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Abstract. We propose a novel method which we call the Probabilistic
Infection Model (PIM). Instead of stochastically assigning exactly one
state to each agent at a time, PIM tracks the likelihood of each agent
being in a particular state. Thus, a particular agent can exist in multiple
disease states concurrently. Our model gives an improved resolution of
transitions between states, and allows for a more comprehensive view of
outbreak dynamics at the individual level. Moreover, by using a proba-
bilistic approach, our model gives a representative understanding of the
overall trajectories of simulated outbreaks without the need for numer-
ous (order of hundreds) of repeated Monte Carlo simulations.

We simulate our model over a contact network constructed using regis-
tration data of university students. We model three diseases; measles and
two strains of influenza. We compare the results obtained by PIM with
those obtained by simulating stochastic SEIR models over the same the
contact network. The results demonstrate that the PIM can successfully
replicate the averaged results from numerous simulations of a stochastic
model in a single deterministic simulation.

Keywords: Computational epidemics · Outbreak simulation · SEIR
model

1 Introduction

Two popular approaches for modeling infectious diseases are the simulation of
disease spread through stochastic agent-based modelling; and the use of deter-
ministic meta-population models [1,10]. Stochastic agent-based models represent
specific individuals or groups of individuals as agents. Each agent’s actions are
governed by a set of rules which may themselves be functions of each agent’s
characteristics, or of each agent’s environment. Interactions between pairs of
agents which emerge as each one follows these rules establishes a contact net-
work through which infectious disease can spread.
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Many meta-population models use a system of differential equations to
approximate the rate of change of the number of individuals in each disease
state (e.g., susceptible, infected, etc.). The mathematical description of the SEIR
(Susceptible, Exposed, Infected, and Recovered) framework1 is given in Fig. 1.
S, E, I, and R represent the number of individuals in Susceptible, Exposed,
Infected, and Recovered states respectively. The total population is then given
by N = S + E + I + R. Parameter β is the proportion of contacts between
members of S and members of I that lead to disease transmission. Parameter σ
is the rate at which the exposed become infected. Parameter γ is the recovery
rate at which the infected transition to the recovered state.

Fig. 1. A pictoral representation of the SEIR model, along with the modeling equations.

Meta-population disease models are computationally efficient due to their
deterministic nature. Further, closed form approximations of significant epi-
demiological parameters such as the basic reproduction number R0 (i.e. the
expected number of secondary cases caused by a single infectious individual in
a completely susceptible population) can be derived analytically using meta-
population models. However, these models assume a homogeneous mixing rate
within a homogeneous population. Thus, they do not take into account the diver-
sity of a population which could lead certain individuals to have more contacts
than others.

The stochastic agent-based approach incorporates population heterogeneity
which could lead to variations in the numbers of contacts corresponding to each
individual. Modeling interactions between pairs of individuals allows for flexibil-
ity in dictating specific patterns of behavior for individual agents. These models
use stochastic processes to decide which contacts (i.e., edges) represented in the
network lead to state transitions of agents (i.e., vertices) from Susceptible to
Exposed at each simulated time step. However, due to the reliance on stochastic
processes, a single run of an outbreak simulation using these models is not rep-
resentative of an expected outcome. Thus, these models often require hundreds
of repeated trials per unique set of parameters in order to properly estimate
trends in the data. The computation required for this repetition of trials limits
the scope of the analysis that can feasibly be done using these models. Analysis
using stochastic models is complicated further by the fact that it is difficult to

1 Births and deaths among the population are not considered in the model.
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derive closed-form expressions for important quantities such as the basic repro-
duction number R0 without direct experimentation.

