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Abstract: Double-inlet left ventricle (DILV) is most frequent among univentricular atrioventricular
connections. In DILV, there is a single functioning ventricle, most commonly with left ventricular
structure. This chamber receives both atrioventricular valves and is connected to an outlet chamber
with morphologic features of the right ventricle. The great vessels are often transposed, and pul-
monary stenosis is seen in two-thirds of patients. The anatomy and pathophysiology can be defined
by echo-Doppler studies with a rare need for other imaging studies. The management is mostly
related to the nature of associated heart defects and the degree of pathophysiological abnormality.
When the infants present initially, treatment to address the hemodynamic issues is undertaken. Subse-
quently, these babies need staged total cavo-pulmonary connection, i.e., the Fontan procedure which
is undertaken in three stages; these stages are described in this review. The existence of inter-stage
mortality and post-Fontan complications is recognized and was reviewed. The paper concludes
that DILV can be successfully diagnosed with echo-Doppler studies and this heart anomaly can
be effectively treated with the currently prevailing medical, catheter interventional, and surgical
treatment practices.

Keywords: double-inlet left ventricle; single ventricle; Blalock–Taussig anastomosis; banding of the
pulmonary artery; inter-stage mortality; bidirectional Glenn operation; Fontan surgery

1. Introduction

The term univentricular heart was used to describe any heart defect with one (single)
effective ventricular cavity. These heart defects are single ventricle, common ventricle,
double-inlet left ventricle (DILV), and univentricular atrio-ventricular connections [1–3].
These variations altogether constitute ≤2% of all congenital heart defects (CHDs). In
these heart defects, the two atrioventricular valves enter one ventricular chamber, i.e.,
DILV, one common atrioventricular valve enters the single ventricle or only one of the
atrioventricular valves (mitral or tricuspid) enters the single ventricle with atresia of either
of the other atrioventricular (mitral or tricuspid) valves. DILV is the most common among
the univentricular atrioventricular connections. Hypoplastic left heart syndrome is not
included in this review. The aim of this article is to review the current status of the diagnosis
and management of DILV. Since the diagnosis and management of the other variants are
comparable and the same principles apply, they will not be reviewed separately.

2. Pathologic Anatomy

In patients with DILV, the main ventricular cavity usually exhibits left ventricular
morphology [1–3]. However, other ventricular morphologies, namely, right ventricle,
mixed, indeterminate, or undifferentiated variants have been described previously. The
main ventricular chamber is primarily a morphologic left ventricle. An outlet chamber with
morphologic characteristics of the right ventricle is attached to it. Both the atrioventricular
valves are usually normal. However, one of the atrioventricular valves may be atretic,
hypoplastic, or stenotic. In another variant, a common and single atrioventricular valve
exits into the single ventricle. Transposition of the great arteries is frequently seen with
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the aorta arising from the hypoplastic right ventricle and the pulmonary artery coming off
the main left ventricular chamber. l-transposition of the great arteries (l-TGA) occurs more
frequently than d-transposition of the great arteries (d-TGA). The great vessels have normal
relationship in nearly 30% of cases. Double-outlet right ventricle with both great vessels
coming off the somewhat small-sized right ventricle has also been reported in the literature.
Stenosis of the pulmonary valve/outflow tract may be found in two-thirds of patients.
Pulmonary stenosis is seen irrespective of the great artery arrangement. The pulmonary
outflow obstruction may be at the valvular or sub-valvular level. In some patients, the
pulmonary valve and/or artery may be atretic. Obstruction at the subaortic region has
been found in subjects with TGA and is associated with the small size of the ventricular
septal defect; more correct terminology is bulbo-ventricular foramen (BVF). In the embryo,
the BVF connects the bulbus cordis (future right ventricle) with the embryonic ventricle
(future left ventricle), thus, justifying use of this term. Cases with subaortic obstruction
commonly have coarctation of the aorta. Rarely, aortic arch interruption may also be seen
with DILV.

3. Pathophysiology

The systemic and pulmonary venous return via the right and left atria, respectively,
enter the single ventricle, and this admixture results in reduction in systemic arterial
saturation in all patients with DILV [1–3]. This mixed blood is then disseminated into the
systemic and pulmonary circuits largely based on their respective vascular resistances.
In subjects who have stenosis of the pulmonary outflow tract, the severity of pulmonary
stenosis determines the magnitude of blood flow into the lungs. In babies who have
pulmonary atresia, the blood flow to the lungs is supplied via a patent ductus arteriosus or
on occasion via aortopulmonary collateral arteries. In infants with no pulmonary outflow
tract obstruction, the pulmonary blood flow is not elevated at, and shortly after birth since
the resistance in the pulmonary circuit is high in the neonate. As the baby ages, the vascular
resistance in the pulmonary circuit and pressures in the pulmonary artery decrease with
successive increase in blood flow to the lungs with ensuing onset of congestive heart failure.
Babies with obstructed BVF will experience obstruction of the left ventricular outflow tract
in cases with transposition while babies without transposition develop pulmonary oligemia.
Aortic coarctation and interruption will impose additional hemodynamic burden to the
other pathophysiologic abnormalities.

4. Clinical Features

The clinical presentation is mostly determined by the type and severity of associated
heart defects, particularly, the severity of pulmonary outflow tract narrowing [1–3]. Infants
with significant pulmonary stenosis exhibit symptoms of cyanosis and increased respiratory
and heart rates (tachypnea and tachycardia). The symptoms of tachypnea and tachycardia
are physiologic responses to hypoxemia. Babies with severe pulmonary stenosis manifest
very early in the neonatal period, particularly if the ductus arteriosus naturally closes. An
increase in ventricular impulse along with a thrill at the upper left sternal border may be
felt. Auscultation reveals a single second heart sound and a grade III to IV/VI long systolic
ejection murmur along the upper left sternal border. In babies with pulmonary atresia,
pulmonary ejection murmurs are not auscultated. It is unusual to detect a patent ductus
arteriosus murmur. Findings indicative of heart failure are not seen.

Babies without pulmonary stenosis typically manifest slightly later than those infants
with severe pulmonary stenosis or atresia. They manifest with features of congestive heart
failure in a few weeks or months after birth. If there is cyanosis, it is usually mild; this is
secondary to large blood flow into the lungs. On precordial palpation, the cardiac impulses
are increased and hyperdynamic. On auscultation, the cardiac sounds are generally within
the normal range. An ejection systolic murmur of grade I to II/VI may be heard at the
left sternal border. A mid-diastolic flow murmur at the apical region is auscultated if the
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pulmonary blood flow is increased. Findings suggestive of heart failure are not observed in
the early newborn period but are seen in a few weeks or months later.

Some of these babies may also be detected because of abnormal fetal echocardiographic
studies or due to auscultation of a cardiac murmur in the newborn period. Or, they may
have been detected because of pulse oximetry screening.

Babies with associated aortic arch obstruction (interrupted aortic arch and aortic
coarctation) present early with signs of shock and decreased systemic perfusion as and
when the ductus arteriosus constricts.

