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Tuberculosis (TB) remains as one of the world's deadliest infectious diseases despite the
use of standardized antibiotic therapies. Recommended therapy for drug-susceptible TB
is up to 6 months of antibiotics. Factors that contribute to lengthy regimens include
antibiotic underexposure in lesions due to poor pharmacokinetics (PK) and complex
granuloma compositions, but it is difficult to quantify how individual antibiotics are affected
by these factors and to what extent these impact treatments. We use our next-generation
multi-scale computational model to simulate granuloma formation and function together
with antibiotic pharmacokinetics and pharmacodynamics, allowing us to predict
conditions leading to granuloma sterilization. In this work, we focus on how PK
variability, determined from human PK data, and granuloma heterogeneity each
quantitatively impact granuloma sterilization. We focus on treatment with the standard
regimen for TB of four first-line antibiotics: isoniazid, rifampin, ethambutol, and
pyrazinamide. We find that low levels of antibiotic concentration due to naturally
occurring PK variability and complex granulomas leads to longer granuloma sterilization
times. Additionally, the ability of antibiotics to distribute in granulomas and kill different
subpopulations of bacteria contributes to their specialization in the more efficacious
combination therapy. These results can inform strategies to improve antibiotic therapy
for TB.

Keywords: agent-based model, pharmacokinetic/pharmacodynamic (PK/PD) model, multi-scale model, isoniazid,
rifampin, tissue distribution
INTRODUCTION

Tuberculosis (TB) continues to be one of the world's deadliest infectious diseases, leading to the
death of 1.3 million people in 2017, about 2–3 people per minute (Global tuberculosis report, 2018).
Caused by infection with the pathogen Mycobacterium tuberculosis (Mtb), TB most commonly
presents as a pulmonary disease in adults when individuals inhale aerosolized Mtb transmitted by
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other infected individuals. The immune response in the lungs
leads to the formation of multiple lesions called granulomas,
collections of immune cells that act to contain the infection both
immunologically and physically but also present a barrier to
antibiotic diffusion and delivery (Ramakrishnan, 2012; Dartois,
2014; Pienaar et al., 2015a). Understanding penetration and
distribution of antibiotics in granulomas is critical to
understanding how best to treat TB.

The current recommended regimen to treat active, drug-
susceptible TB disease requires up to six months of multiple
antibiotics (Nahid et al., 2016). For the first two months, patients
take daily doses of isoniazid (INH, H), rifampin (RIF, R),
ethambutol (EMB, E), and pyrazinamide (PZA, Z), referred to
as HRZE. Each of these antibiotics has side effects associated with
their use that, together with the lengthy treatment duration,
make it difficult for patients to properly adhere to the regimen
(Yee et al., 2003; Munro et al., 2007). Efforts such as directly
observed therapy (DOT) attempt to increase patient adherence
but are not tractable on a global scale (Steffen et al., 2010;
McLaren et al., 2016). Emergence of multidrug-resistant
(defined as resistant to INH and RIF) and extensively drug-
resistant TB (resistant to INH, RIF, and a second-line injectable)
further complicates treatment (Global tuberculosis report, 2018).
There is a need for improved antibiotic therapy for TB and to
understand what causes treatment failure.

There are two key factors outside of drug resistance that have
been identified as contributing to drug failure in TB:
pharmacokinetic (PK) variability (acting at population scale)
and granuloma heterogeneity (acting at the host scale). How
these factors interact to affect both the rate and extent of
sterilization during treatment is not well-understood. PK
variability is defined as differences in plasma antibiotic
exposure, typically measured as variability in plasma area
under the curve (AUC) measurements. Population PK models
can help determine appropriate dosing of TB antibiotics and
represent this variability based on distributions of PK model
parameters (Zhu et al., 2004; Jonsson et al., 2011; Denti et al.,
2015; Lalande et al., 2015). These distributions can be related to
natural differences in populations through covariates such as
weight, age, or overall health. Additionally, PK variability can be
due to differences at the genetic scale, such as in N-
acetyltransferase 2 involved in the metabolism of INH (Blum
et al., 1991; Kinzig-Schippers et al., 2005). This PK variability can
lead to poor exposure in granuloma lesions, reducing the amount
of time antibiotic concentrations are above therapeutic
thresholds during therapy (Strydom et al., 2019).

