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Aging is coupled with a progressive decline in cognitive abilities in a 
significant percentage of individuals. Such age- related cognitive im-
pairment (ACI) is characterized by declines in the overall gray matter 
and hippocampus volumes (Harada et al., 2013; Sanford, 2017), with 
some changes commencing at ~20 years of age (Terry & Katzman, 
2001). Many factors increase ACI risk, including neuroinflammation, 
diabetes, depression, hypothyroidism, number of surgeries, and can-
nabis use (Canet et al., 2003; Kodali et al., 2021; Luboshitzky et al., 
1996; Shrivastava et al., 2011; Simen et al., 2011). Aging is also asso-
ciated with pathological cognitive declines, including mild cognitive 
impairment (MCI) and Alzheimer's disease (AD). MCI is typified by a 
greater cognitive decline than ACI but not severe enough to hinder 
daily living activities (Sanford, 2017). While ACI does not typically 
progress to dementia, a significant percentage of individuals with 
MCI progress into dementia or AD within five years of MCI diagnosis 

(Gauthier et al., 2006; Petersen et al., 2001). MCI affects 3– 19% of 
adults older than 65 years old and is likely caused by several fac-
tors, including cholinergic neuronal loss, cerebrovascular disease, 
and amyloid deposition (Gauthier et al., 2006; Mufson et al., 2000). 
Dementia is typified by more severe and widespread cognitive and 
mood deficits, substantially interfering with daily function (Gauthier 
et al., 2006). The overall incidence of dementia has declined due to 
modifiable environmental factors (Satizabal et al., 2016). However, 
the number of people with dementia has enlarged due to increased 
life expectancy resulting from advances in public health, improved 
management of behavioral and social risk factors, and progress 
against cardiovascular diseases (Olshansky, 2015; Shetty et al., 
2018).

An accurate diagnosis of ACI versus MCI, MCI versus AD, or 
predicting the progression of MCI into AD is challenging. Currently, 
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Abstract
Objectively diagnosing age- related cognitive impairment (ACI), mild cognitive im-
pairment (MCI), and early- stage Alzheimer's disease (AD) is a difficult task, as most 
cognitive impairment is clinically established via questionnaires, history, and physi-
cal examinations. A recent study has suggested that monitoring a miRNA triad, miR- 
181a- 5p, miR- 146a- 5p, and miR- 148a- 3p can identify ACI and its progression to MCI 
and AD (Islam et al., EMBO Mol Med. 13: e14997, 2021). This commentary deliberates 
findings from this article, such as elevated levels of the miRNA triad in the brain im-
pairing neural plasticity and cognitive function, the efficiency of measuring the miRNA 
triad in the circulating blood diagnosing MCI and AD, and the promise for improving 
cognitive function in MCI and AD by inhibiting this miRNA triad. Additional studies 
required prior to employing this miRNA triad in clinical practice are also discussed.
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the diagnostic criteria are primarily clinical and done with a com-
prehensive history, mini- mental state examination (MMSE), and neu-
rological investigations. However, MMSE scores cannot objectively 
diagnose cognitive impairment because the results depend on pa-
tients’ attention state, cooperation, educational, and occupational 
background. On the contrary, laboratory and radiological studies 
are mostly done to rule out the other causes of dementia (Knopman 
et al., 2003). Specific biomarkers that could be used consistently to 
diagnose ACI, MCI, or AD are yet to be discovered. This commentary 
discusses the recent findings by Islam and colleagues that the cogni-
tive status of individuals could be gleaned from studying changes in 
a microRNA (miRNA) triad in the circulating blood (Islam et al., 2021).

miRNAs are ~22 nucleotides long, have a post- transcriptional/
translational regulatory target, and have diverse sequences. miRNAs 
can have tissue- specific expression patterns, and hence, changes in 
the characteristic of miRNAs are often used as a marker for disease 
(Zeng, 2006). miRNA genes are transcribed by RNA polymerase II 
to create a primary miRNA, which is processed first in the nucleus 
to form a 70- nucleotide long hairpin precursor and then cleaved 
by dicer to form the mature 22 nucleotide miRNA (Du & Zamore, 
2005; Bushati & Cohen, 2007). A dicer protein complex also forms 
the RNA- induced silencing complex (RISC), which incorporates the 
mature miRNA to block, cleave or degrade the target mRNA (Bushati 
& Cohen, 2007).

Aging can influence the miRNA expression, with at least 115 miR-
NAs showing an association with aging (Somel et al., 2010). In mice, 
70 different miRNAs display upregulation during brain aging, with 
27 of those targeting genes of mitochondrial complexes involved in 
oxidative phosphorylation (Li et al., 2011). Changes in miRNA ex-
pression have also been considered to track the development of 
MCI. For example, the miR- 132 family can distinguish MCI from ACI 
with 84– 94% sensitivity and 96– 98% specificity (Sheinerman et al., 
2013). Furthermore, in AD, four miRNAs, miR- 31, miR- 93, miR- 143, 
and miR- 146a, are downregulated in the serum (Dong et al., 2015). 
Therefore, decreased or increased levels of specific miRNAs could 
be used as a biomarker of MCI or AD.