5. Chest X-ray

The chest roentgenographic features vary and largely depend on the quantity of
pulmonary blood flow. Slight cardiac enlargement and reduced pulmonary blood flow are
observed in children with substantial pulmonary outflow tract obstruction. Cardiomegaly
of moderate to severe degree and augmented pulmonary blood flow are observed in infants
without pulmonary stenosis. In infants with l-TGA, a prominent and straight left heart
border may also be documented.

6. Electrocardiogram

There are no electrocardiographic features that are diagnostic of DILV. In some patients,
the electrocardiogram may demonstrate an atypical initial QRS vector with a qR pattern in
leads V1 and V2. In other patients, an Rs appearance is perceived in leads V5 and V6. Yet,
some other patients may exhibit right, left, or bi-ventricular hypertrophy, largely dependent
on the anatomic type. As mentioned above, none of the electrocardiographic abnormalities
are characteristic for DILV.

7. Echocardiogram

Echo-Doppler studies, in contrast to the chest X-ray and electrocardiographic findings,
are very useful in coming up with a diagnosis and in characterizing pathophysiologic abnor-
mality [2,3]. The lack of the ventricular septum can be demonstrated (Figures 1B, 2B and 3). The
connections of the atrioventricular valves (Figures 1B, 2B and 3) can be defined. Similarly,
ventriculo–arterial connections (Figure 4A) can be shown. The connection of the small-
ish right ventricle with the left ventricle via a BVF may be demonstrated by appropriate
transducer angulations as shown in Figure 4B. In patients with pulmonary stenosis, its
presence is usually documented by two-dimensional and color flow Doppler (Figure 4C)
echo studies. Continuous wave Doppler flow velocity recordings through this region
will help quantitate the degree of pulmonary stenosis by the use of a modified Bernoulli
equation; the higher the Doppler velocity, the greater the degree of obstruction.



Children 2022, 9, 1274 4 of 20

Figure 1. Selected video frames from two different patients. (A) shows the ventricular septum
between the ventricles in a normal child while (B) demonstrates the absence of the ventricular
septum. The figures show top-to-bottom reversal; this is because these figures were prepared prior to
the American Society of Echocardiography recommendation of the current way in which we display
the images. Left atrium (LA), left ventricle (LV), right atrium (RA), right ventricle (RV), and single
ventricle (SV) are labeled.

Figure 2. The 2D echo images from apical four-chamber projections of two children, one with two
ventricles (A) and another with a single ventricle (SV) (B). These figures were prepared after the
American Society of Echocardiography recommendations of the current way in which we display the
images. Left atrium (LA), left ventricle (LV), right atrium (RA), and right ventricle (RV) are marked.
Reproduced from Reference [4].
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Figure 3. The 2D echo images from apical four-chamber projections of a child who was diagnosed
to have double inlet left ventricle (DILV). (A) shows closed and (B) shows open atrioventricular
valves as indicated by arrows. No evidence for a ventricular septum is seen. The right ventricle
is not imaged in this projection (see Figure 4). Left atrium (LA) and right atrium (RA) are labeled.
Reproduced from Reference [3].

Figure 4. The 2D echo/color Doppler images from the parasternal long axis (A) and modified apical
(B,C) projections of the case illustrated in Figure 3, indicating transposed great arteries (A). Note the
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anterior location of the aorta (Ao) and posterior location of the pulmonary artery (PA) (A). The
connection of the right ventricular (RV) chamber with the double-inlet left ventricle (DILV) via a
bulbo-ventricular foramen (BVF) is seen in (B). This RV provides an origin to the aorta (Ao) as shown
in (B). The pulmonary artery (PA) arises from the main ventricle, DILV, as seen in (C). Turbulent flow
in the PA is seen (C) and is suggestive of obstruction. Continuous wave Doppler (not illustrated)
demonstrated increased Doppler velocity indicative of severe pulmonary narrowing. Reproduced
from Reference [3].

In patients with TGA, the dimension of the BVF and signs of obstruction across this
region should be examined. Obstruction at the BVF may either be seen at initial presen-
tation, progress subsequently through the normal course of the disease, or may progress
subsequent to the placement of the pulmonary artery band [5]. Aortic coarctation (Figure 5)
may be seen in some such cases. An interrupted aortic arch may also be demonstrated
when imaging the arch of the aorta from the suprasternal notch.

Figure 5. Selected video images secured from the suprasternal notch view of the arch of the aorta
(Ao) in two-dimensional (A) and color Doppler (B) pictures demonstrating coarctation of the aorta
(CoA) and hypoplastic transverse aortic arch (TAA). Descending aorta (DAo) is labeled. Reproduced
from Reference [6].

8. Other Imaging Studies

Other studies such as computed tomography, magnetic resonance imaging, cardiac
catheterization, and selective cineangiography are not needed since the echo-Doppler
studies can define all anatomic and pathophysiologic issues related to DILV [2,3]. However,
computed tomography and magnetic resonance imaging studies are nowadays routinely
performed as a part of the overall evaluation of all complex CHDs at some institutions.
Such studies usually confirm the echo findings. An angiographic example of DILV with
l-TGA (secured prior to the advent of current echo-Doppler capability) is shown in Figure 6.
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Figure 6. Selected cine frame in the postero-anterior projection of a single ventricular (SV) cine-
angiogram demonstrating simultaneous opacification of the main (MPA), left (LPA), and right (RPA)
pulmonary arteries from the SV and the aorta (Ao) from the right ventricle (RV). Note that the Ao is
positioned to the left of the MPA, indicating l-transposition of the great vessels. C1. Catheter in the
inferior vena cava (not marked) which was advanced into the right atrium (RA) and then into the SV;
C2. Catheter in the descending aorta (not marked).

9. Comparison of Different Diagnostic Methods

Chest X-rays and electrocardiograms are conventional studies performed for evalua-
tion of all CHDs and are valuable in assessing the size of the heart, evaluating pulmonary
blood flow and detecting pulmonary pathology, and in detecting arrhythmias. These
studies, however, do not supply a diagnosis of the cardiac lesion. On the contrary, echocar-
diography and Doppler are helpful in coming up with the diagnosis and in assessing
pathophysiologic abnormalities and can be performed bedside. Magnetic resonance imag-
ing and computed tomography studies also provide diagnostic information similar to echo
studies but require transportation of the baby to a radiology suite, sometimes needing
anesthesia. However, these studies can provide information that is not available by echo
alone. Cardiac catheterization with selective cineangiography is no longer performed
routinely for diagnostic purposes.

10. Therapy

Attempts were made initially to insert a prosthetic ventricular septum within the single
ventricle [7] and these procedures were unsuccessful and, therefore, such procedures were
abandoned and cardiologists/surgeons have searched for other methods of management.
Because of the existence of a single functioning ventricular chamber, the general aim is to
allow the single ventricular chamber to support the systemic circulation and attach the vena
cavae directly to the pulmonary arteries. This concept was originally described by Fontan,
Kruetzer, and their colleagues [8,9] in the early 1970s for treating patients with tricuspid
atresia. This concept and the procedure were subsequently applied to other cardiac defects
with a single pumping chamber including DILV. The types of procedures and when such
procedures are performed have progressed over the last few decades, as detailed in our
prior publications [10–15]. At the present time, the Fontan operation is undertaken by total
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cavo-pulmonary connection (TCPC), suggested by de Leval [16]. The Fontan operation
cannot be accomplished in the newborn and young babies since they have increased
pulmonary artery pressures and high pulmonary vascular resistance. Currently, the Fontan
procedure is undertaken in three stages [13–15] which will be reviewed hereunder.

