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Abstract: Alzheimer’s disease (AD) is the most prevalent cause of dementia and is pathologically
characterized by the presence of parenchymal senile plaques composed of amyloid β (Aβ) and
intraneuronal neurofibrillary tangles of hyperphosphorylated tau protein. The accumulation of
Aβ also occurs within the cerebral vasculature in over 80% of AD patients and in non-demented
individuals, a condition called cerebral amyloid angiopathy (CAA). The development of CAA
is associated with neurovascular dysfunction, blood–brain barrier (BBB) leakage, and persistent
vascular- and neuro-inflammation, eventually leading to neurodegeneration. Although pathologically
AD and CAA are well characterized diseases, the chronology of molecular changes that lead to their
development is still unclear. Substantial evidence demonstrates defects in mitochondrial function in
various cells of the neurovascular unit as well as in the brain parenchyma during the early stages of
AD and CAA. Dysfunctional mitochondria release danger-associated molecular patterns (DAMPs)
that activate a wide range of inflammatory pathways. In this review, we gather evidence to postulate
a crucial role of the mitochondria, specifically of cerebral endothelial cells, as sensors and initiators of
Aβ-induced vascular inflammation. The activated vasculature recruits circulating immune cells into
the brain parenchyma, leading to the development of neuroinflammation and neurodegeneration in
AD and CAA.

Keywords: mitochondria; Alzheimer’s disease; cerebral amyloid angiopathy; inflammation; neu-
rodegeneration; amyloid; endothelial cells

1. Introduction

With an increase in life expectancy, there has been an increase in the incidence of age-
related diseases, particularly Alzheimer’s disease (AD) which is the most prevalent cause
of dementia, representing around 60–80% of all dementia cases. Approximately 6.2 million
Americans are currently living with AD, and due to the increase in the aging population,
it is expected that this number will grow to 13.8 million by 2060 [1]. Currently, there is
no effective therapy for AD. In 2021, after nearly twenty years of attempts to develop
new therapeutic strategies, aducanumab, a human monoclonal antibody that selectively
targets aggregated amyloid-β (Aβ), has been approved by the FDA (through the acceler-
ated approval pathway) for treatment of patients with AD [2]. However, the therapeutic
effectiveness of aducanumab is still debated by many research groups [2–4]. The high
prevalence of AD among aged individuals and lack of effective therapy denotes the impor-
tance of developing new therapeutics, and to do so we need to have a better understanding
of the complexity of the disease.

Clinical manifestations of AD include progressive cognitive impairment, which de-
velops after years of asymptomatic pathological and molecular changes. Pathologically,
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AD is characterized by the presence of extracellular senile plaques of aggregated Aβ and
intraneuronal neurofibrillary tangles of hyperphosphorylated tau protein [5]. AD is a mul-
tifactorial disease and vascular dysfunction is one of the most common co-pathologies that
may also be an important contributor to disease progression [6,7]. Indeed, in over 80%
of AD patients, and to a smaller extent in non-demented individuals, Aβ is also found
around cerebral vessels, a condition known as cerebral amyloid angiopathy (CAA) [8].
The vascular accumulation of Aβ occurs mostly in cortical and leptomeningeal arteries and
capillaries and is often associated with cerebral microhemorrhages, increasing blood–brain
barrier (BBB) permeability, and inflammation [9,10]. However, it is important to note that
CAA is not exclusive to amyloidosis due to Aβ [11,12].

The cerebrovascular accumulation of Aβ results in neurovascular dysfunction, neu-
roinflammation, and progression of the neurodegenerative process. Elevated levels of IL-6,
TNFα, and IL-1β have been detected in animal models of amyloidosis, such as Tg2576
and 3xTg mice, and in the cerebrospinal fluid (CSF) of AD patients [13,14], indicating the
presence of sustained inflammation [15] that accompanies AD pathology. In particular,
cerebrovascular inflammation has been shown in animal models of amyloidosis as well
as in post-mortem human brains [16,17]. These perivascular inflammatory processes may
precede and stimulate parenchymal plaque deposition [17]. Indeed, increasing evidence
suggests that vascular dysfunction can occur before classical AD pathology [18–21]. Vas-
cular inflammation leads to immune cell extravasation into the brain parenchyma and
widespread neuroinflammation, which has been shown to positively correlate with the
levels of Aβ in mouse models of amyloidosis and in AD patients [22–24]. Altogether, recent
studies indicate the importance of understanding key vascular events that contribute to
the development of neuroinflammation and neurodegeneration.

Amongst the vascular mechanisms that may contribute to neurodegeneration, al-
terations in the metabolism and function of cerebrovascular mitochondria play a crucial
role in Aβ-induced dysfunction of endothelial cells (EC), BBB permeability, and inflam-
mation [25–28]. Therefore, the preservation of mitochondrial function is an attractive
strategy towards the prevention of age-associated neurodegenerative diseases such as AD
and CAA [29]. In this review, we summarize and discuss previous studies investigating
the role of cerebrovascular mitochondria, particularly EC mitochondria, as mediators of
neuroinflammation in CAA and AD. Additionally, we will focus on the role of Aβ-induced
mitochondrial dysfunction in ECs, how this may initiate the inflammatory process in the
neurovascular unit, and discuss the pathways that may lead to neurodegeneration.

2. Endothelial Cells and the Neurovascular Unit

The neurovascular unit (NVU) is composed of ECs lining the vascular lumen, smooth
muscle cells (SMC) present in the arteries and veins, pericytes, and astrocytes. Cerebrovas-
cular cells are also connected with other brain cells such as neurons and microglia and
thus, the NVU provides the structural and functional relationship between the brain and
cerebral vasculature. Particularly, it participates in the maintenance and regulation of
cerebral circulation, vascular permeability through the BBB, and mediation of brain in-
flammatory pathways. Therefore, NVU dysfunction is a prominent and early feature in
the AD brain [30–34]. The BBB serves as a barrier for the movement of molecules from
the blood to the cerebral parenchyma. Its unique structure permits the regulation of the
passage of molecules such as peptides, toxins, nutrients, and metabolites between the
blood and the brain. This function of the BBB is primarily mediated by cerebrovascular
ECs, which differ from other ECs due to the lack of fenestrations, low pinocytic activity,
the expression of tight junctions (TJs, one of the characteristics of the BBB), and high
mitochondrial content [35,36]. Indeed, the high mitochondrial mass in comparison to
peripheral ECs indicates the significant role played by the mitochondria in the metabolism
and function of cerebral ECs [37]. Notably, mitochondrial content was found to be reduced
in the brains of patients with AD [38]. Mitochondria have been shown to play a crucial role
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in the downstream pathways mediating EC damage during AD and CAA [39], vascular
inflammation, and neurodegeneration [40–44].