In an elegant study, Islam and colleagues discovered changes in 
a miRNA triad in the circulating blood that can assist in tracking the 
development of cognitive impairment and identify CNS patholog-
ical states that can progress into a declined cognitive state (Islam 
et al., 2021). In a mouse model, the study found a link between age- 
related spatial reference memory impairment and 55 differentially 
expressed miRNAs in the circulating blood. Notably, three miRNAs, 
miR- 181a- 5p, miR- 146a- 5p, and miR- 148a- 3p, capable of impact-
ing decisive processes in preserving cognitive function in healthy 
people (Marioni et al., 2018), were substantially elevated. Since 
the principal biological activities affected by the expected targets 
of miR- 181a- 5p, miR- 146a- 5p, and miR- 148a- 3p comprise neuronal 
plasticity, GTPase- mediated signal transduction, and the response 
to transforming growth factor- beta, among others, the results sug-
gested that these three miRNAs likely control vital processes linked 
to cognition that are dysregulated in ACI. Further analysis revealed 
that this miRNA triad also undergoes significant upregulation in the 

mouse brain from 13.5 to 16 months, coinciding with the learning 
impairment seen at 16.5 months. Such results implied that the in-
creased expression of the miRNA triad preceded age- related cog-
nitive decline, and increased blood levels of the three microRNAs 
denote pathophysiology in the brain (Islam et al., 2021).

Cell culture analysis revealed that miR- 181a- 5p and miR- 148- 3p 
were highly expressed in neurons. Administration of miR- 181a- 5p 
and miR- 148- 3p mimics led to downregulation of genes linked to 
synaptic plasticity and learning and memory, consistent with the role 
of these miRNAs in neurodegenerative diseases (Chen et al., 2019; 
Stepniak et al., 2015). In contrast, miR- 146a- 5p was highly enriched 
in microglia, and increased levels of miR- 146a- 5p in microglia cultures 
resulted in the downregulation of genes linked to ncRNA processing 
and protein folding, the upregulation of proinflammatory cytokines, 
interleukin- 1 beta (IL- 1b), IL- 6, and tumor necrosis factor- alpha (TNF- 
alpha) and downregulation of the antiinflammatory cytokine IL- 10, 
consistent with the role of miR- 146a- 5p in inflammatory processes 
(Maschmeyer et al., 2018). Next, the authors compared gene expres-
sion changes mediated by the miRNA triad overexpression with the 
gene expression observed in CK- P25 mice, a mouse model for AD- 
like neurodegeneration (Fischer et al., 2005) and human AD patients. 
The results suggested that the genes and proteins downregulated in 
AD patients strongly overlapped with the downregulated genes ob-
served in response to miR- 148a- 3p and miR- 181a- 5p. Furthermore, 
the addition of mimic oligonucleotides representing the 3- miRNAs 
to mouse primary hippocampal cell cultures reduced the number of 
synapses and aberrant neuronal activity (Islam et al., 2021).

The above results collectively suggested that elevated levels 
of miR- 181a- 5p, miR- 146a- 5p, and miR- 148a- 3p are detrimental to 
neural plasticity and cognitive function. Islam and associates next 
explored whether the miRNA triad in the circulating blood could de-
tect MCI and AD (Islam et al., 2021). Indeed, the miRNA triad was 
significantly elevated in MCI patients compared to healthy patients, 
implying that elevated levels of these miRNAs signify increased cog-
nitive impairment. Moreover, the study revealed a higher expression 
of miRNA triad in MCI patients advancing to AD, highlighting that 
the miRNA triad is elevated in MCI but undergoes further upregula-
tion in MCI patients at risk for developing AD. Thus, the detection of 
the miRNA triad in the circulating blood could serve as a specific mo-
lecular marker to infer the cognitive status of patients. Furthermore, 
injection of a combination of inhibitory oligonucleotides against 
the miRNA triad into the hippocampus of 16.5- month- old mice 
resulted in the downregulation of the three miRNAs and better 
hippocampus- dependent memory function. When the inhibitory 
oligonucleotides against the miRNA triad were injected into the 
hippocampus of 7- month- old amyloid precursor protein/presenilin 
(APPPS) transgenic mice, a model of AD, the three miRNAs were 
downregulated, and hippocampus- dependent learning and memory 
functions were improved. Thus, the miRNA triad could be used not 
only as a biomarker for detecting cognitive decline but also as a po-
tential therapeutic target (Islam et al., 2021).

Currently, when a patient sees a doctor for age- related cognitive 
problems, there are hardly any objective tests that could be used to 
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precisely diagnose ACI, MCI, or AD. Typically, the physician takes a 
history, performs routine examination, and conducts cognitive func-
tion tests that are available at their disposal to assess the possibility 
of ACI, MCI, AD, or any other conditions causing cognitive impair-
ment. Laboratory and radiological studies are only being utilized to 
determine causes such as vitamin B12 deficiency or hypothyroidism. 
There are no specific tools to track the extent of cognitive decline or 
differentiate ACI, MCI, and AD. Therefore, the finding by Islam and 
colleagues that a triad of specific miRNAs is upregulated in MCI and 
increases further in MCI patients progressing into AD has implica-
tions (Islam et al., 2021). The study also suggested that the miRNA 
triad could be a therapeutic target. Inhibition of the miRNA triad ex-
pression led to a better cognitive function in both aged and AD mice. 
Thus, investigation of this triad of miRNAs in the blood can serve as 
a specific biomarker to screen patients at risk of developing patho-
logical cognitive impairment and track patients who already have 
MCI and are at risk of developing AD. Such screening also allows the 
application of promising therapeutic interventions to at- risk patients 
or to halt the progression of cognitive decline in patients diagnosed 
with MCI or early- stage AD.