Our work is motivated by the advantages and drawbacks of these two popular
epidemiological models. We introduce the Probabilistic Infection Model (PIM),
which combines the heterogeneity of the stochastic models with the computa-
tional efficiency and deterministic nature of the meta-population models. The
key idea of PIM is to calculate for each vertex in a contact network, the prob-
abilities of the four SEIR states associated with that vertex. To compute the
probability function, we leverage the research conducted in escape probabilities
by Thomas and Weber [16]. The probabilities for each state and each vertex
are compounded over windows of time corresponding to the latent and infec-
tious periods of the given disease. This allows for probabilistic values of different
states over time at the individual level and also provides the expected values of
the sizes of the SEIR sub-populations corresponding to each state. As an added
advantage, our proposed PIM model allows us to compute an expression for
R0(v0), which yields the value of R0 for specific single infective individuals in an
otherwise susceptible contact network.

We applied our model to a contact network created from class enrollment
data from the University of North Texas. We conducted our experiments with
three sets of disease parameters and compared the results with those produced
by the stochastic models. Our results demonstrate that the PIM simulations are
similar to those produced by averaging trials from Monte Carlo models. This
similarity is most notable when simulating diseases that are highly infectious.

2 The Probabilistic Infection Model

In this section we describe our proposed Probabilistic Infection Model. In Table 1,
we provide a list of the terms that we use in our computations, along with
their definitions. In the standard stochastic model, for a given contact event, a
vertex selects a single neighbor in the network to simulate a contact. Due to the
stochasticity of the model, the simulation must be run multiple times to estimate
how population sizes for each SEIR state change over simulated time.

In our probabilistic infection model, contact events occur between adjacent
vertices. Thus, all neighbors of a specific vertex have a probability to make a
contact. For any given contact event, we set the contact probability per pair
of vertices to be proportional to the weight of their corresponding edge. The
probability that vertex v will be contacted by vertex u as a result of a single
contact expended by u is Ψ(u, v) = w(u,v)∑

x∈N(v)
w(u,x) ; w(u, v) is the weight of the edge

(u, v) and N(v) is the set of neighbors of vertex v. Note that this function is not
commutative. The probability of a contact from vertex u to vertex v, will differ
from the probability of a contact from vertex v to vertex u, depending on each
vertex’s number of neighbors and weights of the adjacent edges.

Each time v is contacted by an infectious individual u, there is a transmission
probability T (u, v). The probability that vertex v is infected by u on day t as a
result of a single contact made by u is then given by
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δt(u, v) = Ψ(u, v) · It(u) · T (u, v) (1)

i.e. the product of the probability of contact between u and v, the probability
the u is infected on day t, and the transmission probability between u and v.

Table 1. Notation used in equations

Notation Definition

St(v) Probability that a vertex v is susceptible on day t

Et(v) Probability that a vertex v is exposed on day t

It(v) Probability that a vertex v is infectious on day t

Rt(v) Probability that a vertex v is recovered on day t

N(v) Set of neighbors of vertex v

σv The incubation period, time between exposed to infected state, for
vertex v

γv The infectious period, time between infected to recovered state, for
vertex v

Ωt(v) The number of contacts that vertex v makes on day t

Ψ(u, v) Probability that vertex u contacts vertex v as a result of a single
contact expended by u

δt(u, v) Probability that vertex v is infected by u on day t as a result of a
single contact expended by u

T (u, v) Probability that an infectious vertex u infects vertex v upon contact

Lemma 1. Given that a vertex v is in the exposed state, i.e. Ex(v) > 0 and
Ix(v) = 0 on day x, v will have It(v) > 0, i.e. be in an infectious state on day t
for some t > x, only if it was contacted by an infectious vertex within the critical
infection window of t − (γv + σv) + 1 and t − σv.

Proof. We note that since each partial infection received by v has a latent period
σv, the infection probability of v, for a day r prior to day t, will remain unchanged
for t−σv+1 ≤ r ≤ t. Moreover, because the infectious period is γv, any infections
that arose from interactions made by v on or before day t− (γv +σv) would have
expired by day t. Thus, taking these together, the time between t− (γv +σv)+1
and t − σv is the critical infection window where an infectious contact will
take v to an infectious state on day t.