3. Failure of Aβ Clearance and CAA Development

Sequential cleavage of the amyloid precursor protein (APP) by β-secretase and γ-
secretase generates Aβ peptides, which are released from neurons and other brain cells into
the brain parenchyma. Aβ peptides aggregate to form oligomers, fibrils, and eventually
the amyloid plaques observed in AD brains. The main Aβ peptides found in the brain
parenchyma and around the cerebral vessels are Aβ40 and Aβ42, although the processing
of APP leads to the generation of multiple other Aβ fragments varying in length and
aggregation profile [28,45]. It is speculated that the accumulation of Aβ in the brain
and around cerebral vessels may be due to increased APP cleavage, Aβ aggregation,
as well as decreased Aβ clearance, or combinations of these mechanisms. Due to the
lack of conventional lymphatic vessels in the brain, clearance of Aβ from the parenchyma
into the lymphatic system is thought to occur through intramural periarterial drainage
(IPAD) [46–48] and/or through the glymphatic system [49–51]. Clearance of metabolites
through IPAD occurs primarily along the basement membranes of cerebral capillaries and
arteries. The precise mechanism of the movement of molecules and peptides, including
Aβ, along the basement membrane of the cerebral vasculature, remains unclear. Several
mechanisms such as arterial pulsations and vascular smooth muscle cell contractility have
been proposed [52,53]. The glymphatic system hypothesis is based on the observation that
tracers injected into the subarachnoid CSF readily flow into the brain along the outside
of the penetrating blood vessels. This suggests that CSF flows into the brain tissue along
para-arterial spaces and exits via a para-venous route, aided by astrocytic end-feet through
aquaporin 4 [49,54]. The meningeal lymphatic vessels might provide another important
clearance route for brain products, which is recently gaining relevance in neurodegenerative
disorders such as AD [55,56].

Thus, multiple routes participate in cerebral clearance of waste products including
Aβ. These pathways may act in parallel or in a complementary fashion to maintain
brain homeostasis [57]. Most importantly, failure of Aβ clearance by one or multiple
mechanisms may lead to Aβ deposition along the cerebral vasculature (CAA), leading
to NVU dysfunction. The accumulation of Aβ around the cerebral vasculature occurs
in a progressive fashion: first, Aβ surrounds the vessels in the adventitia and tunica
media, provoking vascular SMC damage and eventually death. Later, as the accumulation
progresses, the tunica media is replaced by Aβ fibrils which later may lead to EC death,
BBB breakdown, and microhemorrhages [58]. Indeed, early studies report that in human
AD brains, the accumulation of Aβ fibrils in cerebral vessels provokes EC degeneration and
reduction in vessel size [59]. This vascular dysfunction, in turn, is associated with cerebral
hypoperfusion, neuroinflammation, parenchymal Aβ accumulation, plaque formation, and
AD progression. Therefore, it is important to understand the effects of Aβ accumulation
on the cerebral vasculature and its role in the progression of the neurodegenerative process
in the brain of patients with AD and CAA.

4. Activation of Endothelial Inflammatory Pathways by Aβ

Inflammatory pathways may be activated through pattern recognition receptors
(PRRs) such as membrane-bound toll-like receptors (TLRs) and C-type lectin receptors
(CLRs), as well as cytoplasmic NOD-like receptors (NLRs) and retinoic acid inducible
gene I (RIG-I)-like receptors (RLRs). PRRs are expressed by immune and non-immune
cells such as fibroblasts, epithelial cells, and ECs. They are responsible for the detection
of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular
patterns (DAMPs). The PAMPs are foreign molecules derived from viruses and bacteria
whereas DAMPs are danger signals originating from the organism and are associated with
cellular damage [60]. In addition to the PRRs, DAMPs can also activate non-PRR such
as the receptor for advanced glycation end products (RAGE) and triggering receptors
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expressed on myeloid cells (TREMs) [60]. The activation of PRRs and non-PRRs by DAMPs
is also referred to as sterile inflammation, due to the absence of pathogens. Interestingly,
many of the DAMPs associated with sterile inflammation are of mitochondrial origin,
highlighting the crucial role of mitochondria in neuroinflammation [26].

In ECs, Aβ transport across the plasma membrane is regulated by the low-density
lipoprotein receptor-related protein 1 (LRP1) to deliver the peptide from the brain parenchyma
to the blood. LRP1-mediated endocytosis regulates cellular Aβ uptake by binding to
Aβ either directly or indirectly through its co-receptors or ligands. Transport of Aβ
from the periphery to the brain is mediated by RAGE [61,62]. RAGE is a receptor of
the immunoglobulin superfamily that is found on the luminal side of ECs of the BBB.
RAGE-mediated transport of Aβ across the BBB may lead to Aβ deposition in the brain
parenchyma and, in addition, induce inflammatory responses [62]. The pro-inflammatory
effects of the Aβ–RAGE interaction have been extensively studied in various cell and
animal models [62–64].

Activation of inflammatory responses by ECs is characterized by the expression of
cellular adhesion molecules (CAMs), such as vascular cell adhesion molecule-1 (VCAM-1),
intercellular adhesion molecule-1 (ICAM-1), and E-selectin as well as disruption of the
BBB, and release of pro-inflammatory cytokines. The presence of DAMPs has been shown
to induce a pro-inflammatory state in ECs that leads to the recruitment of immune cells,
triggering the further release of pro-inflammatory cytokines and activation of resident
microglial cells [24]. One of the most important mediators of the inflammatory state in
ECs is the NLR family pyrin domain containing 3 (NLRP3). Elevated levels of NLRP3
have been observed in human AD brains [65] and animal models of amyloidosis [66].
Cytosolic NLRP3 can be activated indirectly through its capabilities of sensing intracellular
danger associated molecules, such as mitochondrial DAMPs, or directly by the endothelial
CD36 receptor upon Aβ binding [67,68]. Activation of NLRP3 and the recruitment of the
adaptor protein, apoptosis-associated speck-like protein containing a caspase recruitment
domain (ASC), induces the catalytic cleavage of pro-caspase-1 to active caspase-1. Active
caspase-1, in turn, cleaves pro-inflammatory cytokines pro-IL-1β, pro-IL-18, and gasmerdin
D, producing their active forms. Gasmerdin D forms non-selective pores in the plasma
membrane to facilitate the release of cytokines, and thus activates pyroptosis, a form of
inflammatory cell death [60,69,70]. It has been suggested that NLRP3 can also activate
the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) which, in turn,
increases the transcription of pro-inflammatory cytokines [71] and thereby initiates a pos-
itive feedback loop to further stimulate the inflammatory response. Interestingly, NFκB
is also capable of downregulating the endothelial nitric oxide synthase (eNOS), thereby
decreasing NO bioavailability and vascular relaxation [72].

