC_Os01g10504 � � � AT4G18960 MADS3/AG
rs350793833 LOC_Os01g12890 � � � AT5G11530 EMF1
rs350793833 LOC_Os01g12900 � NA RAC
rs348030366 LOC_Os01g13740 � AT2G20570 GLK1,GPPI1
rs350255043 LOC_Os01g49690 � � AT1G50370 FYPP3
rs18797452 LOC_Os01g49830 � � AT1G13260 RAV1
rs18797497
rs350507540 LOC_Os01g51300 � � � AT2G19520 FVE,MSI4
rs351226054 LOC_Os01g73580 � NA CIN4
rs347877916
rs348843117
rs352509847
rs348111382
rs350433325 LOC_Os01g73770 � NA DREB1E
rs18768624 LOC_Os02g02290 � NA SNF2L
rs348828354
rs348442835 LOC_Os02g02380 � AT5G23730 RUP2,EF02
rs18770180
rs352920030
rs350623682 LOC_Os02g05030 � NA SPP2
rs350780688
rs17921993
rs353005292 LOC_Os03g08460 � NA EBP89
rs352497391 LOC_Os03g08754 � � � � AT2G22540 MADS47/SVP
rs19214075 LOC_Os03g09310 � � � AT5G16320 FRL1,SUF8
rs351154822 LOC_Os04g55560 � � � � AT4G36920 AP2
rs19734267 LOC_Os05g33570 � NA PPDKB
rs351342502 LOC_Os06g08530 � NA bip110
rs350150232 LOC_Os07g41370 � � � � � AT5G60910 MADS18/FUL,AGL8
rs351408615
rs352265155
rs20215256 LOC_Os07g42300 � NA EF-1-d1
rs347572446 LOC_Os08g42640 � � AT2G47700 RFI2
rs348156805 LOC_Os11g16470 � NA MLA10
rs21765814 LOC_Os10g30100 � AT5G35910 RRP6L2
rs349850721 LOC_Os11g32110 � NA ARF1
rs20841419 LOC_Os11g41820 � NA U2 snRNP
rs348908455
Total ¼ 37 25 9 14 9 4 10

aGenes involved in rice flowering time pathway.
bGenes involved in rice seed development pathway.
cGenes involved in Arabidopsis flowering time pathway.
dGenes involved in Arabidopsis seed development pathway.
eGenes involved in Arabidopsis flowering time gene network collected from FLOR-ID.
fArabidopsis orthologous of the corresponding rice gene.
gGene symbol of the rice and Arabidopsis identifier.
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47, 96 and 115 pairs of interacting genes were found with similar BP,
MF and CC, respectively (Fig. 5c and Supplementary Data S8).
Among them, many of the interacting genes have shared more than
one domain. As for example, 19 pairs of gene interactions have shared
both BP and CC, 13 pairs shared both BP and MF and 28 pairs shared
CC and MF (Fig. 5c). Moreover, 61 pairs of interactions were found
those have shared both SCL and GO terms and most of them were for
CC. From our results we found that, many genes localized to multiple
compartments (Fig. 6, Supplementary Figs S6 and S7) and many of
the interactions of genes were found located in cytosol and plastid
(Supplementary Fig. S8).

3.7. Expression profile of the candidate genes

To further characterize and confirm the involvement of the epistatic
genes in rice flowering, expression analysis was performed. For this
purpose gene expression of six tissues, i.e. post-emergence inflor,
pre-emergence inflor, embryo-25DAP, anther, pistil and panicle were
obtained and plotted using heatmap (Fig. 6 and Supplementary Fig.
S6). Expression analysis was conducted separately for the genes
those clustered into five groups in the network (Fig. 5a). We applied
hierarchical clustering to cluster the genes. From the heatmap plot it
was observed that, in every group some genes highly express across
all six tissues. We also noticed a large per cent of candidate genes in
every group were preferentially expressed in panicle (Fig. 6 and
Supplementary Fig. S6). These results support the evidence of the in-
volvement of the identified epistatic genes in rice flowering.