10.1. Stage I

Stage I is the treatment initiated when the baby presents for the first time, usually as a
neonate or a young infant and is largely dependent on the pathophysiology of the defect
complex and the associated heart defects. Status of blood flow to the pulmonary circuit
and the existence of obstructive defects within or outside the heart determine the type of
initial therapy.

10.1.1. Reduced Pulmonary Blood Flow

Reduced pulmonary blood flow may be due to atresia or severe pulmonary outflow
obstruction. In these babies, the ductus arteriosus must be kept patent by intravenous
infusion of prostaglandin E1 (PGE1); the recommended dose is 0.05–0.1 mcg/kg/min.
Once the O2 saturations improve, the dosage of PGE1 is slowly, step-by-step, reduced to
0.02–0.025 mcg/kg/min in an attempt to decrease the adverse effects of PGE1. After the
infant is stabilized, further diagnostic studies are performed as necessary. Then, a steadier
method of perfusing the pulmonary circuit should be established. Several methods to
increase pulmonary blood flow have been employed earlier, as discussed previously [17].
Among such methods, the modified Blalock–Taussig shunt [18], implantation of a stent
within the ductus arteriosus [19–21], and balloon dilatation of the pulmonary valve (in
subjects with major narrowing of the pulmonary valve) [22–24] are more commonly used.
Nevertheless, most surgeons utilize the modified Blalock–Taussig shunt in which a Gore-
Tex graft is inserted connecting the subclavian artery with the pulmonary artery on the
same side [18] (Figures 7 and 8) to augment blood flow into the pulmonary circuit.

Figure 7. (A) Hand drawing (drawn by Dr. Taussig herself) illustrating the concept of the Blalock–
Taussig shunt [25] showing the anastomosis of the subclavian arteries (SCAs) to the left (LPA) or right
(RPA) pulmonary arteries, respectively. (B) Selected frame from a cine-angiogram of the Gore-Tex
graft (GG) showing modified Blalock–Taussig (BT) shunts [18]. This image demonstrates widely
patent BT shunt and excellent visualization of the pulmonary artery (PA). AAo, ascending aorta; LSA,
left subclavian artery.
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Figure 8. Selected video images secured with the transducer positioned in the suprasternal notch
illustrating the proximal part of the shunt (PS) with color Doppler (A). In another transducer
angulation (B), the Doppler flow from the distal portion of the shunt (DS) into both the right (RPA)
and left (LPA) pulmonary arteries is imaged. Reproduced from Reference [26].

10.1.2. Elevated Pulmonary Blood Flow

As mentioned in the “Clinical Features” section, a significant increase in blood flow
into the lungs results in heart failure. Such babies should first be treated with anti-
congestive medications [27]. Regardless of the adequacy of control of the congestive
state, banding of the pulmonary artery [28] (Figures 9 and 10) should be performed. This
would facilitate successful management of congestive heart failure. In addition, band-
ing normalizes the pulmonary artery pressure and resistance so that the infant can later
undergo successful second and third stages of Fontan surgery.

Figure 9. (A) Pictorial depiction of pulmonary artery banding (PB) for babies with severely augmented
blood flow into the lungs and heart failure. (B) Cine image from a pulmonary artery cine-angiogram in



Children 2022, 9, 1274 10 of 20

conventional lateral projection illustrating the narrowed segment of the pulmonary artery (PB)
indicated by an arrow in a baby who underwent PB. The catheter (C), left pulmonary artery (LPA),
nasogastric tube (NG), pigtail catheter (PG), and right pulmonary artery (RPA) are labeled.

Figure 10. Selected echo-Doppler images illustrating the pulmonary artery band (PAB). Note, narrow
PAB diameter by two-dimensional echo in (A) and by color Doppler imaging in (B). Continuous wave
Doppler reveals a significant gradient (81 mmHg) across the PAB (C). Reproduced from Reference [26].

10.1.3. Adequate Pulmonary Blood Flow

Infants with a minimally increased or close to normal pulmonary blood flow with O2
saturations in low 80s may not have symptomatology and manifest lower levels of cyanosis
than infants with decreased blood flow to the lungs. These babies, though rare, do not
need any medical or surgical therapy during early infancy and should be followed in an
out-patient setting until Stage II.

10.1.4. Inter-Atrial Obstruction

Inter-atrial obstruction is unlikely to be an issue in DILV babies with two normal
atrioventricular valves and in babies with one common atrioventricular valve emptying
into the single ventricle. However, if one of the atrioventricular valves is atretic or markedly
hypoplastic/stenotic, adequate-sized atrial septal communication is necessary. If clinical
features indicative of obstruction to systemic venous or pulmonary venous return manifest,
or if echocardiographic signs of a small-sized patent foramen ovale by two-dimensional
study or by increased Doppler flow velocity flow across it suggestive of obstruction of the
patent foramen ovale are seen, balloon atrial septostomy [29,30] should be performed.

In babies with inter-atrial obstruction and increased pulmonary blood flow, though
such a combination is not uncommon [31], a quick and expected reduction in pulmonary
vascular resistance occurs following relief of restrictive patent foramen ovale, whether such
a procedure is performed by transcatheter methods or by surgical septectomy [31]. Hence,
we recommended that banding of the pulmonary artery [28] be performed with no hesitancy
at the time of relief of obstruction across the atrial septum so that there is a good probability
of increasing the chances of controlling congestive heart failure, decreasing the pulmonary
artery pressures, and avoiding development of pulmonary vascular obstructive changes.

10.1.5. Inter-Ventricular Obstruction

Inter-ventricular obstruction secondary to constriction of BVF may be present when
the infants initially present as neonates or may develop subsequently [5], as mentioned
above. Such a diminution in the size of the BVF results in sub-pulmonary obstruction
in babies without TGA (rare) resulting in decreased blood flow to the pulmonary circuit
or subaortic obstruction in babies with TGA. In cases with sub-pulmonary obstruction,
the treatment is the same as that described in the section on “Reduced Pulmonary Blood
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Flow”. In subjects with subaortic obstruction, the narrowing is usually bypassed by a
procedure described by Damus, Kaye, and Stansel [32–34], commonly described as the
DKS procedure. This procedure consists of connecting the separated pulmonary artery
stump either directly to the aorta or via a Gore-Tex graft [32–34]. The pulmonary circuit
is perfused by performing a Blalock–Taussig shunt at the same time. Most frequently, the
DKS is accomplished in place of direct enlargement of the BVF. The DKS is performed at
initial presentation (Stage I) or while performing Stage II or Stage III, as and when BVF
constriction is recognized.

10.1.6. Aortic Arch Obstruction

Obstruction of the aortic arch may happen in the form of an interrupted aortic arch or
coarctation of the aorta.