Figure 2 depicts how this critical window affects the state of the vertex. For
ease of explanation, we consider the probabilities in this example to be 0 or 1,
which can occur if there is only one successful infectious contact. Consider the
vertex v to be in an exposed state (Ex(v) = 1) . In Case 1, if an infectious
contact occurs within the critical infection window, then v will be in an infected
state (It(v) = 1) on day t. If, Case 2, the infectious contact occurs after the
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critical infection window then v will remain in exposed state (Et(v) = 1) on day
t. If, Case 3, the infectious contact occurs before the critical infection window
then v will be in recovered state (Rt(v) = 1) on day t.

Fig. 2. A pictoral representation of the duration of infections with respect to the critical
infection window

2.1 Computing the Probability for Each State

We now derive the expressions for computing the probability of each state for
a given vertex v and a day t. We assume at the beginning of the simulation,
i.e. at day 0, all vertices are either completely (with 100% probability) in the
susceptible state or in the infected state.

Let Ωt(u) denote the number of contacts that u makes on day t. The proba-
bility of v not being infected due to one contact made by u on day t is 1−δt(u, v).
Taking all neighbors of v, the probability that v is not infected by any of the
neighbors is

∏

u∈N(v)

(1−δt(u, v))Ω(u), where we make the approximation that each

event where vertex v is not infected by some contact is independent.
Susceptible State: The probability that the vertex is in a susceptible state

is the probability that v is not infected by any of the neighbors since day 0 to
current day t. Thus;

St(v) =
t∏

n=0

∏

u∈N(v)

(1 − δn(u, v))Ωn(u) (2)

Exposed State: Any susceptible vertex that was infected σv (the incubation
period) days earlier will be exposed. Thus the probability of the exposed state
is the probability of being in the susceptible state on day max(0, t − σv) minus
the current probability of the susceptible state on day t.

Et(v) = Smax(0,t−σv)(v) − St(v) (3)
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Infectious State: Any susceptible vertex that was infected σv + γv (the incu-
bation period + infectious period) days earlier will be in an infectious state. The
probability of the exposed state is the probability of being in the susceptible
state on day max(0, t − σv) minus the current probability of the exposed state
on day t.

It(v) = Smax(0,t−(γv+σv))(v) − Smax(0,t−σv)(v) (4)

Recovered State: Any susceptible vertex that was infected before the critical
infection window t − (σv + γv) will have recovered by day t. The probability of
the recovered state is 1 minus the probability that the vertex was still susceptible
γv + σv days prior.

Rt(v) = 1 − Smax(0,t−γv−σv)(v) (5)

The total number of individuals ever infected at the end of an outbreak can
be computed by several methods. One method is to take the expected number
of recovered individuals by summing over RL(v) for all v, where L is the last
day of the simulation. Another way to approximate this quantity is to integrate
the expected number of infected individuals

∑
v∈V (G) It(v) over time and divide

the result by the disease’s infectious period to account for over-counting. Since
time is counted in discrete steps, this integral can be reduced to a sum.

Thus, given an outbreak of length L in days;

∑

v∈V (G)

RL(v) ≈
L∑

n=0

∑

v∈V (G)

1
γv

In(v) (6)

This is satisfied in standard Monte Carlo models as well as in our PIM model.
Moreover, using PIM, we can calculate the value of the basic reproduction

rate, R0, for a specific single infective v0 in a contact network where all other
vertices are susceptible, as follows:

R0(v0) =
∑

v∈N(v0)

(
1 −

γv0−1∏

n=0

(1 − T (v0, v)Ψ(v0, v)Ωn(v0)
)

(7)

Here the δ factor is replaced by just the product of transmission and contact
probabilities, as In(v0) = 1 for 0 ≤ n < γv0 .

2.2 Infection Redundancy Correction

One critical issue in using the PIM model is the effect of infection redundancy.
This problem is illustrated in Fig. 3. Consider on day t, vertex v is exposed to the
infection δt(u, v) through contact with vertex u. Once v reaches an infected state
on day t + σv, it will expose vertex u to the infection δt+σv

(v, u). However, note
that some of the infections contributing to the value of It+σv

(v) have originated
from u. This will result in u compounding its own probability of being infected,
by incurring these redundant infections.