3.8. PPIs corresponding to identified epistatic

interactions

We further investigated whether there have overlap between detected
epistasis and known (PPIs) in the chromosomal location. Known rice

PPIs obtained from three databases, PRIN,39 RIGW38 and
RicePPINet40 were used (see Method) to search overlap between
detected epistasis and the biological interaction. We found several
pairs of genes harbouring SNPs interactions which were also pre-
dicted for PPI (Fig. 5). Eighteen pairs of SNP interaction comprise to
12 pairs of gene interactions were overlapped to 3 different data-
bases. Of these interactions, three, five and six pairs of interactions
were overlapped with the PPIs of three databases RicePPINet, RIGW
and PRIN, respectively (Supplementary Data S9). Among all over-
lapped interactions two pairs were common between RicePPINet
and PRIN and only chromosome 11 had four pairs of cis-chromo-
somal interactions (Supplementary Data S9). RicePPINet also pro-
vided other additional information such as interaction probability
and co-expression between two interacting proteins (Supplementary
Data S9). The PPI of the two genes LOC_Os11g07120 and
LOC_Os11g36190 showed higher probability (0.884) and the
remaining two interactions have moderate probability (>0.5). In the
interaction LOC_Os11g07120 � LOC_Os11g36180, the level of co-
expression is more than 0.5 (Supplementary Data S9). These results
clearly reinforced the validity of our findings.

4. Discussion

For a complex trait like flowering time, it is crucial to discover how
multiple genes regulate the trait. Epistasis analysis is recognized as
powerful technique for identifying novel genes and improves our un-
derstanding in the genetic regulation of complex trait.8,54,55,56

However, some reports argue the relative importance of epistasis be-
cause of the low contribution of genetic variation.12,57,58 The lack of
success to dig out big amount epistatic variance does not imply non-
existence of the epistatic gene action.59 Low contribution of epistasis
could be due to considering epistasis model for only the loci with

Figure 4. Gene ontology biological process treemap. Gene ontology biological process treemap of the annotated genes for rice flowering time. Sizes of the

rectangles are adjusted on the basis of the frequency of the GO terms (Supplementary Data S6) . This figure is available in black and white in print and in colour

at DNARES online.
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moderate or high marginal single-locus effects. Another important rea-
son could be avoiding the confounding due to population stratification
and polygenic effect in detecting epistatic interaction that leading to
false-positive or false-negative results.14,19 Therefore, exhaustive epis-
tasis analysis by controlling population stratification and polygenic ef-
fect is needed to uncover the underlying structure, genetic pathways
and understanding the function of complex genetic system.12

In this study, we used an adjusted epistasis analysis approach to
identify significant epistasis interaction under the condition of poly-
genic effects and population stratification. Extensive simulation stud-
ies showed that adjusted approach could improve epistasis analysis
results over classical approach in terms of power and FDR in the
case of polygenic effects and population stratification (Figs 1 and 2,
Supplementary Figs S11–S13, and Tables S1–S5). Epistasis detection
powers were relatively low under all simulation scenarios for classi-
cal model implemented in PLINK. Under all scenarios, the FDR of
PLINK method was higher than other two methods except the sce-
nario considering only polygenic effect (Fig. 2b and d). In this sce-
nario no significant difference was observed in FDR between models.
In previous GWAS also reported that the tests could control the
Type I error rates satisfactorily.60 These results refer that the effect of

polygenicity is responsible for repress the main effect as well as epis-
tasis effect which decrease the detection power if not controlled.

For reducing the computation cost, most of the time epistasis
analyses have been conducted for the SNPs, which are nominally sig-
nificant in the single-locus analysis.61,62 We performed whole ge-
nome pairwise epistasis analysis for rice flowering time and identified
589 epistatic interactions comprised 499 SNPs. By comparing to pre-
vious study result,28 we observed that none of the identified SNPs in
epistasis analysis were detected in the single locus analysis
(Supplementary Fig. S9), advocating the necessity of whole genome
epistasis analysis.

Different genomic features such as GO, biological pathway, PPIs,
SCL and tissue-specific expression can be used to characterize the
identified epistatic loci and these analyses could provide new insights
into the biological function of the candidate genes. For example, GO
and KEGG pathway enrichment analysis of the candidate genes
showed that signal transduction, response to stress, DNA metabolic
process are most significant GO BP terms, while DNA replication,
phenylalanine metabolism and ribosome biogenesis are the most rele-
vant pathways (Supplementary Data S5 and S7). Several genes were
not statistically significant in enrichment analysis but are involved in

Figure 5. Network of epistasis interaction for rice flowering time. (a) A Cytoscape network generated from SNPs interactions inferred following proposed

method for the rice flowering time. The nodes are represented to the SNPs and the shape of the nodes are symbolised on the basis of annotated genes those in-

volve in the rice or Arabidopsis flower related pathway: octagon (involved in rice flowering time or seed development pathway), diamond (involved in

Arabidopsis flowering time or flower development pathway) and rectangle (involved in both rice and Arabidopsis flower related pathway). The edges are col-

oured on the basis of the connected genes located in similar subcellular location or overlap with same GO terms and/or predicted for PPI and/or overlap of the

three genomic features (Supplementary Fig. S7, Data S8 and S9). Solid line for the edge indicating early flowering and dash line indicating delay flowering. (b)

Rice and Arabidopsis genes involved in flower pathway. (c) The overlap of GO domain and epistatic genes (d) the overlap of interacting genes in subcellular lo-

cation, gene ontology and PPI. This figure is available in black and white in print and in colour at DNARES online.