Aortic Arch Interruption

Babies with aortic arch interruption have a complete lack of continuity between the
aortic arch and the descending aorta. This lesion is categorized into three types, namely,
A, B, and C on the basis of where the interruption occurs [35,36]. The treatment of an
interrupted aortic arch is by rapid intravenous infusion of PGE1 to maintain ductal patency
and restore perfusion to systemic circuit. After stabilization of the patient, an end-to-end
anastomosis of the interrupted aortic segments along with removal of the ductal tissue
should be performed [35,37].

Aortic Coarctation

In aortic coarctation, there is constriction of the descending aorta distal to the left
subclavian artery around the site of the patent arterial duct [38]. Initial management
is with intravenous infusion of PGE1 to open the ductus arteriosus, effectively bypass-
ing the coarcted segment. Long segment coarctations (Figure 5) require surgical therapy,
most commonly by resection of coarcted segment and re-anastomosis of resected aortic
segments, end-to-end [39,40], or by extended end-to-end arch aortoplasty [41] as deemed
appropriate [39–41]. Discrete coarctations may be treated by transcatheter balloon
dilatation [42–44] or by surgery [39–41], largely based on institutional preferences.

10.2. Stage II

Regardless of the kind of palliative procedure (s) performed early on, end-to-side join-
ing the superior vena cava with the right pulmonary artery surgically, i.e., the bidirectional
Glenn procedure [45] (Figures 11 and 12), is performed roughly at an age of 6 months. If
a previous Blalock–Taussig shunt exists, it is disconnected at the same time. Although
undertaking this Stage II procedure at 6 months of age is commonly agreed upon, the
bidirectional Glenn procedure may be undertaken close to 3 months, provided that normal
pulmonary artery pressure and anatomy can be demonstrated. If other abnormalities (see
the Inter-stage Issues section below) are detected, they are also addressed while performing
the bidirectional Glenn procedure.

In children with persistent left superior vena cava, a bilateral bidirectional Glenn
procedure (Figure 13) is accomplished mainly in subjects who have no left innominate vein
or if it is narrow. A similar bidirectional Glenn shunt can also be undertaken in children with
infrahepatic interruption of the inferior vena cava, irrespective of its association with azygos
or hemiazygos continuation, and such surgery is known as the Kawashima operation.
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Figure 11. Echo images secured with the transducer positioned in the suprasternal notch illustrating
the bidirectional Glenn shunt. Note that the superior vena cava (SVC) is draining into the right
(RPA) and left (LPA) pulmonary arteries shown by color Doppler (A). Low Doppler flow velocities
through the bidirectional Glenn shunt (B) indicate that the shunt is not obstructed. Reproduced from
Reference [26].

Figure 12. Cine-angiographic images illustrating bidirectional Glenn procedure in two separate
children (a,b). The unimpeded flow of blood from the superior vena cava (SVC) to the right (RPA) and
left (LPA) pulmonary arteries is demonstrated. Sternal wires related to previous surgical procedures
are shown and are not labeled. Reproduced from Reference [12].
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Figure 13. Selected cine-angiographic images demonstrating the bilateral bidirectional Glenn pro-
cedure. (a) This is an angiogram with contrast injection into the right superior vena cava (SVC)
illustrating rapid visualization of the right pulmonary artery (RPA). The unopacified blood from a
persistent left superior vena cava (PLSVC) is shown with an arrow in “(a)”. (b). This is an angiogram
from the PLSVC demonstrating rapid visualization of the left pulmonary artery (LPA). The unopaci-
fied blood from the right SVC is shown with an arrow in “(b)”. These figures demonstrate flow of
the contrast material from both the SVCs into the LPA and RPA, respectively, without obstruction.
Reproduced from Reference [12].

Before performing the bidirectional Glenn operation, one should ensure that the
pulmonary artery pressures are within normal limits and that the branch pulmonary
arteries are of acceptable size. This is to ensure adequate forward flow across the Glenn
shunt since there is no pumping chamber. Such assessment was performed in the past
with the use of cardiac catheterization and cine-angiographic studies. Recently, some
institutions have been employing echocardiographic, magnetic resonance imaging, or
computed tomography studies to achieve such assessment. If pulmonary arteries are
stenosed, they may be treated with balloon dilatation or stent placement, as thought to be
suitable. Alternatively, repair of pulmonary arteries may be performed while undertaking
the bidirectional Glenn procedure.

10.3. Inter-Stage Issues

In children with one ventricle, the systemic and pulmonary circuits work in parallel in
place of the normal in-series circulation and a subtle balance among the two circuits should
be preserved in order to maintain satisfactory perfusion of both systemic and pulmonary
circulations [15,46]. If such a balance cannot be maintained, substantial morbidity and
even mortality may occur in these susceptible infants. The reported mortality in between
the stages varied between 5 and 15% [15,47,48]. Some studies have detected the causes of
inter-stage mortality [48,49]. The identified problems are obstructed patent foramen ovale,
aortic arch obstruction, pulmonary artery stenosis or distortion, atrioventricular valve re-
gurgitation, blockage of the aorta-pulmonary shunts, and inter-current illnesses [47,49]. The
mortality in between the stages occurs more frequently between Stage I and Stage II than
between Stage II and Stage III. While these studies [47,49] largely involve hypoplastic left
heart syndrome patients, such data are similarly pertinent to other single ventricle patients
including DILV [14,15,48]. Policies to prevent and treat the inter-stage issues are intermit-
tent clinical evaluation along with echo-Doppler studies (and when necessary magnetic
resonance imaging and computed tomography studies) to identify the abnormalities listed
above and offer satisfactory treatment of the identified issues in an attempt to avert/lessen
the morbidity and mortality [14,15,48,50]. Careful periodic clinical and echocardiographic
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evaluation is most likely to accomplish this goal. Inter-current illnesses which result in
dehydration, disturbances in acid–base status, or elevated temperature may disrupt the
balance among the pulmonary and systemic circuits and the babies may develop critical
illnesses [47,48]. Prompt attention for addressing inter-current illnesses is germane [15,48].
A detailed discussion of how to address the inter-stage problems is beyond the scope of
this review and the interested persons are requested to review another paper published
recently [15].

10.4. Stage III

During the final Stage III, the blood from the inferior vena cava is rerouted into the
pulmonary artery and a fenestration is created in between the conduit connecting the
inferior vena cava with the pulmonary artery and the remaining atrial mass. The author
arbitrarily separates the procedure into Stage IIIA, consisting of diversion of the inferior
vena caval flow into the pulmonary artery and Stage IIIB during which the fenestration is
occluded [12,14].

10.4.1. Stage IIIA

During the Stage IIIA, the TCPC is performed by conveying the inferior vena caval
flow into the pulmonary artery either through a lateral tunnel method [51,52] or by an
extra-cardiac, non-valved Gore-Tex conduit [53,54] (Figures 14–17). This surgery is gen-
erally undertaken between one and two years of age, commonly one year following the
bidirectional Glenn procedure. At this time, the majority of surgeons appear to be favoring
an extra-cardiac non-valved conduit to complete the last stage of Fontan surgery. Most
surgeons seem to prefer creation of a fenestration, 4–6 mm in diameter, in between the
conduit and the remaining atrial mass [55,56] (Figures 16 and 17). Whereas creating a
fenestration while performing the Fontan surgery was initially recommended for patients
with increased risk for Fontan surgery failure [55,56], most pediatric cardiac surgeons
and pediatric intensivists favor fenestration because creating a fenestration while per-
forming the Fontan surgery reduces the mortality rates and decreases the postoperative
morbidity [12,14].