5. Pathological Consequences of Aβ on Endothelial Mitochondria

Cerebrovascular ECs are the gatekeepers of brain health through the maintenance
of the BBB and regulation of movement of ions and molecules across the blood–brain
interface. Due to their important role in brain cell health, alterations of mitochondrial
structure and function in cerebrovascular ECs induce cell dysfunction, loss of BBB integrity,
and inflammation, eventually leading to cell death [27,39,73–75]. Cerebrovascular ECs
contain more mitochondria than any other EC in the body. Mitochondria account for
8–11% of cytoplasmic volume in brain ECs, compared to only 2–5% in non-cerebrovascular
ECs [35,37].

In CAA, Aβ can induce EC apoptosis through the direct binding and activation of the
TRAIL death receptors (DR) DR4 and DR5 [76]. These effects appear to be preferentially
mediated by oligomeric and/or protofibrillar amyloid species, while species that have fast
aggregation dynamics and quickly form fibrils, as well as Aβ peptides that remain mostly
monomeric, fail to induce EC apoptosis. Fibrillar species, however, are involved in other EC
damage pathways, such as increases of BBB permeability [28]. The activation of the TRAIL
DRs by Aβ oligomers and protofibrils triggers the extrinsic apoptotic pathway, leading
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to cleavage of caspase 8 to its active form, cleavage of BH3-interacting domain death
agonist (BID), and release of cytochrome C (CytC) from mitochondria with subsequent
activation of the intrinsic apoptotic pathway. Indeed, loss of mitochondrial membrane
potential, a key event preceding CytC release, was observed in the presence of Aβ, along
with the release of reactive oxygen species (ROS) [27,39,77–79]. Interestingly, the CD36
receptor appears to be involved in the progression of CAA and loss of TJ proteins in Tg2576
mice, a model characterized by amyloid parenchymal deposition as well as CAA, through
NADPH oxidase-mediated increases in ROS [80,81], however the contribution of CD36 to
Aβ-induced mitochondrial dysfunction in ECs is unclear.

Additionally, in animal models of amyloidosis, it has been shown that the mitochon-
drial permeability transition pore (mPTP) is an important contributor to mitochondrial
dysfunction, neuronal death, and cognitive dysfunction in AD models [82], but only a few
studies have investigated the potential effects of mPTP in mediating the detrimental effects
Aβ on cerebrovascular ECs [83]. In the following sections, we will address the possible
contribution of the mPTP, mitochondrial ROS (mtROS), and mitochondrial DNA (mtDNA)
to inflammation during Aβ pathology.

6. Mitochondrial DAMPs as Initiators of Inflammation

The mitochondrion is thought to have originated from an endosymbiotic uptake of
an α-proteobacteria [84]. The immune system serves as a protective wall against cellular
damage and pathogens; therefore, it is of no surprise that mitochondrial fragments may
trigger an immune response. In turn, activators of inflammatory pathways also trigger
mitochondrial damage such as mtROS production and loss of mitochondrial membrane
potential [85], potentially resulting in a vicious cycle between mitochondrial dysfunction
and inflammation. In addition, inflammatory mediators could also amplify mitochon-
drial dysfunction, as NLRP3-mediated Caspase-1 activation was shown to induce mtROS
production, loss of mitochondrial membrane potential, and mitochondrial membrane per-
meabilization, resulting in the release of mitochondrial DAMPs in bone-marrow-derived
macrophages (BMDM) [86]. Several mitochondrial components have been identified as
DAMPs (Figure 1). In this section, we will attempt to highlight the part they play in innate
immunity and whether their role has been identified in cerebral ECs in the context of AD
and CAA.

6.1. Mitochondrial ROS

Accumulation of ROS in cells can occur due to increased ROS production in the cy-
tosol (NAD(P)H oxidases) and mitochondria (electron transport chain (ETC), tricarboxylic
acid (TCA) cycle, monoamine oxidases, etc.), and/or decreased activity of antioxidant
enzymes (superoxide dismutase (SOD), catalase, peroxidase, etc.) and systems (glutathione,
tocopherol, thioredoxin, ascorbic acid, etc.). Mitochondria are the major source of ROS,
with over 10 different sites of ROS production [87]. In the inner mitochondrial membrane
(IMM), electrons are moved across the ETC complexes accompanied by oxygen consump-
tion. The proton gradient generated by ETC across the IMM stimulates ATP production
through oxidative phosphorylation (OXPHOS). Mitochondrial ROS production increases
in dysfunctional mitochondria as a result of downregulation of ETC and OXPHOS. De-
creased activity of ETC complexes, particularly complexes I and III, stimulates excessive
mtROS production due to increased electron leakage by these complexes generating super-
oxide anion (O2

•−) [88]. The superoxide anion is converted to H2O2 and produces other
oxygen radicals through Fenton reactions that are collectively known as ROS. Although
production of mtROS occurs under normal physiological conditions, it is normally bal-
anced by the antioxidant defense that includes SOD, catalase, peroxidase, thioredoxin,
and glutathione systems.
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Figure 1. Aβ induces the release of mitochondrial DAMPs in cerebral endothelial cells (ECs) inducing
vascular activation. Mitochondrial dysfunction is induced by Aβ, at least in part, through the binding
and activation of TRAIL Death Receptors (DRs) and activation of the extrinsic and intrinsic apoptotic
pathway. Amyloid β has been shown to induce loss of mitochondrial membrane potential (Ψm),
increase in the generation of mitochondrial reactive oxygen species (mtROS), and permeabilization of
mitochondrial membranes leading to the release of cytochrome C and mitochondrial DNA (mtDNA)
into the cytoplasm of endothelial cells. The increase of mtROS leads to the activation of the NLRP3
inflammasome, activation of caspase-1 and NFκB, resulting in the release of IL-1β and IL-18. Perme-
abilization of the inner mitochondrial membrane (IMM) and outer mitochondrial membrane (OMM)
lead to the release of mtDNA to the cytoplasm. The presence of double stranded DNA (dsDNA)
activates the NLRP3 inflammasome, toll-like receptor 9 (TLR9) on the endolysosomal compartment,
and the cGAS/STING pathway on the cytosol and endoplasmic reticulum (ER) membrane, which
lead to the activation of NFκB and upregulation of more pro-inflammatory cytokines. Amyloid β
can also activate the NLRP3 inflammasome by binding to the CD36 membrane receptor, or increase
the production of ROS through the RAGE receptor. The exponential increase in pro-inflammatory
cytokines leads to blood–brain barrier (BBB) disruption, through activation of matrix metallopro-
teinases (MMPs), downregulation of tight junction (TJ) proteins, EC activation, and expression of cell
adhesion molecules. Figure created with BioRender.com.