127M.A. Ahsan et al.

https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsy043#supplementary-data
https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsy043#supplementary-data
https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsy043#supplementary-data
https://academic.oup.com/dnaresearch/article-lookup/doi/10.1093/dnares/dsy043#supplementary-data


the BP cell cycle, cell growth, cell death, flower development, embryo
development and metabolism (Fig. 4) which are closely related to
rice flowering. The pathway DNA replication was found as signifi-
cant which helps H3K27me3 to take place at FLC during vernaliza-
tion and promotes flowering47,48 while phenylalanine metabolism
involves in biosynthesis and metabolism of amino acids those might
play vital roles in plant growth, development and reproduction.49,50

These enrichment analysis results indicate the involvement of the
candidate genes in flowering development.

Epistatic interactions represented by network can reveal the
global picture of gene connections. In our result it was observed that,
interacting genes formed hub sub-networks by connecting with hub
genes (Fig. 5) and these hub genes might have vital role for interac-
tion and may lead to important biological functions.63 As for exam-
ple, the hub gene bip110 were found for seed development42 and the
hub gene LOC_Os01g39100 localized to nucleus, encodes zinc finger
CCCH domain and might involve in photoperiodic control of flow-
ering time in rice like Ehd.64

Gene expression profiles have long plays fundamental role in
evolution65 and gene’s expression across tissue could help to reveal
the function and important role of those genes.66 We used the ex-
pression profile of candidate epistatic genes across different floral
tissues and found majority of them expressed in panicle and other
floral tissues (Fig. 6 and Supplementary Fig. S6), supporting the ge-
netic evidence for the identified epistatic genes involving in rice
flowering.

It is hypothesized that, to interact proteins or genes, the interac-
tome tend to be located in the same SCL, or in physically adjacent
SCLs.67 Moreover, similarity between two genes ontology have been
employed as an additional criteria of confidence for a predicted inter-
action.68 Different genomic features and biological information such
as PPI, SCL and GO terms were combined in the network to validate
our findings. A total of 392 (66.55%) interactions were found those
either located in the region of known PPI or/and overlapped with
SCL or/and GO terms (Fig. 5). Moreover, in different circumstances
proteins migrate between compartments and therefore could have in-
teraction partners in both locations.69 For instances, among the iden-
tified epistatic genes, 11 were found those involved in the BP protein
ubiquitination (Fig. 4 and Supplementary Data S6). It is well known
that protein ubiquitination alter their cellular location, affect their
activity and promote or prevent protein interactions.70,71 A signifi-
cant number of interacting genes were found between nucleus–cyto-
sol, plastid–cytosol and nucleus–plastid (Supplementary Fig. S8)
suggesting the proteins may have been switched to the cytosol from
other compartments.

We also found 37 SNPs harbouring 25 genes those involved in
rice or/and Arabidopsis (orthologue) flower related pathway among
them 12 genes were common (Fig. 5b). Six genes were found in
Arabidopsis floral pathway, indicating novel genes for rice and might
have association with rice flowering time. According to our epistasis
and functional analysis results, we may conclude the identified genes
might be biologically plausible for flowering time.

Figure 6. Subcellular location and tissue-specific expression. Subcellular location and tissue-specific expression of the candidate genes involved in G1 of the

network. Colour strip represents for chromosome, dot plot for predicted subcellular locations (cytosol, plastid, vacuole, extracellular, mitochondria, membrane,

nuclear, ER: endoplasmic reticulum, Golgi, golgi apparatus and peroxisome) and heatmap for six floral tissues (E1: Post-emergence inflor, E2: Pre-emergence

inflor, E3: Embryo-25DAP, E4: Anther, E5: Pistil and E6: Panicle) specific expression. Dendrogram showing clustering (hierarchical clustering) of genes in heat-

map is on the basis of tissue-specific expression. The colour scale bar of the figure represents log2 transformed FPKM values. Square on the dendrogram repre-

sents the corresponding annotated genes of the SNPs in Table 1. This figure is available in black and white in print and in colour at DNARES online.
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