In order to correct this effect, we modify the infection from vertex u to
vertex v by correcting each δt(u, v) to only factor in u’s probability of being
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u

δt(u, v)

v

u

δt+σv (v, u)

v

day t

day t + σv

Fig. 3. An illustration of the infection redundancy problem.

infectious as a result of contacts from vertices other than v. This ensures that
infections originating from u will not be returned to u by any of u’s direct
neighbors. Making this correction will improve the accuracy provided by PIM
at the expense of computation time.

To calculate this, consider

X =
max(0,t−σu)∏

n=max(0,t−(γu−σu−1))

∏

s∈N(u)

(1 − δn(s, u))Ωn(s)

and

Y =
max(0,t−σu)∏

n=max(0,t−(γu−σu−1))

(1 − δn(v, u))Ωn(v)

Then X represents the probability that u was not infected in the critical
infectious window by any of its neighbors (using the same logic as calculating
for St(v) earlier). Y represents the probability that u was not infected in the
critical infectious window by vertex v. Since the values are given as products,
the ratio of X

Y approximates the probability that u was not infected in the critical
infectious window by any of its neighbors and also discards the effect of infections
from v. The probability that u is infected as a result of contacts with vertices
other than v is then given by 1 − X

Y . We thus modify the probability that v is
infected by u on day t as a result of a single contact made by u to obtain

δt(u, v) = Ψ(u, v) · T (u, v) ·
(

1 −

max(0,t−σu)∏

n=max(0,t−γu−σu+1)

∏

s∈N(u)

(1 − δn(s, u))Ωn(s)

max(0,t−σu)∏

n=max(0,t−γu−σu+1)

(1 − δn(v, u))Ωn(v)

)

(8)
where the factor representing the probability that u was infectious on day t
has been modified to prevent infection redundancy. We note that this is an
approximate correction, as it is still possible for an infection to return to its
source after passing through multiple vertices. Since an infection moving down
a path of vertices gets exponentially smaller in magnitude as the length of the
path increases, it is expected that the effect would be increasingly negligible for
higher order corrections.
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3 Experimental Results

In this section we present our experimental results of comparing the simulation
of PIM with the stochastic Monte-Carlo simulations.

Constructing the Contact Network. Creating a reliable contact network
presents a challenge in computational epidemiology [7]. This is because such
as traditional methods of determining contacts such as surveys or sensor based
tracking cannot scale. Surveys are also affected by recall bias, where part par-
ticipants may not remember all of their contacts. As a solution to this problem,
we observe that many of the daily routines of individuals are based on scheduled
activities, such as going to meetings, going to appointments, attending classes
etc. Thus if we have information about these scheduled activities we can cre-
ate a reliable network of most of the frequently occurring contacts. Based on
this assumption, we created a contact network of students based on the class-
enrollment data for the Fall 2016 semester at the Discovery Park campus of the
University of North Texas.

Our data contained information of 3700 students. Each student was assigned
a randomly generated id to identify them uniquely, as well as to anonymize the
data. The dataset contained the student ids and the classes in which each stu-
dent was enrolled. Online classes and classes without regular meeting times were
excluded. From this data, we constructed a graph where each student was a
vertex, and two vertices (students) were connected by an edge if the correspond-
ing students shared a class. The weight of an edge was the average duration of
shared class time between the students.

3.1 Experiment Parameters

Experimentation was done with the parameters described in Table 1, and were
run with the graph constructed from class-enrollment data. For each vertex v,
3 contacts were given per hour of average time spent in class over all weekdays
by the student represented by v. Of the disease-specific parameters, the incuba-
tion and infection rates, measles parameters were adapted from [8,15], whereas
influenza parameters were adapted from [2,4,6]. Two sets of parameters were
chosen for influenza that varied in length of incubation and infectious periods.
We used the same values of σ, γ and T for all vertices and edges.