Increased generation of ROS has been implicated in several diseases, including AD
and CAA. Aβ has been shown to increase mtROS production in neurons [27,78] and cere-
bral ECs [27]. High ROS levels were observed in Tg2576 mice [89], along with a reduction
in cerebral blood flow (CBF) [90]. Likewise, high ROS levels were found in the cerebral
vasculature of the 3xTg mice, that develop amyloidosis and tauopathy [13]. In a mouse
model expressing the human APP with the Swedish and Indiana mutations [91], downregu-
lation of SOD2, a mitochondrial-matrix localized SOD, promoted vascular amyloidosis but
not parenchymal amyloid deposition [43]. In contrast, SOD2 overexpression, as expected,
was able to increase CBF, thereby reducing vascular dysfunction in Tg2576 mice [90].
Altogether, these studies demonstrate a crucial role of mtROS in the development of AD
and CAA. Although the generation of ROS can be enhanced by upregulation of non-
mitochondrial (cytoplasmic) sites such as NADPH oxidases, here, we will focus on the role
of mtROS in vascular inflammation and neurodegeneration.

Substantial evidence has stipulated that Aβ can induce mtROS accumulation and
EC inflammation [13,27,43,78], however, the mechanism underlying the effects of Aβ on
cerebral EC mitochondria remains unclear. Aβmay induce mtROS generation as a result
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of inhibition of ETC complexes [78], by modulation of downstream pathways after its
binding to cell surface receptors, or through downregulation of antioxidant systems [43].
As mentioned above, Aβ has been shown to bind to and activate RAGE [92], leading to
increased RAGE expression [64,93], ROS generation, and activation of the transcription
factor NFκB [43,94–96], a key regulator of pro-IL-1β, pro-IL18, and NLRP3 expression [25].

ROS are involved in NLRP3-mediated neuroinflammation induced by oligomeric
Aβ in microglia [97], and polychlorinated biphenyls (PCB) 118-induced pyroptosis in
ECs [98]. In rat brain ECs, an increase of superoxide induced the release of TNFα and
Aβ [15]. Similarly, ROS production was associated with the release of vascular IL-6, which
was attenuated by the presence of a ROS scavenger in 3xTg mice [13], highlighting the
role of ROS as mediators of vascular inflammation. Additionally, in BMDMs, attenuation
of mtROS with mito-TEMPO, a mitochondria-targeted antioxidant, reduced caspase-1
activation and the release of IL-1β and IL18 in response to lipopolysaccharide (LPS) and
ATP; two activators of the NLRP3 inflammasome [99]. Thus, accumulating evidence
suggests that excessive ROS in ECs induces the activation of an inflammatory response and
the NLRP3 inflammasome plays an important role in mediating the effects of ROS. In the
context of CAA and AD, Aβmay be the culprit of such an increase in mtROS generation.

6.2. Mitochondrial Permeability Transition Pore

The mPTP is a pathological pore that forms across the IMM in response to various
pathological stimuli associated with matrix Ca2+ overload, elevated mtROS, and loss
of mitochondrial membrane potential. The mPTP is a non-selective pore that allows the
passage of solutes up to 1.5 kDa across the IMM. Under physiological conditions, the IMM is
impermeable and the transport of ions and other solutes through the membrane is regulated
by membrane transporters and other exchange mechanisms. Therefore, the formation of
the mPTP causes mitochondrial swelling due to increased colloid osmotic pressure in
the mitochondrial matrix which, in turn, leads to rupture of the outer mitochondrial
membrane (OMM). As a result, apoptotic proteins such as CytC are released from the
intermembrane space of mitochondria to the cytosol. Although the formation of the mPTP
is well documented and has been observed under electrophysiological preparations [100],
the molecular identity of the pore is unknown. Ironically, inhibition of the mPTP would
be an ideal target for various diseases including myocardial infarction [101,102], cerebral
ischemia [103,104], and AD [105–107]. Although the molecular identity of the mPTP is
unknown, the peptidyl-prolyl cis-trans isomerase Cyclophilin D (CypD) has been accepted
as a major mPTP regulator [108]. Cyclophilin D, localized in the mitochondrial matrix,
was found to increase in AD-affected brain regions. Aβ binds to CypD, and the Aβ-
CypD complex was detected in Aβ-rich mitochondria from AD brain and transgenic
AD mice [44,82]. These studies found that CypD deficiency prevented Aβ-mediated
mitochondrial and synaptic dysfunction, suggesting that the effects of Aβ to induce mPTP
opening are mediated through its interaction with CypD (Aβ binding partner). The role
of the mPTP in cerebral EC mitochondrial dysfunction has not been fully studied in
the context of CAA and AD. However, we will attempt to highlight its possible role in
mediating mitochondrial dysfunction and inflammation.

Several studies have demonstrated that cyclosporin A (CsA), an inhibitor of CypD,
protects against inflammation. In BMDMs, treatment with CsA inhibited caspase-1 re-
lease and IL-1β secretion after LPS and ATP treatment [99,109,110]. However, CypD−/−

macrophages still exhibited NLRP3 activation [109] questioning whether the mPTP open-
ing is involved in NLRP3 activation. It should be pointed out that CsA is not a specific
CypD inhibitor, as it also targets calcineurin, a serine/threonine protein phosphatase in
the cytosol [111], thereby suggesting that the effects of CsA on inflammasome activation
are mPTP-independent. Further studies are required to establish the role of the mPTP
in NLRP3 and inflammasome activation by using more specific CypD inhibitors such
as sanglifehrin A (SfA) [111]. It is also important to consider that none of these drugs
completely inhibit mPTP activation; CypD is an important mPTP regulator but not an
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essential component, as CypD−/− cells are still able to form the mPTP [112]. Therefore,
current data does not confirm or exclude the participation of the mPTP in NLRP3 activation.
In addition, the use of direct (CypD independent) mPTP inhibitors [113,114] could also
shed a light on the role of the mPTP in Aβ-mediated mitochondrial dysfunction and NLRP3
inflammasome activation in cerebral ECs during CAA and AD pathology.

One of the key inducers of mPTP formation is an increase in mtROS [115,116]. This
phenomenon is commonly known as “ROS induced ROS release” [87], when mPTP-induced
ROS in one mitochondrion triggers mPTP opening in adjacent mitochondria with subse-
quent ROS release. Therefore, the mPTP would be a viable mechanism for Aβ-induced
mtROS release in cerebral ECs, which may lead to the activation of inflammation in the
neurovascular unit. Interestingly, the formation of the mPTP has been suggested to medi-
ate the release of mtDNA from mitochondria into the cytoplasm [117,118]. Cytoplasmic
mtDNA has been extensively recognized as a DAMP and mediator of the inflammatory
response in other pathologies [26,119]. Overall, the mPTP opening in cerebral ECs may be
involved in the Aβ-induced release of mitochondrial DAMPs (mtROS, mtDNA), which
can result in inflammation.