Host-scale heterogeneity encompasses host-level variations in
granuloma number, size, and composition. Granuloma size and
composition can lead to slower diffusion of antibiotics, spatial
gradients of concentration, and underexposure at the host tissue
scale (Dartois, 2014; Pienaar et al., 2015a; Prideaux et al., 2015;
Sarathy et al., 2016). Granuloma composition can affect how
antibiotics accumulate or fail to accumulate within lesions
(Dartois, 2014). For example, EMB's clinical efficacy may
partially be explained by its ability to accumulate in cellular
regions of the granuloma (Zimmerman et al., 2017). Structural
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differences in lesions affect the sterilizing ability of PZA, as
shown in different strains of mice (Irwin et al., 2016). Caseous
regions of the granuloma may also harbor bacteria that are
phenotypically more tolerant, and may be less accessible, to
many TB antibiotics (Sarathy et al., 2018).

Capturing both PK variability at the population scale and
granuloma heterogeneity at the host scale in a computational
model can help predict granuloma sterilization and design
antibiotic regimens. Our group previously developed a
computational model that incorporates the host formation of
granulomas and antibiotic PK to predict the sterilization of
granulomas using different regimens with INH and RIF (Pienaar
et al., 2015a; Pienaar et al., 2015b). Using this multi-scale, systems
pharmacology model, we have also highlighted major differences
between members of the fluoroquinolone drug class and simulated
TB therapy with development of antibiotic resistance (Pienaar et al.,
2017; Pienaar et al., 2018). Using this computational framework
provides a way to include both PK variability and granuloma
heterogeneity to predict whether a treatment can achieve
granuloma sterilization in primary, pulmonary TB in adults.

Here we use our hybrid, multi-scale agent-based model to capture
PK variability and granuloma heterogeneity and to simulate antibiotic
treatment of primary, lung granulomas. For the first time with this
model, we simulate treatment based on human PK and with the
combination of the four first-line antibiotics used to treat TB: INH,
RIF, EMB, and PZA.We also present a sequential calibration scheme
that captures spatial distributions of antibiotics within granulomas
and known PK variability that exists across the population scale and
at the host scale within granulomas. Using this highly detailed model,
we discuss the role of first-line antibiotics (HRZE) in sterilizing
granulomas and how PK variability and granuloma heterogeneity
impact distributions of sterilization times.
METHODS

Computational Model of Granuloma
Formation and Function
GranSim is a well-established hybrid, multi-scale computational
model that produces the emergent behavior of granuloma
formation in Mtb infection (Segovia-Juarez et al., 2004; Fallahi-
Sichani et al., 2011; Cilfone et al., 2013; Linderman et al., 2015).
Briefly, this agent-based model simulates immune cell movement
and interactions, and bacterial growth on a spatial grid
representing an area of lung tissue. The immune cell agents,
such as different classes of macrophages and T cells, move in
response to chemokine gradients and interact with each other
according to immunology-derived rules to activate or deactivate
immune cells/responses. Bacteria in the model are simulated as
individual agents, and they exist in three distinct subpopulations:
extracellular replicating, extracellular non-replicating, or
intracellular (inside macrophages). The effective growth rate of
bacteria in these three subpopulations is influenced by
extracellular or intracellular location and availability of
nutrients and oxygen (Pienaar et al., 2016). Non-replicating
Mtb represent bacteria trapped within caseum, which presents
March 2020 | Volume 11 | Article 333
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hypoxic conditions with limited nutrient resources (Nathan and
Barry III, 2015; Sarathy et al., 2018). A more detailed explanation
of GranSim and the simulation rules and assumptions can be
found online (http://malthus.micro.med.umich.edu/GranSim/).
GranSim simulates lung granulomas that form due to primary,
pulmonary infection in adults and captures a wide diversity of
Frontiers in Pharmacology | www.frontiersin.org 3
granulomas through variations in host immune system
parameters and stochastic events in the agent-based model.
The boundary of the granuloma is defined by regions of high
cell density, and outlines of the granuloma are drawn to enclose
these regions. Parameters that were varied to generate our library
of heterogeneous granulomas are listed in Table 1.
TABLE 1 | Host immune parameters for in silico granulomas. Timestep units represent 10-min time steps in the agent-based simulation. Parameter values based on
previously published work (Pienaar et al., 2015a).