In PIM simulations, a single vertex v0 was selected to be infected, with
In(v0) = 1 for 0 ≤ n < γ, and Rn(v0) = 1 for n ≥ γ. The remaining ver-
tices were initially completely susceptible. The probability values of the states of
each vertex were obtained by computing the functions given in Eqs. 2–5 over the
time period. The number of infected individuals at time t in days was determined
by summing over It(v) for all v ∈ V (G). We terminated each simulation after
day t if outbreak activity was sufficiently small, i.e. the total number of vertices
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Table 2. The parameters used in simulations.

Disease parameters

Disease Incubation Infectious Transmission Number of contacts

period (σ) in days period (γ) in days probability (T ) (Ωi(v)) in hours−1

Measles 8 5 .9 3

Influenza 1 2 5 .1 3

Influenza 2 1 3 .1 3

Fig. 4. States of the vertices in the contact network based on the PIM model on day 35.
Yellow vertices are fully susceptible, whereas redder vertices have a higher probability
of being infected at a given time. Green vertices have a probability of 95% or greater
of being recovered. From left to right, the values are for Measles (left), Influenza 1
(middle) and Influenza 2 (right). (Color figure online)

with high probability of exposed and infected states was small. We quantitatively
measured this using the following conditions:

∑

v∈V (G)

Et(v) + It(v)) ≤ 0.5

|
∑

v∈V (G)

(Et(v) + It(v)) −
∑

v∈V (G)

(Et−1(v) + It−1(v))| ≤ 0.5

The simulations were terminated if both these conditions were satisfied. In addi-
tion, simulations were not terminated before day 20. These bounds were selected
to ensure that simulations do not end prematurely. Figure 4 shows the state of
the vertices in the network as per the PIM model, on day 35. As can be seen,
the measles epidemic spreads faster and takes longer time to recover (more red
and less green nodes) than the influenza models.

In simulations using the stochastic model, the same graph, seed vertex of
infection and parameters were used. 100 trials were run with a seeded random
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number generator for each of the three disease parameters. Contacts between
vertices occurred randomly, with the probability of contact between vertices u
and v for any given contact event proportional to w(u, v). Disease transmis-
sion occurred with probability T at the time of a successful contact between a
susceptible and infectious individual.

3.2 Results

The results demonstrate that PIM produces results most similar to those pro-
duced by stochastic Monte Carlo models for diseases that are more highly infec-
tious. As seen in Table 3, the Monte Carlo model and PIM produced similar
values for the total number of infected individuals in an outbreak. Additionally,
while the peak number of infected individuals and day of peak infection produced
by PIM tended to be within one standard deviation of the mean values produced
by the Monte Carlo trials, for all disease parameters, PIM outbreaks peaked
slightly earlier and higher than the average Monte Carlo trial. This becomes
more apparent when the parameters for less infectious diseases are used.

We believe that earlier peaks are observed partially due to an artifact of
the stochastic method. In stochastic trials with low parameters, no outbreak of
the disease is likely to be observed until multiple days have passed. Outbreak
trials with peaks that are lower, occur later and show greater variance in the
peak day of infection are observed as a result. This contrasts with PIM, which
allows the seed of infection to partially contact multiple neighbors concurrently,
possibly causing slightly earlier and higher peaks of infection. In addition, the
approximation that events are independent may propel the initial spread of
infection at a slightly greater rate, an effect that would be most noticeable for
less infectious diseases.

Table 3. A comparison of outbreak attributes between PIM and the averaged values
of 100 stochastic simulations. The standard deviation is shown for each averaged value.