6.3. Mitochondrial DNA

The double stranded mtDNA lacks exons and introns, is circular, packaged into
nucleoids instead of histones [120], and contains hypomethylated CpG nucleotides, making
mtDNA share more similarities to bacterial DNA than to nuclear DNA. Indeed, one of
the first studies by Collins et al. demonstrated that injection of mtDNA, but not nuclear
DNA, into mice joints lead to inflammation, increased activity of NFκB, and elevated
TNFα production [121]. Since then, an increasing amount of literature has confirmed the
inflammatory nature of mtDNA and identified several pathways involved in mtDNA-
induced inflammatory responses [119,122].

Cytoplasmic double stranded DNA (dsDNA) is recognized by cyclic GMP-AMP
synthase (cGAS). This enzyme recognizes dsDNA in a sequence-independent manner.
Therefore, it can recognize both pathogen and host dsDNA, such as the mtDNA. Once
activated by dsDNA, cGAS generates cyclic GMP-AMP (cGAMP) from ATP and GTP, which
then activates the stimulator of interferon genes (STING) on the endoplasmic reticulum
(ER) membrane [123]. Activated STING induces the phosphorylation and activation of the
transcription factors interferon regulatory factor 3 (IRF3) and NFκB [118,124,125], among
other mediators of inflammation. Confirming this mechanism, studies have shown that
in retinal [118] and lung [126] microvascular ECs, the release of mtDNA to the cytoplasm
resulted in the activation of the cGAS-STING pathway and pro-inflammatory transcription
factors IRF3 and NFκB. Additionally, exogenous administration of mtDNA to retinal
microvascular ECs induced the activation of the cGAS-STING pathway [118]. Thus, many
studies confirm that cytosolic mtDNA is capable of inducing an inflammatory response,
however, the mechanisms of its release from mitochondria into the cytoplasm have yet to
be fully elucidated.

Recent studies have suggested that the release of mtDNA from mitochondria to
the cytoplasm can occur through gasdermin D-pore forming complexes in the mitochon-
drial membrane [126], Bax/Bak-induced OMM permeabilization [127], or mPTP in the
IMM [117,118]. For example, permeabilization of the IMM induced mtDNA release during
apoptosis and, accordingly, deletion of Bax/Bak prevented the mtDNA release and inter-
feron upregulation in murine ECs [127]. Although the mechanism by which mtDNA is
released is still under debate, it certainly involves the permeabilization of the OMM and
IMM. Importantly, these studies confirm that the release of mtDNA triggers an inflam-
matory response through the cGAS-STING pathway. Although this pathway has been
studied in ECs in various pathological contexts [118,125,126], its role in cerebrovascular
inflammation and amyloidosis is still to be defined.

In addition to its role in the activation of the cGAS-STING pathway, mtDNA has been
implicated in NLRP3 inflammasome activation. It was found that NLRP3 is required for
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mPTP formation and release of mtDNA into the cytosol in BMDMs [99]. Several studies
have indirectly linked ROS and mitochondrial dysfunction to the release of mtDNA and
activation of the NLRP3 inflammasome. In human umbilical vein ECs, mtDNA-related
NLRP3 inflammasome activation was observed in the presence of ROS [128]. Likewise,
oxidized mtDNA bound to and activated NLRP3 in the presence of ATP-induced mitochon-
drial dysfunction in macrophages [110]. Interestingly, BMDMs lacking the mitochondrial
transcription factor TFAM (transcription factor A, mitochondrial), which results in reduced
mtDNA content, were resistant to NLRP3 activators as observed by the reduced mtROS
production and lack of caspase-1 and IL-1β activation [85]. Therefore, increasing evidence
suggests that mtDNA could induce NLRP3 inflammasome. However, whether this activa-
tion is a direct result of mtDNA release into the cytosol or it is mediated by mtROS release,
a known activator of NLRP3, remains to be clarified.

TLR9 is a nucleotide-sensing receptor that is localized in endolysosome compart-
ments and recognizes unmethylated cytidine-phosphate-guanosine (CpG) oligonucleotides,
a characteristic that is common in DNA from bacterial origin and mtDNA. The activation of
TLR9 results in the downstream activation of NFκB and the expression of pro-inflammatory
cytokines [122]. Interestingly, artificial stimulation of TLR9 was able to reduce vascular
plaque burden and improve cognition in Tg2576 and 3xTg animal AD models [129,130].
These data suggest that transient activation of TLR9 may induce a beneficial inflammatory
response, however, the threshold for the pathological consequences of mtDNA activation
of TLR9 is still unclear. Although TLR9 is expressed in ECs [131,132], to our knowledge
the effect of mtDNA on TLR9 in cerebral ECs has not been investigated.

Altogether, a large body of studies demonstrate that different mitochondrial compo-
nents act as DAMPs and trigger an inflammatory response by activating various pathways
such as the NLRP3 inflammasome, the cGAS-STING pathway, and TLR9. The most stud-
ied mitochondrial DAMPs are the release of mtROS and mtDNA associated with mPTP
opening and other mitochondrial alterations. In addition, cardiolipin, a signature phos-
pholipid of mitochondria that is solely localized in the IMM, has been shown to activate
the NLRP3 inflammasome [133]. Overall, mitochondria have been recognized as a central
sensor and key mediator of inflammation and cell death that may play a critical role in the
pathogenesis of inflammation in cerebral ECs during AD and CAA.

7. Amyloid Induces Inflammation at the Vascular Endothelium

Although it is unclear if vascular inflammation and dysfunction occur before or after
microglial activation and neurodegeneration, it is likely that vascular inflammation and
dysfunction drive and perpetuate neurodegeneration during CAA. One of the earliest
pathological findings of human AD brains is the loss of the BBB integrity [33,134–137],
which has been confirmed through in vivo and in vitro studies [28,138,139]. Early BBB
permeability could be a consequence of oligomeric Aβ toxicity on ECs and its effects on
mitochondrial function [27,28,140]. Mitochondrial DAMPs induced by Aβ or other vascular
risk factors may activate inflammatory pathways that lead to vascular inflammation,
immune cell recruitment, increased BBB permeability, and NVU dysfunction (Figure 2).
This process may then precipitate neuroinflammation and neurodegeneration, important
hallmarks of advanced AD.