Parameter definition Units Low CFU Granulomas High CFU Granulomas

Min Max Min Max

# immune cell deaths causing compartment caseation 6 10 6 10
Time to heal caseated compartment Timesteps 909 1,365 901 1,398
TNF threshold for causing immune cell apoptosis Molecules 690 1,035 690 1,200
Rate constant for TNF-induced apoptosis 1/s 1.36e-6 2.04e-6 1.00e-6 2.00e-6
Minimum chemokine concentration to induce chemotaxis Molecules 0.27 0.41 0.27 0.41
Maximum chemokine concentration to induce chemotaxis Molecules 392 588 392 588
Initial density of macrophages Fraction of grid compartments 0.019 0.029 0.019 0.029
Time between resting macrophage movements Timesteps 4 6 4 6
Time between active macrophage movements Timesteps 15 23 15 23
Time between infected macrophage movements Timesteps 169 255 169 255
TNF threshold to induce NFkB activation Molecules 42.8 64.1 35.1 65.0
Rate constant for NFkB activation 1/s 6.77e-6 1.01e-5 6.00e-6 1.00e-5
Probability resting macrophage kills extracellular Mtb 0.0738 0.111 0.0738 0.111
Killing probability adjustment for resting macrophages with NFkB activation 0.129 0.194 0.129 0.194
# bacteria to cause NFkB activation 236 354 236 354
# bacteria for macrophage to become chronically infected 12 18 12 18
# bacteria to cause macrophage to burst 19 29 19 29
# bacteria activated macrophage can phagocytose 3 5 3 5
Probability activated macrophage will will heal a caseated compartment 0.00459 0.00687 0.00459 0.00687
Probability a T-cell will move to same compartment as a macrophage 0.0367 0.0550 0.0251 0.0550
Probability IFNg producing T-cell induces Fas/FasL apoptosis 0.0293 0.0439 0.0290 0.0440
Probability IFNg producing T-cell also produces TNF 0.0514 0.0770 0.0510 0.0779
Probability cytotoxic T-cell kills macrophage 0.00505 0.0121 0.00806 0.0121
Probability cytotoxic T-cell kills a macrophage and all its intracellular bacteria 0.619 0.928 0.611 0.920
Probability regulatory T-cell deactivates macrophage 0.00584 0.00876 0.00580 0.00880
Time when T-cell recruitment begins Timesteps 3,225 4,722 3,225 4,397
Time delay after T-cell recruitment begins until maximal recruitment rate Timesteps 650 976 650 849
Macrophage maximal recruitment probability 0.0241 0.0361 0.0240 0.0500
Macrophage threshold for recruitment by chemokines Molecules 0.641 0.960 0.640 0.960
Macrophage threshold for recruitment by TNF Molecules 0.00859 0.0129 0.00851 0.0130
Macrophage half sat for recruitment by TNF Molecules 1.22 1.82 1.21 1.83
Macrophage half sat for recruitment by chemokine Molecules 1.68 2.52 1.68 2.52
IFNg producing T-cell maximal recruitment probability 0.0484 0.0726 0.0300 0.0620
IFNg producing T-cell threshold for recruitment by chemokine Molecules 0.0535 0.0802 0.0530 0.0800
IFNg producing T-cell threshold for recruitment by TNF Molecules 1.01 1.51 1.00 1.51
IFNg producing T-cell half sat for recruitment by TNF Molecules 1.22 1.82 1.21 1.82
IFNg producing T-cell half sat for recruitment by chemokine Molecules 1.64 2.46 1.63 2.45