Figure 14. Echo images illustrating anastomosis of the inferior vena cava (IVC) with the conduit (C)
by 2D (A) and color flow (B) imaging. Note widely patent IVC–C junction both by 2D (A) and by
laminar flow with color Doppler (B). Reproduced from Reference [26].
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Figure 15. Echo images illustrating widely open conduit (COND) by 2D (A) and color flow imaging
(B). Note laminar flow in B which suggests a lack of obstruction in the COND. Reproduced from
Reference [26].

Figure 16. Echo images from an apical four chamber projection by 2D (A) and color flow (B) imaging
demonstrating cross-sectional images of the conduit (C) in (A,B) and a fenestration (Fen) in (B). Note
that the flow across the Fen is turbulent (B). Reproduced from Reference [26].
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Figure 17. Cine-angiographic images in postero-anterior (a) and lateral (b) views, illustrating Stage
IIIA of the Fontan operation rerouting the blood flow from the inferior vena cava (IVC) into the right
(RPA) and left (LPA) pulmonary arteries through a non-valved Gore-Tex conduit (Cond). The flow of
the contrast material via the fenestration (Fen) is indicated by the arrows in both a and b. HV, hepatic
veins; PG, pigtail catheter. Modified from Reference [12].

10.4.2. Stage IIIB

Stage IIIB is usually undertaken 6–12 months after Stage IIIA of the Fontan surgery; the
fenestration is generally occluded (Figures 18 and 19) by transcatheter methods [12,55–59].
Most devices utilized in the past to close atrial septal defects [55,57–59] were employed
for fenestration closure. Nevertheless, at the present time, Amplatzer Septal Occluders
(St. Jude Medical, Inc., St. Paul, MN—Abbott) are the most commonly used devices to
achieve fenestration occlusion. Immediately prior to closure of the fenestration, it should
be test occluded [57] to ensure that the patient tolerates the procedure. If there are other
shunts across the conduit, they are also addressed by transcatheter occlusion.

Figure 18. Cine-angiographic images in antero-posterior projection, illustrating Stage IIIA Fontan
operation transmitting blood flow from the inferior vena cava (IVC) into the pulmonary arteries through
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a non-valve Gore-Tex conduit (Cond). The fenestration (Fen) is indicated by an arrow in (a). The Fen
was occluded with an Amplatzer device (D), again marked by an arrow in (b) (Stage IIIB). The hepatic
veins (HV), left pulmonary artery (LPA), and right pulmonary artery (RPA) are labeled. Reproduced
from Reference [12].

Figure 19. Echo images from apical four chamber projection illustrating the location of the Amplatzer
device (D), indicated by arrows in (A,B). Note that there is no residual shunt demonstrated as shown
in B. Conduit (C) is labeled. Reproduced from Reference [26].

11. Post-Fontan Follow-Up

Subsequent to Fontan completion, clinical follow-up in an outpatient setting is essen-
tial; it is recommended that the patients are assessed at 1-, 6-, and 12-months following
Stage IIIB Fontan and yearly afterwards [12–15]. Inotropic and/or diuretic medications may
be given as necessary. Captopril or Enalapril (angiotensin-converting enzyme inhibitors)
may be administered to institute afterload reduction. Anticoagulation is provided with
platelet-inhibiting drugs such as aspirin (2–5 mg/kg/day) in pediatric-age patients and
Clopidogrel (75 mg/day) in adults. This drug therapy is instituted to prevent thrombo-
sis, instead of Warfarin. Such an approach is largely based on the data of a multicenter,
randomized clinical trial [60] which showed no substantial variance between Aspirin and
Warfarin regimens.

Several complications were noticed during the follow-up of the Fontan patients and
these include development of arrhythmias, onset of obstruction within the Fontan path-
ways, residual defects producing shunts, thrombus formation, embolism causing episodes
of cerebro-vascular accidents or transient ischemic attacks, cyanosis due to right to left
shunting, formation of collateral vessel connections between systemic and pulmonary
venous circuits, systemic venous congestion, and protein-losing enteropathy [12,13,61]. For-
tunately, these complications seem to occur less frequently in patients who are treated with
the currently used staged TCPC with extra-cardiac Gore-Tex conduit than patients who had
older types (atrio-pulmonary connection) of Fontan operations. During the follow-up evalu-
ation, the caregiver should watch for development of these complications and address them
as soon as they are detected. Detailed clinical, echocardiographic, and cardio-pulmonary
exercise testing [62] evaluations at the above-mentioned intervals should be performed and,
if necessary, other imaging studies should be secured. Discussion of the management of
these complications is beyond the scope of this presentation and the interested physicians
are referred to other papers on this topic published elsewhere [12,14,61,63]. Most patients
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do well, but an occasional patient may require other forms of therapy: namely, decreasing
the pressure in the conduit by making a fenestration in between the Gore-Tex conduit and
the atrial mass, changing the atrio-pulmonary type of Fontan to TCPC, initiating sequential
atrio-ventricular pacing [13–15], and cardiac transplantation [64–66].

12. Summary and Conclusions

Univentricular hearts are rare complex CHDs and constitute less than 2% of all CHDs.
DILV is the most common among univentricular atrioventricular connections and is dis-
cussed in this review. In this anomaly, there is one functioning ventricle which has left
ventricular morphology (most of the cases), receives both atrioventricular valves, and
gives origin to an outlet chamber with morphologic features of a right ventricle. The great
vessels are frequently transposed and pulmonary stenosis is present in the majority of
patients. Some of these patients have other obstructive lesions including BVF constriction
and coarctation of the aorta. DILV and associated defects can be defined by echo-Doppler
studies with occasional need for other imaging studies. Therapy is largely based on the
type of associated cardiac defects and the degree of hemodynamic abnormality that they
produce and were detailed in the review. These children are commonly treated with staged
TCPC (Fontan) in three stages. Stages I provides palliation of the hemodynamic abnormal-
ities detected at presentation, Stage II consists of the bidirectional Glenn procedure, and
Stage III is TCPC with an extracardiac conduit with fenestration; the latter is subsequently
closed by transcatheter methodology. The prevalence of inter-stage mortality is high (5%
to 15%); it is more frequent between Stages I and II than between Stages II and III. The
inter-stage mortality is largely related to: restrictive atrial communication; obstruction
of the aortic arch; distortion/stenosis of the pulmonary arteries; atrioventricular valve
insufficiency; shunt blockage; and inter-current illnesses. Intermittent clinical evaluation
along with echo-Doppler or other imaging studies to identify these anomalies should
be methodically pursued and when detected, they should be promptly addressed. Even
minor inter-current illnesses must be treated aggressively. Periodic follow-up after the
Fontan procedure while administering medications in some patients and vigilance to de-
tect complications of the Fontan surgery is necessary. It was concluded that DILV can be
successfully diagnosed with the currently available non-invasive techniques and the defect
can effectively be managed with the presently available medical, catheter interventional,
and surgical therapeutic methodologies.