Probabilistic infection model

Disease Total infected Peak infected Day of peak

Measles 3644.21 1059.10 38

Influenza 1 2930.08 787.61 31

Influenza 2 2077.31 454.38 22–23

Monte carlo model

Disease Total infected Peak infected Day of peak

Measles 3647.95 ± 0.22 1021.35 ± 132.12 38.58 ± 2.39

Influenza 1 3011.49 ± 38.04 755.90 ± 72.12 34.03 ± 4.21

Influenza 2 2094.01 ± 109.01 394.72 ± 47.80 27.01 ± 4.60
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Fig. 5. A comparison between PIM and 100 simulations of the stochastic SEIR model
with respect to the number of infectious individuals over the entire simulation. From
left to right, the curves are for Measles (left), Influenza 1 (middle) and Influenza 2
(right). (Color figure online)

Figure 5 demonstrates that the attributes of the SEIR curves produced by PIM
are similar to those of the average outbreak curves obtained from 100 stochastic
trials. This similarity is most notable in simulations of highly infectious diseases,
such as when using the parameters for measles; in Fig. 6 left, we show the sim-
ulation time series using measles parameters for all four states, showing that the
PIM model closely follows the averaged curves of 100 trials of the stochastic model.
In addition, we compare the infectious state probability curves of individual ver-
tices produced by the PIM model: Fig. 6 right shows the It(v) curves produced by
PIM for the seed infected node as well as for 100 vertices that were randomly sam-
pled from the set of initially susceptible vertices for the measles simulation. Most
vertices reached their peak probability of being infected around day 38, which is
consistent with the peak day of infection given in Fig. 5.

Influence of Correction Parameter. We now test by how much the correction
due to redundant infection (as discussed in Sect. 2.2) affects the simulations.
Figure 7 shows a comparison between simulations with PIM when correction the
probability of vertex v infecting vertex u uses the modified version as in Eq. 7,
and one where the original Eq. 1 is used. For each v0, the percent difference
between the peak number of infected individuals produced by PIM with and
without correction was less than 0.2%, suggesting that one-level-deep backflow
correction is a sufficient approximation.

4 Related Research

Computational epidemics is an active area of research. Several software tools for
simulating disease over a population have been developed including EpiSims [9]
and DiSimS [5] that use high performance computing, and Broadwick [14] which
uses a sequential, but modular framework that can be modified for various dis-
ease parameters. Our PIM method can also be implemented to be parallel, and
thus can be executed on large networks.
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Fig. 6. State of vertices in the measles simulation. Left: Comparison between the num-
ber of vertices in each state over time for PIM and the Monte Carlo (MC) method
averaged over 100 trials. Right: Probability of infection of 100 randomly selected ver-
tices of the network. The peak occurs around days 35–45.
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Fig. 7. The percent difference between the peak number of infected individuals is shown
for simulations for measles produced by PIM with and without backflow correction for
every possible initially infectious v0.

The challenges of creating reliable contact networks are discussed in [7].
In 2008 [13], a cross-sectional survey on 7,290 participants conducted by differ-
ent public health institutes or commercial companies was conducted to build
a contact network. Another study [12], performed through the 2009 H1N1 flu
pandemic on a population of 36 people based on communication using sensors.
However, neither of these methods are scalable as compared to our method of uti-
lizing scheduled data. Recent studies have also looked into the dynamic contact
networks [3] and the effect of misinformation in developing contact networks [11].
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5 Conclusion and Future Work

In this paper, we introduce a probabilistic infection model for simulating the
spread of infectious diseases on contact networks. Our model encapsulates the
advantages of both deterministic meta-population models as well as stochastic
models on contact networks. We further propose a method of obtaining contact
networks based on the scheduled activities of individuals in specific environments
(e.g., businesses, schools, etc.), and simulate our model on a contact network built
from a university’s class enrollment data. Comparisons of the results obtained
from stochastic modelling and PIM on the contact network of university students
demonstrate that our approach produces similar results to the stochastic model,
but with significantly reduced computational overhead. Moreover, our model
gives a tractable framework for probabilistic analysis of outbreak dynamics at
the individual level.

As part of our future work, we will experiment with latent periods, infectious
periods and transmission probabilities selected from distributions rather than as
static values. In addition, we will pursue further studies of vaccine distribution
and other individual-level outbreak intervention strategies by applying PIM’s
approximations for individual SEIR state-probabilities.
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