Probability a IFNg producing T-cell is cognate 0.0437 0.0655 0.0201 0.0650
Cytotoxic T-cell maximal recruitment probability 0.0370 0.0554 0.0370 0.0550
Cytotoxic T-cell threshold for recruitment by chemokine Molecules 3.55 5.32 3.54 5.32
Cytotoxic T-cell threshold for recruitment by TNF Molecules 0.920 1.38 0.922 1.38
Cytotoxic T-cell half sat for recruitment by TNF Molecules 0.715 1.07 0.711 1.07
Cytotoxic T-cell half sat for recruitment by chemokine Molecules 5.24 7.86 5.25 7.85
Probability a cytotoxic T-cell is cognate 0.0414 0.0620 0.0410 0.0619
Regulatory T-cell maximal recruitment probability 0.0246 0.0369 0.0242 0.0618
Regulatory T-cell threshold for recruitment by chemokine Molecules 2.03 3.04 2.02 3.04
Regulatory T-cell threshold for recruitment by TNF Molecules 1.65 2.47 1.65 2.47
Regulatory T-cell half sat for recruitment by TNF Molecules 2.00 3.00 2.00 3.00
Regulatory T-cell half sat for recruitment by chemokine Molecules 1.23 1.84 1.22 1.84
Probability a regulatory T-cell is cognate 0.0400 0.0600 0.0401 0.0600
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In Silico Granuloma Library
We generate two distinct libraries of granulomas that are
heterogeneous in bacterial load and cellular composition: one
categorized as low-CFU (colony-forming unit, equal to the
number of bacteria in the simulation) granulomas and the
other as high-CFU granulomas. The low-CFU granulomas are
smaller in size and have CFU/granuloma that are more stable
over time, whereas the high-CFU granulomas are larger in size,
have increasing CFU over time, and have higher levels of caseum.
To generate the low-CFU granulomas, we sampled 500
parameter sets based on ranges for host immune system
parameters listed in Table 1 using Latin Hypercube Sampling
(LHS) (Pienaar et al., 2015a). Using the simulation outputs at day
300 for granuloma size and CFU, we performed sensitivity
analysis using partial rank correlation coefficients to determine
parameters that have the most significant impact on those two
outcomes (Marino et al., 2008). A total of 400 high-CFU
granulomas were generated by increasing or decreasing the
upper and lower bounds of the parameter ranges that have the
strongest correlation with granuloma size and CFU, as well as
initializing simulations with multiple infection locations to
generate larger granulomas. Parameter ranges for all
granulomas are shown in Table 1. Low-CFU granulomas are
simulated on a 200 by 200 compartment square grid representing
a 4 by 4 mm section of lung tissue (each grid compartment has a
side-length of 20 microns), whereas the high-CFU are run on 300
by 300 compartment grid representing 6 by 6 mm. Note that we
simulate the small granulomas on a smaller grid for
computational efficiency, as the larger is not required. At day
300, a total of 354 low-CFU granulomas and 352 high-CFU
Frontiers in Pharmacology | www.frontiersin.org 4
granulomas still had bacteria and were selected for treatment
simulations. Figure 1 shows CFU per granuloma of these
two groups.