Funding: This research received no external funding.

Institutional Review Board Statement: Institutional Review Boards approved the respective studies.

Informed Consent Statement: Informed consent was obtained from all subjects in-volved in the
respective studies.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Rao, P.S. Diagnosis and management of cyanotic congenital heart disease: Part II. Indian J. Pediatr. 2009, 76, 297–308. [CrossRef]

[PubMed]
2. Rao, P.S. Other cyanotic heart defects in the neonate. In Perinatal Cardiology: A Multidisciplinary Approach; Rao, P.S.,

Vidyasagar, D., Eds.; Cardiotext Publishing: Minneapolis, MN, USA, 2015; Chapter 37.
3. Rao, P.S. Other cyanotic heart defects in the neonate. In A Multidisciplinary Approach to Perinatal Cardiology; Rao, P.S.,

Vidyasagar, D., Eds.; Cambridge Scholars Publishing: New Castle upon Tyne, UK, 2021; Volume 2, pp. 474–509.
4. Rao, P.S. Cardiac malpositions including heterotaxy syndromes. In A Multidisciplinary Approach to Perinatal Cardiology; Rao, P.S.,

Vidyasagar, D., Eds.; Cambridge Scholars Publishing: New Castle upon Tyne, UK, 2021; Volume 2, pp. 432–466.
5. Rao, P. Subaortic obstruction after pulmonary artery banding in patients with tricuspid atresia and double-inlet left ventricle and

ventriculoarterial discordance. J. Am. Coll. Cardiol. 1991, 18, 1585–1586. [CrossRef]
6. Rao, P.S. Echocardiographic evaluation of neonates with suspected heart disease. In Perinatal Cardiology: A Multidisciplinary

Approach; Rao, P.S., Vidyasagar, D., Eds.; Cardiotext Publishing: Minneapolis, MN, USA, 2015; Chapter 11.

http://doi.org/10.1007/s12098-009-0030-4
http://www.ncbi.nlm.nih.gov/pubmed/19391004
http://doi.org/10.1016/0735-1097(91)90695-6


Children 2022, 9, 1274 19 of 20

7. Imai, Y.; Hoshino, S.; Koh, Y.S.; Nakazawa, M.; Momma, K. Ventricular septation procedure for univentricular connection of left
ventricular type. Semin. Thorac. Cardiovasc. Surg. 1994, 6, 48–55. [PubMed]

8. Fontan, F.; Baudet, E. Surgical repair of tricuspid atresia. Thorax 1971, 26, 240–248. [CrossRef]
9. Kreutzer, G.; Bono, H.; Galindez, E. Una operacion para la correccion de la atresia tricuspidea. In Proceedings of the Ninth

Argentinean Congress of Cardiology, Buenos Aires, Argentina, 31 October–6 November 1971.
10. Chopra, P.S.; Rao, P. Corrective surgery for tricuspid atresia: Which modification of Fontan-Kreutzer procedure should be used?

A review. Am. Heart J. 1992, 123, 758–767. [CrossRef]
11. Rao, P.S.; Chopra, P.S. Modification of fontan-kreutzer procedure for tricuspid atresia: Can a choice be made? In Tricuspid Atresia,

2nd ed.; Rao, P.S., Ed.; Futura Publishing Co.: Mount Kisco, NY, USA, 1992; pp. 361–375.
12. Rao, P.S. Fontan operation: Indications, short- and long-term outcomes. Indian J. Pediatr. 2015, 82, 1147–1156. [CrossRef]
13. Rao, P.S. Pediatric tricuspid atresia. Medscape Drugs Diseases. Available online: http://emedicine.medscape.com/article/900832

-overview (accessed on 29 July 2022).
14. Rao, P.S. Fontan operation: A comprehensive review. In Fontan Surgery; Khan, I., Ed.; InTechOpen: Rijeka, Croatia, 2020.

[CrossRef]
15. Rao, P.S. Single ventricle—A comprehensive review. Children 2021, 8, 441. [CrossRef]
16. De Leval, M.R.; Kilner, P.; Gewilling, M. Total cavopulmonary connection: A logical alternative to atriopulmonary connection for

complex Fontan operation. J. Thorac. Cardiovasc. Surg. 1988, 96, 682–695. [CrossRef]
17. Rao, P.S.; Covitz, W.; Chopra, P.S. Principles of palliative management of patients with tricuspid atresia. In Tricuspid Atresia, 2nd

ed.; Rao, P.S., Ed.; Futura Publishing Co.: Mount Kisco, NY, USA, 1992; pp. 297–320.
18. de Leval, M.; McKay, R.; Jones, M. Modified blalock-taussig shunt: Use of subclavian orifice as a flow regulator in prosthetic

systemic-pulmonary artery shunts. J. Thorac. Cardiovasc. Surg. 1981, 18, 112–119. [CrossRef]
19. Siblini, G.; Rao, P.S.; Singh, G.K.; Tinker, K.; Balfour, I.C. Transcatheter management of neonates with pulmonary atresia and

intact ventricular septum. Catheter. Cardiovasc. Diagn. 1997, 42, 395–402. [CrossRef]
20. Gibbs, J.L.; Orhan, U.; Blackburn, M.E.C. Fate of stented arterial duct. Circulation 1999, 99, 2621–2625. [CrossRef]
21. Alwi, M.; Choo, K.; Latiff, H.A.; Kandavello, G.; Samion, H.; Mulyadi, M. Initial results and medium-term follow-up of stent

implantation of patent ductus arteriosus in duct-dependent pulmonary circulation. J. Am. Coll. Cardiol. 2004, 44, 438–445.
[CrossRef]

22. Rao, P.S.; Brais, M. Balloon pulmonary valvuloplasty for congenital cyanotic heart defects. Am. Heart J. 1988, 115, 1105–1110.
[CrossRef] [PubMed]

23. Rao, P.S.; Wilson, A.D.; Thapar, M.K.; Brais, M. Balloon pulmonary valvuloplasty in the management of cyanotic congenital heart
defects. Catheter. Cardiovasc. Diagn. 1992, 25, 16–24. [CrossRef]

24. Rao, P.S. Pulmonary valve disease: Pulmonary valve in cyanotic heart defects with pulmonary oligemia. In Interventions in
Structural, Valvular and Congenital Heart Disease; Sievert, H., Qureshi, S.A., Wilson, N., Hijazi, Z., Eds.; CRC Press: Boca Raton, FL,
USA, 2014; pp. 297–308.