Cell adhesion molecules expressed and released by activated ECs are involved in
the recruitment of immune cells during inflammation [141]. Specifically, in AD patients,
the levels of ICAM-1, VCAM-1, and E-selectin are higher in comparison to aged-matched
controls [142,143] and, in particular, VCAM-1 closely associates with deficiencies in short-
term memory, spatial function, and white matter changes, suggesting that it may have
important biomarker capabilities [144]. Animal models of amyloidosis recapitulate the
results of studies obtained in AD patients with increased levels of P-selectin, E-selectin,
VCAM-1, and ICAM-1 [24]. The expression of cell adhesion molecules VCAM-1, ICAM-1,
E-selectin, and P-selectin in AD may be mediated by Aβ, which was shown to promote
their induction in ECs without affecting cell viability [24]. The intracellular mechanism by
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which Aβ accomplishes this may rely on its effect on the mitochondria and the induction
of mtROS [145,146].
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Figure 2. Vascular inflammation and immune cell extravasation drive neuroinflammation and
neurodegeneration. The Aβ-mediated release of mitochondrial DAMPs, such as mitochondrial
reactive oxygen species (mtROS) and mitochondrial DNA (mtDNA), from endothelial cells (EC)
induces a perivascular inflammatory response. This in turn, results in EC activation, characterized by
the expression of cell adhesion molecules (CAMs). These CAMs, expressed on the EC membrane,
induce the recruitment of circulating immune cells through receptor binding. Immune extravasation
occurs through the blood–brain barrier (BBB) due to loss of BBB integrity. Loss of BBB integrity is
mediated by the matrix metalloproteinases (MMP) MMP2 and MMP9 and the downregulation of
tight junction proteins. Infiltrated immune cells also secrete pro-inflammatory cytokines resulting in
activation of astrocytes and microglia, which then release additional pro-inflammatory cytokines.
This perpetuated immune activation leads to neurovascular cell damage and neurodegeneration.
Figure created with BioRender.com.

As discussed in previous sections, a consequence of the Aβ–RAGE interaction is
the induction of mtROS. In human aortic ECs, activation of RAGE by the AGEs causes
the induction of VCAM-1 through NFκB [95]. Therefore, the cellular effects of the Aβ–
RAGE binding, such as the upregulation of mtROS [94], may stimulate the expression of
CAMs. Other promoters of inflammation include the vascular endothelial growth factors
(VEGFs) [147], which are able to stimulate the expression of CAMs through NFκB [148].
Indeed, sunitinib, an inhibitor of tyrosine kinase receptors such as VEGFR, improved
memory and learning in animal models of amyloidosis [15]. Overall, these studies highlight
the role of VEGF and RAGE in EC activation.

In addition to ROS, mtDNA serves as a mediator of EC inflammatory activation.
In primary rat heart ECs, stimulation with dsDNA such as that from dying cells activated
NFκB-dependent induction of cell adhesion molecules through the actions of TNFα [149],
effects that, as discussed above, may be mediated at least partially through mtDNA [118].
Indeed, TNFα induced the expression of VCAM1, ICAM1, E-selectin, and chemokines
in HUVEC cells [150]. In conclusion, Aβ induces EC dysfunction and the release of
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mitochondrial DAMPs such as ROS and mtDNA, which may lead to the activation of
inflammatory pathways and the subsequent expression of CAMs.

Importantly, the expression of the CAMs in cerebral ECs of AD brains facilitates the
recruitment of inflammatory cells. Expression of VCAM-1 in cerebral ECs leads to lympho-
cyte infiltration into the brain parenchyma [151]. The recruitment of these immune cells
may be mediated, at least in part, by the binding of very late antigen-4 (VLA-4) receptors
on lymphocytes to VCAM-1 on ECs [152,153]. In rat brain ECs, ICAM-1 cross-linking has
been shown to induce Ca2+ signaling via PKC pathway, which is required for lymphocyte
migration through the BBB [154]. Additionally, RAGE was proposed as an EC adhesion
receptor and leukocyte recruiter [155]. On the other hand, neutrophils can adhere to the
endothelium through the expression of lymphocyte function-associated antigen 1 (LFA-1).
Aβ42 induces neutrophil activation, in association with ROS generation [24], and enhances
the binding of neutrophils to ECs by inducing the high affinity state conformation of
LFA-1, a conformational change that dramatically increases its affinity for ICAM [24,156].
Interestingly, the removal of LFA-1 prevents neutrophil infiltration and cognitive decline,
suggesting that vascular damage and inflammation may be one of the earliest steps of AD
progression [24]. The infiltration of neutrophils also triggers the release of IL-17 [24], which
increases BBB permeability [157,158]. Understanding the effects of Aβ on EC-mediated im-
mune cell migration into the brain parenchyma is important, as the infiltration of immune
cells is correlated with the onset of cognitive impairment.

Increased BBB permeability is observed in CAA and AD brains [135,159–162] and is
a widely known effect of Aβ on the cerebral vasculature [28,93,163]. In mouse brain ECs,
Aβ42 binding to RAGE resulted in the downregulation of the TJ proteins occludin and ZO-
1, and increased EC barrier permeability [164]. In addition to the decreased expression of TJ
proteins, which has been observed in AD [28,165], expression of matrix metalloproteinases
(MMPs) has also been associated with increased BBB permeability [137,159,166,167]. Treat-
ment of brain ECs with Aβ leads to an increase in BBB permeability associated with
enhanced expression of MMP2 and MMP9 [15,93,168], results that were also observed in
the Tg2576 and 3xTg mouse models of AD [15]. In summary, high BBB permeability as
a result of Aβ-induced vascular toxicity and inflammation allows the passage of peripheral
immune cells and blood components into the brain parenchyma, where they are involved
in the activation of microglial cells, the resident immune cells of the brain [24,169,170],
and in the stimulation of multiple proinflammatory pathways.

8. Vascular Inflammation, Mitochondria, and Neuroinflammation

Microglial activation is mediated, at least in part, through the release of pro-inflammatory
cytokines by invading neutrophils, as mentioned above [24]. However, the mitochondria
are also important regulators of microglia activation. Extracellular CytC, which is normally
released by dying cells, stimulates release of NO, an inflammation mediator, in murine
microglial cells [26,171]. Additionally, extracellular TFAM in combination with IFN-γ
augments the secretion of IL-6 in primary human microglial cells [26,172]. In the post-
mortem human AD hippocampus, mitochondrial morphology is altered, indicative of
accumulated mitochondrial damage [66]. Damaged mitochondria are physiologically
eliminated through the process of mitophagy (mitochondrial autophagy). In animal models
of AD, mitophagy was decreased in over 50% of microglia and this was associated with
an increase in the number of defective mitochondria [66]. Defects in mitophagy may lead
to inflammation due to the release of mitochondrial DAMPs to the extracellular space or
into the cytoplasm, resulting in cellular damage [99,173,174]. Consequently, induction
of mitophagy in AD microglia increases the efficiency of Aβ phagocytosis, reducing Aβ
accumulation and prevented cognitive impairment in the APP/PS1 mice [66], probably
due to the re-establishment of proper energy supply, as a result of the removal of damaged
mitochondria.