Plasma Pharmacokinetic Model
The plasma PK model is comprised of a two-compartmental
model with one or two transit compartments that simulate oral
absorption. INH and RIF follow a two-absorption compartment
model based on previously developed PK models, whereas EMB
and PZA are simulated with one absorption compartment based
on best fits and other PK models (Jonsson et al., 2011; Kjellsson
et al., 2012; Denti et al., 2015; Pienaar et al., 2015a; Zimmerman
et al., 2017). The two-compartment model simulates distribution
between plasma and peripheral tissue, and antibiotics are
eliminated with a first-order clearance rate constant (Figure 2).
Pharmacokinetic variability can be introduced by varying the
parameters of the plasma PK model based on reported variability
in the parameters (Table 2).

Tissue Pharmacokinetic Model
The plasma PK model is linked to the agent-based environment
through blood vessels placed on the simulation grid (Figure 2).
Based on the difference between the plasma concentration and
local tissue concentration in the compartments surrounding a
blood vessel and the permeability of the antibiotic through blood
vessel walls, a flux of antibiotic through the vessel wall is
calculated as in previous work (Pienaar et al., 2015a).
Antibiotics in the tissue (on the simulation grid) undergo a
series of distribution events: diffusion, binding to extracellular
material such as caseum, partitioning into macrophages, and
FIGURE 1 | Heterogeneous granulomas generated using the computational model GranSim. There are two groups of in silico granulomas at day 300 post infection: low
CFU granulomas (black/gray, n=354) and high CFU granulomas (red, n=352). High CFU granulomas have increasing CFU over time relative to the more stable lower CFU
granulomas (A). (C) shows the distribution of CFU per granuloma in the low CFU group (black) and the high CFU group (red) at day 300. (B) shows an example of a low CFU
in silico granuloma and (D) shows an example of a high CFU granuloma. In both simulations the colors represent: macrophages green; resting; blue, active; orange, infected;
red, chronically infected), T cells (IFN-gamma producing; pink, cytotoxic, purple; regulatory, light blue), and caseated regions (tan).
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degradation. Implementation of vascular permeation, diffusion,
binding and degradation is as previously published (Cilfone
et al., 2015; Pienaar et al., 2015a). Antibiotics on the
simulation grid can be tracked as free molecules, bound to
extracellular material, or partitioned into macrophages. When
calibrating and fitting to data, we use total drug concentration in
a grid compartment, but only free or intracellular antibiotic is
used to determine antimicrobial activity, depending on the
location of bacteria. Calibrated tissue PK parameters are given
in Table 3 (see below for calibration datasets).
Frontiers in Pharmacology | www.frontiersin.org 5
Sequential Pharmacokinetic Model
Calibration Scheme
Gradients between plasma and tissue concentrations drive the
amount of antibiotic delivered into the agent-based model
simulation through blood vessels, so fitting tissue PK
parameters to match the experimentally observed spatial
distribution and average antibiotic concentrations in
granuloma lesions requires incorporating both plasma PK
variability and granuloma heterogeneity. We have devised a
pipeline for incorporating these factors into GranSim (Figure
TABLE 2 | Plasma pharmacokinetic parameters listed with the ranges used to calibrate the tissue pharmacokinetic parameters, as well as the parameter values for the
average and low pharmacokinetic (PK) exposure treatment groups.

Parameter Units Min Max Average PK Low
PK

Source

INH Absorption rate constant 1/h 0.50 6.0 3.25 0.57 Fit to data from (Prideaux et al., 2015)
INH Intercompartmental clearance rate constant L/(h*kg) 0.20 0.70 0.45 0.67 Fit to data from (Prideaux et al., 2015)
INH Central compartment volume of distribution L/kg 0.50 3.0 1.75 2.5 Fit to data from (Prideaux et al., 2015)
INH Peripheral compartment volume of distribution L/kg 25 40 32.5 37 Fit to data from (Prideaux et al., 2015)
INH Plasma clearance rate constant L/(h*kg) 0.0080 0.070 0.039 0.061 Fit to data from (Prideaux et al., 2015)
RIF Absorption rate constant 1/h 0.40 2.5 1.5 0.41 Fit to data from (Prideaux et al., 2015)
RIF Intercompartmental clearance rate constant L/(h*kg) 2.0 5.9 3.9 3.95 Fit to data from (Prideaux et al., 2015)
RIF Central compartment volume of distribution L/kg 0.18 0.57 0.38 0.48 Fit to data from (Prideaux et al., 2015)
RIF Peripheral compartment volume of distribution L/kg 0.32 0.97 0.64 0.9 Fit to data from (Prideaux et al., 2015)
RIF Plasma clearance rate constant L/(h*kg) 0.050 0.30 0.175 0.3 Fit to data from (Prideaux et al., 2015)
EMB Absorption rate constant 1/h 0.10 0.80 0.45 0.1 Fit to data from (Jonsson et al., 2011)
EMB Intercompartmental clearance rate constant L/(h*kg) 0.45 0.70 0.57 0.56 Fit to data from (Jonsson et al., 2011)
EMB Central compartment volume of distribution L/kg 0.80 1.95 1.37 1.7 Fit to data from (Jonsson et al., 2011)
EMB Peripheral compartment volume of distribution L/kg 8.1 12.7 10.4 12.6 Fit to data from (Jonsson et al., 2011)
EMB Plasma clearance rate constant L/(h*kg) 0.3 1.0 0.65 0.99 Fit to data from (Jonsson et al., 2011)
PZA Absorption rate constant 1/h 0.55 0.75 0.65 0.60 Fit to data from (Prideaux et al., 2015)
PZA Intercompartmental clearance rate constant L/(h*kg) 0.10 0.70 0.40 0.35 Fit to data from (Prideaux et al., 2015)
PZA Central compartment volume of distribution L/kg 0.25 0.75 0.50 0.74 Fit to data from (Prideaux et al., 2015)
PZA Peripheral compartment volume of distribution L/kg 0.010 0.050 0.030 0.050 Fit to data from (Prideaux et al., 2015)
PZA Plasma clearance rate constant L/(h*kg) 0.010 0.050 0.030 0.050 Fit to data from (Prideaux et al., 2015)
M