25. Blalock, A.; Taussig, H.B. The surgical treatment of malformations of the heart in which there is pulmonary stenosis or atresia.
J. Am. Med. Assoc. 1945, 128, 189–194. [CrossRef]

26. Rao, P.S. Echocardiography in the diagnosis and management of tricuspid atresia. Appl. Sci. 2021, 11, 9472. [CrossRef]
27. Rao, P.S. Congenital heart disease. In Conn’s Current Therapy; Rakel, R.E., Ed.; Saunders Co.: Philadelphia, PA, USA, 1989;

pp. 201–213.
28. Muller, W.H.; Danimann, J.F. The treatment of certain congenital malformations of the heart by the creation of pulmonic stenosis

to reduce pulmonary hypertension and excessive pulmonary blood flow; a preliminary report. Surg. Gynecol. Obstet. 1952, 95,
213–219.

29. Rashkind, W.J.; Miller, W.W. Creation of an atrial septal defect without thoracotomy. J. Am. Med. Assoc. 1966, 196, 991–992.
[CrossRef]

30. Rao, P.S. Neonatal catheter interventions. In Cardiac Catheterization and Imaging (From Pediatrics to Geriatrics); Vijayalakshmi, I.B.,
Ed.; Jaypee Publications: New Delhi, India, 2015; pp. 388–432.

31. Rao, P.S.; Kulangara, R.J.; Moore, H.V.; Strong, W.B. Syndrome of single ventricle without pulmonary stenosis but with left
atrio-ventricular vale atresia and interatrial obstruction. J. Thorac. Cardiovasc. Surg. 1981, 81, 127–132. [CrossRef]

32. Stansel, H. A new operation for d-Loop transposition of the great vessels. Ann. Thorac. Surg. 1975, 19, 565–567. [CrossRef]
33. Kaye, M.P. Anatomic correction of transposition of great arteries. Mayo Clin. Proc. 1975, 50, 638–640. [PubMed]
34. Damus, P.S. Correspondence. Ann. Thorac. Surg. 1975, 20, 724. [CrossRef]
35. Celoria, G.C.; Patton, R.B. Congenital absence of the aortic arch. Am. Heart J. 1959, 58, 407–413. [CrossRef]
36. Sharma, S.K.; Rao, P.S. Interrupted aortic arch. In The Encyclopedic Reference of Molecular Mechanisms of Disease; Springer:

Berlin/Heidelberg, Germany, 2008.
37. McCrindle, B.W.; Tchervenkov, C.I.; Konstantinov, I.E.; Williams, W.G.; Neirotti, R.A.; Jacobs, M.L.; Blackstone, E.H. Risk factors

associated with mortality and interventions in 472 neonates with interrupted aortic arch: A congenital heart surgeons society
study. J. Thorac. Cardiovasc. Surg. 2005, 129, 343–350. [CrossRef]

38. Rao, P.S. Coarctation of the aorta. In Secondary Forms of Hypertension; Ram, C.V.S., Ed.; Seminars in Nephrology; Kurtzman, N.A., Ed.;
W.B. Saunders: Philadelphia, PA, USA, 1995; Volume 15, pp. 81–105.

http://www.ncbi.nlm.nih.gov/pubmed/8167172
http://doi.org/10.1136/thx.26.3.240
http://doi.org/10.1016/0002-8703(92)90517-Y
http://doi.org/10.1007/s12098-015-1803-6
http://emedicine.medscape.com/article/900832-overview
http://emedicine.medscape.com/article/900832-overview
http://doi.org/10.5772/intechopen.92591
http://doi.org/10.3390/children8060441
http://doi.org/10.1016/S0022-5223(19)35174-8
http://doi.org/10.1016/S0022-5223(19)37668-8
http://doi.org/10.1002/(SICI)1097-0304(199712)42:4&lt;395::AID-CCD11&gt;3.0.CO;2-J
http://doi.org/10.1161/01.CIR.99.20.2621
http://doi.org/10.1016/j.jacc.2004.03.066
http://doi.org/10.1002/ccd.1810250105
http://www.ncbi.nlm.nih.gov/pubmed/1555222
http://doi.org/10.1002/ccd.1810250105
http://doi.org/10.1001/jama.1945.02860200029009
http://doi.org/10.3390/app11209472
http://doi.org/10.1001/jama.1966.03100240125026
http://doi.org/10.1016/S0022-5223(19)37671-8
http://doi.org/10.1016/S0003-4975(10)64433-5
http://www.ncbi.nlm.nih.gov/pubmed/1186295
http://doi.org/10.1177/0040571X3202514908
http://doi.org/10.1016/0002-8703(59)90157-7
http://doi.org/10.1016/j.jtcvs.2004.10.004


Children 2022, 9, 1274 20 of 20

39. Crafoord, O.; Nylin, G. Congenital coarctation of the aorta and its surgical treatment. J. Thorac. Cardiovasc. Surg. 1945, 14, 347–361.
[CrossRef]

40. Gross, R.E. Surgical correction for coarctation of the aorta. Surgery 1945, 18, 673–678.
41. van Heurn, L.W.; Wong, C.M.; Spiegelhalter, D.J. Surgical treatment of aortic coarctation in infants younger than three months:

1985 to 1990. Success of extended end-to-end arch aortoplasty. J. Thorac. Cardiovasc. Surg. 1994, 107, 74–85. [CrossRef]
42. Rao, P.S. Current status of balloon angioplasty for neonatal and infant aortic coarctation. Prog. Pediatr. Cardiol. 2001, 14, 35–44.

[CrossRef]
43. Rao, P.S.; Jureidini, S.B.; Balfour, I.C.; Singh, G.K.; Chen, S.-C. Severe aortic coarctation in infants less than 3 months: Successful

palliation by balloon angioplasty. J. Invasive Cardiol. 2003, 15, 203–208.
44. Rao, P.S. Neonatal (and infant) coarctation of the aorta: Management challenges. In Research and Reports in Neonatology; Dovepress:

Macclesfield, UK, 2020; Volume 10, pp. 11–22. [CrossRef]
45. Hopkins, R.A.; Armstrong, S.E.; Serwer, G.A. Physiological rationale for a bidirectional cavopulmonary shunt. A versatile

complement to the Fontan principle. J. Thorac. Cardiovasc. Surg. 1985, 90, 391–398. [CrossRef]
46. Yarrabolu, T.R.; Douglas, W.I. Single ventricle physiology. In A Multidisciplinary Approach to Perinatal Cardiology; Rao, P.S.,

Vidyasagar, D., Eds.; Cambridge Scholars Publishing: New Castle upon Tyne, UK, 2021; Volume 2, pp. 616–645.
47. Tweddell, J.S.; Hoffman, G.M.; Mussatto, K.A.; Fedderly, R.T.; Berger, S.; Jaquiss, R.D.B.; Ghanayem, N.S.; Frisbee, S.J.; Litwin, S.B.