The process of mitophagy is coupled to mitochondrial dynamics, as mitochondrial
fission appears to be a requirement for mitophagy [175–177]. Mitochondrial fission often
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results in dysfunctional and fragmented mitochondria and the balance between fission
and fusion is regulated by fusion proteins, including mitofusin 1 (Mfn1) and 2 (Mfn2),
and optic atrophy 1 (OPA-1), and fission proteins, such as dynamin-1-like protein (DRP-1)
and mitochondrial fission 1 protein (Fis1). In cynomolgus macaques, the expression of mi-
tochondrial fusion proteins (Mfn1, Mfn2, and OPA-1) was reduced and the fission protein
DRP-1 was increased after ventricular infusion of oligomeric Aβ, indicating disruption
of mitochondrial dynamics and induction of fission [178]. We have recently shown that
Ca2+-induced mPTP opening in vitro enhances proteolytic cleavage of L-OPA1 leading
to accumulation of S-OPA1 [179], indicating a crosstalk between mPTP opening and mi-
tochondrial dynamics. Based on these data, the mPTP-mediated inflammatory response
in cerebral ECs may also be mediated through the inactivation of OPA1, which would
increase the number of fragmented mitochondria. Importantly, stimulation of mitophagy,
which potentially eliminates damaged mitochondria, was able to reduce NLRP3/caspase-1
mediated neuroinflammation in the APP/PS1 cortex [66]. Since mitophagy stimulation
can abrogate the activation of inflammation, Aβ-induced mtROS per se, released to the
cytoplasm, may act as the primary DAMP and trigger NLRP3 activation. Indeed, protective
effects of mitophagy are mediated through the downregulation of mtROS by maintaining
a healthy mitochondrial pool. In favor of this hypothesis, IL-10, an anti-inflammatory
cytokine, protected against LPS-induced mitochondrial dysfunction, stimulated mitophagy,
and prevented NLRP3 inflammasome activation induced by mtROS in BMDM [66,180].
Overall, the positive effects of mitophagy stimulation in APP/PS1 mice portray mitochon-
drial dysfunction as a causative event towards AD pathology.

Prolonged activation of microglia is common around Aβ plaques [181], where these
cells are involved in the phagocytosis of Aβ and internalization to lysosomal compart-
ments. Internalization of Aβ induces lysosomal swelling and dysfunction, and the release
of cathepsin B, a cysteine protease located in the endolysosomal compartment, into the
cytoplasm. Cytoplasmic cathepsin B has been proposed as the culprit of NLRP3 activa-
tion [181] and was previously detected in plaque-associated microglia [182]. It has also
been shown to induce mitochondrial dysfunction through its degradation of TFAM result-
ing in mtROS production, a key NLRP3 activator [183,184]. Cathepsin B has also been
implicated in the release of CytC from mitochondria [185] and ferroptosis [186]. Therefore,
it is possible that the activation of NLRP3, as well as other inflammatory pathways, may
be mediated by a variety of intracellular stress signals including cathepsin B-mediated
mitochondrial damage and the subsequent release of mitochondrial DAMPs. Additionally,
the defective lysosomes that secrete cathepsin B due to Aβ internalization may also result
in the accumulation of damaged mitochondria due to inhibition of mitophagy. Interest-
ingly, in microglia that lacked the NLRP3 inflammasome, the M2 phenotype predominated,
leading to a decrease in Aβ deposition and improvement in spatial memory in APP/PS1
mice [65]. Additionally, the release of ASC specks from microglia has been shown to
increase amyloid aggregation [187] suggesting that the NLRP3 is not only involved in the
activation of inflammation, but also plays a role in Aβ deposition.

Activation of microglia also has detrimental effects on the brain vasculature perpetu-
ating the already present damage. IL-1β released from activated microglia increased BBB
permeability, downregulated the expression of TJ proteins (ZO-1, occludin, and claudin-5),
and suppressed sonic hedgehog production from astrocytes, thereby reducing their pro-
tection towards BBB integrity [188]. Furthermore, the release of IL-1β from microglia also
increased astrocytic activation leading to the production of pro-inflammatory cytokines C-C
Motif Chemokine Ligand 2 (CCL2), CCL20, and C-X-C motif chemokine ligand 2 (CXCL2)
that induce cell migration and exacerbate BBB disruption and neuroinflammation [188].
Interestingly, LPS-activated microglia increased EC barrier permeability and reduced the
expression of ZO-1, occludin, and claudin-5 [189]. In conclusion, these studies demonstrate
that the EC activation and BBB damage that lead to the activation of microglia are perpetu-
ated by the further release of pro-inflammatory mediators from the microglia towards the
brain vasculature.
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Systemic inflammation leads to microglial recruitment to blood vessels through the
chemokine receptor type 5 (CCR5), led by the release of the chemokine CCL5 by brain
ECs. Microglia then start expressing claudin-5, which helps in the retention of BBB tight-
ness [190]. Hence, the movement of glial cells [190,191] towards an activated vasculature
and their upregulation of claudin and occludin proteins appears to be an initial protective
mechanism to prevent worsening of vascular function. Indeed, transient activation of TLR9
was shown to decrease parenchymal and vascular Aβ pathology and improve cognitive
function in various AD mouse models and in squirrel monkeys [130,192,193], suggesting
that the initial activation of inflammation may be beneficial. However, a sustained inflam-
matory state may lead to a CD68 phagocytic phenotype and disruption of the BBB [190].
Similarly, sustained elevated levels of IL-17 induce EC dysfunction in mice fed with high
salt diet, characterized by inhibition of eNOS and cognitive dysfunction [157]. Expression
of RAGE in microglia of transgenic mice expressing a mutant human APP, induced IL-1β
and TNFα production [92]. TNFα, in turn, has been shown to reduce the expression of
claudin-5 in a NFκB-dependent manner in brain ECs [194]. Another study demonstrated
that the expression of RAGE in microglia in AD subjects was higher compared to non-
demented individuals [195]. A recent study using an endothelial and astrocyte co-culture
demonstrated that Aβ42 counteracts the increase of CAMs in the presence of inflammatory
mediators, inhibiting PBMC migration. However, the observed effects of Aβ were only
present in the co-culture model, suggesting that astrocytes protect the BBB from immune
cell extravasation [196]. In conclusion, vascular inflammation is an early event in CAA and
AD and appears to influence neuroinflammation and progression of neurodegeneration.
The mitochondria are portrayed as a central regulator of vascular activation and neuroin-
flammation. As a result, therapeutic strategies that prevent mitochondrial dysfunction may
be also effective to reduce neuroinflammation and neurodegeneration.

9. Therapeutic Strategies

An increasing number of studies have centered on the mitochondrion as an initiator,
sensor, and even messenger of danger signals. In this review, we portray the EC mitochon-
dria as important initiators of Aβ-induced vascular inflammation. Therefore, therapies that
prevent mitochondrial dysfunction and/or neutralize the release of mitochondrial DAMPs
might prevent the activation of vascular inflammation and neurodegeneration. The most
well-known mitochondrial DAMPs are mtROS, therefore therapies that prevent mtROS
generation or neutralize it (such as antioxidants) could be explored as an attractive target
to prevent the activation of endothelial cells in the context of CAA and AD.