In summary, Islam and colleagues discovered a miRNA triad that 
promises to serve as a biomarker for ACI, MCI, and AD and a poten-
tial target for improving cognitive function in MCI and AD patients 
(Islam et al., 2021). A cartoon summarizing the utility of evaluating 
the miRNA triad in the circulating blood as a biomarker of MCI and 
AD, and the miRNA triad serving as one of the mechanisms under-
lying impaired neural plasticity and cognitive function in MCI and 
severe cognitive dysfunction in AD is illustrated (Figure 1). Although 
these findings are exciting, additional studies are needed before 
routinely employing this miRNA triad in clinical practice. The spec-
ificity of the triad of miRNAs for diagnosing MCI and AD need to 
be further validated with larger sample sizes. Furthermore, there is 
a concern that the three miRNAs suggested as biomarkers of MCI/

AD are also implicated in several other pathological processes. For 
example, miR- 181a- 5p has been associated with colorectal can-
cer (Han et al., 2017), osteoarthritis (Xue et al., 2018), and obesity 
(Lozano- Bartolomé et al., 2018). Significantly, all three miRNAs are 
associated with gastric cancer (Chen et al., 2013; Li et al., 2014; Song 
et al., 2018).

The above issues raise the possibility that an underlying un-
related medical issue elevating the miRNA triad could lead to a 
false- positive MCI/AD diagnosis, causing a devastating effect on 
the patient. Therefore, steps need to be implemented to evaluate 
the extent of misdiagnosis frequency and probability before being 
widely recommended in clinical practice. A standardized extent of 
miRNA triad elevation needs to be established in MCI/AD patients 
lacking other diseases vis- à- vis MCI/AD patients with gastric cancer 
or patients with only gastric cancer. Moreover, the extent of miRNA 
triad elevation in aged and AD animal models with or without gastric 
cancer or other disease states might reveal statistically significant 
differences in miRNA triad levels in MCI/AD versus MCI/AD plus 
other diseases (Benedetti et al., 2021; Carella et al., 2021; Moreira- 
Costa et al., 2021). Also, when patients present with other signif-
icant medical issues along with symptoms of MCI/AD, the degree 
of miRNA triad elevation would need to be assessed and compared 
to a standard set of values to discern whether the range falls within 
MCI/AD only, MCI/AD plus a concomitant medical condition, or only 
a confounding medical condition. However, such interpretation as-
sumes that the degree of miRNA triad elevation is directly linked to 
the number of disease conditions a patient has. Alternatively, the 
measurement of the miRNA triad in autopsied brain samples from 
patients who have passed away from disease conditions unrelated 
to MCI/AD may provide the extent of the false- positive rate if a cer-
tain percentage of patients exhibit elevated miRNA triad levels in the 
absence of any behavioral and pathological hallmarks of MCI/AD. 
Calculations can also be done for false negative, true negative, and 

F I G U R E  1 The	cartoon	shows	the	
promise of measuring miRNA triad 
(miRs, 181a- 59, 146a- 5p, and 148a- 3p) 
in the circulating blood as a biomarker 
of mild cognitive impairment (MCI) and 
Alzheimer's disease (AD), and the miRNA 
triad serving as one of the mechanisms 
underlying impaired neural plasticity and 
cognitive function in MCI and severe 
cognitive dysfunction in AD. Increased 
risk of MCI progression into AD with 
higher levels of miRNA triad expression 
and the promise of an inhibitory 
oligonucleotide against the miRNA triad in 
improving cognitive function in MCI and 
AD are also indicated
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true- positive rates with a similar study design. After such statistical 
studies provide a standardized value of miRNA triad elevation in dif-
ferent conditions, clinicians can better interpret miRNA triad results 
and explain them to the patient.

Finally, regarding the use of miRNA triad as a potential target 
for improving cognitive function in MCI and AD patients, additional 
studies investigating the effects of administration of miRNA triad 
inhibitors on other organ systems are needed. For example, miR- 
181a- 5p has been shown to inhibit cancer cell migration and pre-
vent cancer metastasis. Therefore, global inhibition of this miRNA 
to treat MCI or AD may be detrimental, exposing the patient to on-
cogenic effects (Li et al., 2015). Transient brain- specific inhibition 
of the miRNA triad is likely an alternative to avoid adverse systemic 
effects, which needs the development of advanced noninvasive 
approaches to accomplish that. Nonetheless, the miRNA triad is an 
exciting new development that promises to serve as a biomarker for 
ACI, MCI, and AD, with relevant additional investigations.
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