Improved survival of patients undergoing palliation of hypoplastic left heart syndrome: Lessons learned from 115 consecutive
patients. Circulation 2002, 106, 82–89. [CrossRef]

48. Yates, M.C.; Rao, P.S. Pediatric cardiac emergencies. Emerg. Med. 2013, 3, 164. [CrossRef]
49. Bartram, U.; Grünenfelder, J.; Van Praagh, R. Causes of death after the modified norwood procedure: A study of 122 postmortem

cases. Ann. Thorac. Surg. 1997, 64, 1795–1802. [CrossRef]
50. Cashen, K.; Gupta, P.; Lieh-Lai, M.; Mastropietro, C. Infants with single ventricle physiology in the emergency department: Are

physicians prepared? J. Pediatr. 2011, 159, 273–277.e1. [CrossRef]
51. Puga, F.J.; Chiavarelli, M.; Hagler, D.J. Modifications of the fontan operation applicable to patients with left atrioventricular valve

atresia or single atrioventricular valve. Circulation 1987, 76, III 53–III 60.
52. Jonas, R.A.; Castaneda, A.R. Modified fontan procedure: Atrial baffle and systemic venous to pulmonary artery anastomotic

techniques. J. Card. Surg. 1988, 3, 91–96. [CrossRef]
53. Marcelletti, C.; Corno, A.; Giannico, S.; Marino, B. Inferior vena cava-pulmonary artery extra-cardiac conduit. A new form of

right heart bypass. J. Thorac. Cardiovasc. Surg. 1990, 100, 228–232. [CrossRef]
54. Marcelletti, C.; Iorio, F.S.; Abella, R.F. Late results of extra-cardiac Fontan repair. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card.

Surg. Annual. 1999, 2, 131–141. [CrossRef]
55. Bridges, N.D.; Lock, J.E.; Castaneda, A.R. Baffle fenestration with subsequent transcatheter closure. Modification of the Fontan

operation for patients at increased risk. Circulation 1990, 82, 1681–1689. [CrossRef]
56. Laks, H.; Pearl, J.M.; Haas, G.S.; Drinkwater, D.C.; Milgalter, E.; Jarmakani, J.M.; Isabel-Jones, J.; George, B.L.; Williams, R.G.

Partial fontan: Advantages of an adjustable interatrial communication. Ann. Thorac. Surg. 1991, 52, 1084–1095. [CrossRef]
57. Rao, P.; Chandar, J.S.; Sideris, E.B. Role of inverted buttoned device in transcatheter occlusion of atrial septal defects or patent

foramen ovale with right-to-left shunting associated with previously operated complex congenital cardiac anomalies. Am. J.
Cardiol. 1997, 80, 914–921. [CrossRef]

58. Goff, D.A.; Blume, E.D.; Gauvreau, K.; Mayer, J.E.; Lock, J.E.; Jenkins, K.J. Clinical advances in complex valvular disease: Outcome
of fenestrated Fontan patients after closure: The first 10 years. Circulation 2000, 102, 2094–2099. [CrossRef] [PubMed]

59. Boudjemline, Y.; Bonnet, D.; Sidi, D.; Agnoletti, G. Closure of extracardiac Fontan fenestration by using the Amplatzer duct
oc-cluder. Arch. Mal. Coeur Vaiss. 2005, 98, 449–454. [PubMed]

60. Monagle, P.; Cochrane, A.; Roberts, R.; Manlhiot, C.; Weintraub, R.; Szechtman, B.; Hughes, M.; Andrew, M.; McCrindle, B.W.;
Fontan Anticoagulation Study Group. A multicenter, randomized trial comparing heparin/warfarin and acetylsalicylic acid as
primary thromboprophylaxis for 2 years after the fontan procedure in children. J. Am. Coll. Cardiol. 2011, 58, 645–651. [CrossRef]
[PubMed]

61. Rao, P.S. Protein-losing enteropathy following the fontan operation (editorial). J. Invasive Cardiol. 2007, 19, 447–448. [PubMed]
62. Wang-Giuffre, E.W.; Doshi, U.H. Cardiopulmonary exercise test as a tool in surveillance after Fontan operation. Vessel Plus 2022,

6, 29. [CrossRef]
63. Rao, P.S. What an adult cardiologist should know about cyanotic congenital heart disease? J. Cardiovasc. Dis. Diagn. 2013, 1, 104.

[CrossRef]
64. Brancaccio, G.; Carotti, A.; D’Argenio, P. Protein-losing enteropathy after Fontan surgery: Resolution after cardiac trans-plantation.

J. Heart Lung Transpl. 2003, 22, 484–486. [CrossRef]
65. Gamba, A.; Merlo, M.; Fiocchi, R.; Terzi, A.; Mammana, C.; Sebastiani, R.; Ferrazzi, P. Heart transplantation in patients with

previous Fontan operations. J. Thorac. Cardiovasc. Surg. 2004, 127, 555–562. [CrossRef]
66. Jayakumar, K.A.; Addonizio, L.J.; Kichuk-Chrisant, M.R.; Galantowicz, M.E.; Lamour, J.M.; Quaegebeur, J.M.; Hsu, D.T. Cardiac

transplantation after the Fontan or Glenn procedure. J. Am. Coll. Cardiol. 2004, 44, 2065–2072. [CrossRef]

http://doi.org/10.1016/S0096-5588(20)31801-8
http://doi.org/10.1016/S0022-5223(94)70456-2
http://doi.org/10.1016/s1058-9813(01)00114-x
http://doi.org/10.2147/rrn.s189545
http://doi.org/10.1016/S0022-5223(19)38595-2
http://doi.org/10.1161/01.cir.0000032878.55215.bd
http://doi.org/10.4172/2165-7548.1000164
http://doi.org/10.1016/S0003-4975(97)01041-2
http://doi.org/10.1016/j.jpeds.2011.01.031
http://doi.org/10.1111/j.1540-8191.1988.tb00228.x
http://doi.org/10.1016/S0022-5223(19)35562-X
http://doi.org/10.1016/S1092-9126(99)70014-1
http://doi.org/10.1161/01.CIR.82.5.1681
http://doi.org/10.1016/0003-4975(91)91286-5
http://doi.org/10.1016/S0002-9149(97)00545-6
http://doi.org/10.1161/01.CIR.102.17.2094
http://www.ncbi.nlm.nih.gov/pubmed/11044426
http://www.ncbi.nlm.nih.gov/pubmed/15966592
http://doi.org/10.1016/j.jacc.2011.01.061
http://www.ncbi.nlm.nih.gov/pubmed/21798429
http://www.ncbi.nlm.nih.gov/pubmed/17906349
http://doi.org/10.20517/2574-1209.2021.98
http://doi.org/10.4172/2329-9517.1000104
http://doi.org/10.1016/S1053-2498(02)01231-7
http://doi.org/10.1016/j.jtcvs.2003.08.016
http://doi.org/10.1016/j.jacc.2004.08.031

	Introduction 
	Pathologic Anatomy 
	Pathophysiology 
	Clinical Features 
	Chest X-ray 
	Electrocardiogram 
	Echocardiogram 
	Other Imaging Studies 
	Comparison of Different Diagnostic Methods 
	Therapy 
	Stage I 
	Reduced Pulmonary Blood Flow 
	Elevated Pulmonary Blood Flow 
	Adequate Pulmonary Blood Flow 
	Inter-Atrial Obstruction 
	Inter-Ventricular Obstruction 
	Aortic Arch Obstruction 

	Stage II 
	Inter-Stage Issues 
	Stage III 
	Stage IIIA 
	Stage IIIB 


	Post-Fontan Follow-Up 
	Summary and Conclusions 
	References