FIGURE 2 | Pharmacokinetic/pharmacodynamic dynamics in GranSim. Plasma concentration is simulated with a two-compartment pharmacokinetic (PK) model
with one [ethambutol (EMB) and pyrazinamide (PZA)] or two [isoniazid (INH) and rifampin (RIF)] transit compartments to capture oral absorption. The amount of drug
added or subtracted through the vascular sources in the agent-based spatial grid depends on local gradients of antibiotics. Antibiotics on the grid can diffuse,
degrade, bind to extracellular material (such as caseum) and partition into macrophages. Based on intra- or extracellular concentrations in each grid compartment, a
killing rate constant based on a Hill curve determines the probability per time step that a given bacterium will die due to exposure to antibiotics.
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3A). Using our in silico granuloma library, each granuloma is
assigned a different plasma PK set sampled using LHS from
parameter ranges that capture biological variability (Table 2).
Next, changes in antibiotic tissue concentrations over time are
simulated for each granuloma with 200 tissue PK parameter sets
Frontiers in Pharmacology | www.frontiersin.org 6
sampled using LHS. For each tissue PK parameter set, the results
from each granuloma are averaged at each time point, and then
compared to experimental data. The tissue PK parameter set that
both minimizes the sum of the squared error between average
granuloma concentration and the experimental lesion
TABLE 3 | The calibrated tissue pharmacokinetic (PK) parameters for each antibiotic.

Parameter INH RIF EMB PZA Source

Extracellular degradation rate constant (1/s) 6.94e-8 3.90e-8 1.73e-8 1.34e-8 Fit to data from (Prideaux et al., 2015; Zimmerman et al., 2017)
Intraceullar degradation rate constant (1/s) 2.84e-6 2.59e-4 8.75e-6 2.26e-3 Fit to data from (Prideaux et al., 2015; Zimmerman et al., 2017)
Effective diffusivity* (cm2/s) 6.58e-7 5.08e-8 5.20e-7 3.24e-6 Fit to data from (Prideaux et al., 2015; Zimmerman et al., 2017)
Cellular accumulation ratio 1.13 24 5.95 0.593 Fit to data from (Prideaux et al., 2015; Zimmerman et al., 2017)
Vascular permeability (cm/s) 1.34e-6 2.65e-7 1.33e-7 8.62e-6 Fit to data from (Prideaux et al., 2015; Zimmerman et al., 2017)
Permeability coefficient 0.25 3.3 7.4 1 Fit to data from (Prideaux et al., 2015; Zimmerman et al., 2017)
Fraction unbound to caseum 1 0.052 0.35 1 Fit to data from (Prideaux et al., 2015; Sarathy et al., 2016; Zimmerman et al., 2017)
*Guided by estimates from (Pruijn et al., 2008)
FIGURE 3 | Capturing pharmacokinetic variability and granuloma heterogeneity in pharmacokinetic (PK) calibration and treatment simulations. (A) shows our
strategy. Based on population variability and ranges in plasma PK parameters, sets of plasma PK parameters are sampled and assigned to a set of in silico
granulomas. Based on experimentally guided ranges for tissue PK parameters, a set of tissue PK parameters is obtained using Latin Hypercube Sampling (LHS).
Simulations then predict antibiotic concentrations in the tissue. The average concentration over all granulomas for a given tissue PK parameter set is calculated and
compared to experimental lesion concentrations. (B) shows the four types of treatment simulations that capture biologically relevant PK variability and granuloma
heterogeneity: average PK exposure with low or high CFU granulomas and low PK exposure with low or high CFU granulomas.
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concentrations, as well as provides a good visual fit to the data is
chosen as the calibrated tissue PK parameter set. Tissue PK
parameter ranges for calibration sampling are listed in Table 3.