Multiple mitochondria-targeted antioxidant peptides have been developed, one of
which is mitoquinone (MitoQ). MitoQ is a cationic ubiquinone derivative antioxidant tar-
geted to the mitochondria in a membrane-potential-dependent manner [197]. In microglia,
MitoQ was shown to prevented mtROS and NLRP3 activation in a model of intracerebral
hemorrhage [198]. Similarly, in pulmonary aortic EC, MitoQ reduced TNFα induced ex-
pression of ICAM-1 and NFκB [199]. However, further studies demonstrated that higher
concentrations of MitoQ could induce ICAM-1 expression through the induction of ROS
production [199,200], carbonylation, and glutathionylation of cellular proteins [199]. There-
fore, the potential benefits of MitoQ as powerful mitochondria-targeted antioxidant are
controversial.

In addition to MitoQ, another peptide was developed called the Szeto-Schiller-31
(SS-31) peptide. The peptide SS-31 is a mitochondria-targeted antioxidant that mostly accu-
mulates in the IMM, the major site for mtROS production, and can cross the BBB [201,202].
Treatment of aged WT mice with SS-31 improved CBF, neurovascular coupling, and spatial
learning [203]. In addition, in primary cerebrovascular ECs from aged rats, SS-31 improved
mitochondrial respiration and reduced mtROS production [203], suggesting that SS-31
could potentially inhibit the mtROS-induced inflammatory response. Indeed, SS-31 was
able to reduce LPS-induced oxidative stress and inflammation in murine microglia [204],
and in the mouse hippocampus it prevented mitochondrial dysfunction, oxidative stress,
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inflammation, memory impairments, and neuronal death in the presence of LPS [205].
Although SS-31 has been studied in the context of AD with positive results (reviewed
in [202]), the potential role of SS-31 in preventing cerebrovascular EC activation in models
of CAA or AD is still unclear.

In addition to mtROS, inhibition of the mPTP, which can be activated by mtROS [115,116],
would be an attractive strategy to prevent Aβ-induced mitochondrial dysfunction and
inflammation. The formation of the mPTP has been linked to mtROS and the release of
mtDNA into the cytoplasm [117,118]. As a result, mPTP inhibition would prevent the
release of mitochondrial DAMPs and the activation of the downstream inflammatory
pathways. Several studies have demonstrated that drugs that inhibit CypD, such as SfA
and CsA, are able to prevent the activation of inflammation. CsA was demonstrated to
prevent LPS-induced caspase-1 activation and IL-1β secretion in BMDM [99,109,110] and
was able to prevent astrocytic reactivity in AD models [206], albeit through calcineurin
inhibition [111]. Interestingly, in human aortic ECs SfA inhibited mtROS production and
improved vascular relaxation in a model of hypertension [207]. However, it was reported
that CypD−/− macrophages still exhibited NLRP3 activation [109], raising the question
of whether these drugs are sufficient to inhibit mPTP formation or if the mPTP is at all
involved in the release of mitochondrial DAMPs into the cytoplasm. As a result, further
studies are required to assess the potential of CsA and SfA as inhibitors of inflammation.
One of the most challenging aspects of mPTP inhibition is the lack of knowledge on
the molecular identity of the mPTP, making the development of specific pharmacological
inhibitors impossible. Taking into consideration that the mPTP is involved in other diseases
with an inflammatory component [101–107], studies aiming at elucidating the molecular
identity of the mPTP and the development of specific mPTP inhibitors would be of great
interest to the scientific community.

Finally, recent evidence has demonstrated that carbonic anhydrase inhibitors (CAi),
a family of FDA-approved, BBB-permeable drugs, may have protective roles on the mito-
chondria. Cytochrome c is normally located in the outer part of the IMM, and its release into
the cytosol is indicative of mitochondrial damage and OMM rupture. The CAi Methazo-
lamide (MTZ) was found to inhibit CytC release out of a list of compounds from the NINDS
library of neurodegeneration drug screening consortium [208]. It was shown that MTZ
prevents Aβ-induced mtROS production, CytC release, and caspase activation in neuronal
and glial cells in culture and prevented neurodegeneration in mice after intra-hippocampal
Aβ injection [209]. Furthermore, both MTZ and Acetazolamide (ATZ), another clinically
used CAi, tested in cells of the neurovascular unit challenged with Aβ, prevented loss of
mitochondrial membrane potential and mtROS production [27]. For an in-depth review
on the therapeutic potential of CAi in the context of CAA and AD, the reader is directed
elsewhere [210]. Although the role of MTZ and ATZ in EC activation during CAA and
AD has not been fully investigated, it is conceivable that the protective effect they have on
mitochondrial function might translate into decreased EC activation in the presence of Aβ.

In conclusion, drugs that prevent mitochondrial dysfunction or provide antioxidant
capabilities could provide protection against EC activation, and possibly EC death. How-
ever, it is important to also consider other risk factors that have been associated with AD,
such as APOE status. The presence of the APOE4 allele dramatically increases the risk
for developing AD with age, decreases the age of onset [211,212], and is considered the
major genetic risk factor for late-onset AD. Individuals with APOE4 (ε3/ε4 and ε4/ε4 alle-
les) develop increased BBB permeability in the hippocampus and medial temporal lobe,
and cognitive decline independent of their Aβ and Tau pathology [213]. Furthermore,
APOE4 has also been linked to mitochondrial dysfunction [214–216]. Therefore, it is critical
to evaluate how risk factors, such as APOE status, might add a level of complexity to
mitochondria-targeted therapies.
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10. Conclusions

Overall, current knowledge suggests that amyloid and vascular risk factors can cause
mitochondrial dysfunction and ROS production in cerebral ECs, thereby stimulating vascu-
lar inflammation. This vascular activation induces immune cell recruitment, with microglial
and astrocytic activation. The resulting widespread inflammatory cascade, in turn, has been
shown to precipitate endothelial and neurovascular mitochondrial damage, eliciting a detri-
mental impact on the BBB. As a result, a progressive worsening of vascular function and
neuroinflammation, loss of BBB integrity, and impaired Aβ clearance will further perpet-
uate neurodegeneration, accelerating the development and progression of dementia and
AD. Understanding the mechanisms involved in the pathogenesis of neural and vascu-
lar inflammation during AD and CAA will allow the development of new therapeutic
strategies for the treatment of patients with AD and other neurodegenerative diseases.
A growing number of studies suggest a potential role of the mitochondria as a nexus of
stress in mediating inflammatory signaling in cerebral ECs and other neurovascular cells,
underlining the importance of further studies in this area.
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