Pharmacokinetic Data
Plasma and tissue PK parameters for INH, RIF, and PZA are
calibrated using plasma and lesion antibiotic concentrations
measured in resected lung samples from patients with drug-
refractory TB (Prideaux et al., 2015). EMB concentrations in
rabbit TB granulomas are used to calibrate tissue PK parameters,
based on rabbit plasma PK parameters (Zimmerman et al., 2017).
Since tissue PK parameters are based on physical properties and
interactions between drug molecules and tissue, we assume that
tissue PK parameters in rabbits and humans are similar. To
simulate human treatment with EMB, we replace the rabbit
plasma PK parameters with human parameters fit to
population PK measurements (Jonsson et al., 2011).

Pharmacodynamic Model
The pharmacodynamic model involves evaluating a
concentration-dependent killing rate constant derived from a
Hill curve:

k = Emax
Ch

Ch + Ch
50

The killing rate constant k (units of 1/timestep or 1/10 min) is
dependent on the variable concentration (C), the maximum
killing rate constant (Emax), the concentration at half maximal
killing (C50), and the Hill curve constant (h). The concentration
used to determine the antibiotic killing rate constant is based
only on free drug concentration. Parameters Emax, C50, and h
need to be determined for each antibiotic and for each bacterial
subpopulation (replicating extracellular, non-replicating
extracellular, and intracellular). To fit these parameters, we use
in vitro dose-response assays from individual experiments from
the literature of Mtb growth/death under varying antibiotic
concentrations (see Table 4 for parameters and references for
data and refer to Supplementary Figure 1 for calibrated fits to
dose-response curves). In the present model, we do not include
drug-drug interactions, so the highest single antibiotic killing
rate constant for each antibiotic within a specific grid
compartment in the simulation is used as the effective
antibiotic killing rate constant for that location (Bhusal et al.,
2005; Pienaar et al., 2015b). This assumption isolates the impact
Frontiers in Pharmacology | www.frontiersin.org 7
of PK variability and granuloma heterogeneity on granuloma
sterilization within this study.

In Silico Antibiotic Treatment
of Granulomas
Treatment simulations are executed by choosing the non-sterile
set of low and high CFU in silico granulomas that have formed
300 days post infection (in the absence of antibiotics). The doses
for the standard regimen are based on CDC recommended adult
doses for each of the four antibiotics: INH, 5 mg/kg; RIF, 10 mg/
kg; EMB, 17 mg/kg; PZA 21 mg/kg (Nahid et al., 2016).
Simulated treatments use daily doses of each antibiotic.
Treatment simulations are administered for a maximum of 180
days, which are based on standard regimen length (Nahid et al.,
2016); simulations are stopped once granulomas sterilize to
reduce computational resource use. After treatment, we
calculate a simulated early bactericidal activity (EBA), which is
defined as the rate of decrease of log10 (CFU) per day. For
example, the EBA for 0–2 days is calculated as (log10(CFU day
0)-log10(CFU day 2))/2. We simulate four groups of granulomas
to incorporate PK variability and granuloma heterogeneity
(Figure 3B). Group 1 has population average plasma PK
exposure (AUC) with low-CFU granulomas and Group 2 has
average PK exposure with high-CFU granulomas. Groups 3 and
4 both have low plasma PK exposure, with low and high-CFU
granulomas respectively. Plasma PK parameter values for the low
and average PK exposure are listed in Table 2.
RESULTS

Pharmacokinetic Model Captures Plasma
and Lesion Variability in Antibiotic
Concentrations
Heterogeneity in antibiotic exposure within granulomas is the
result of two factors. Differences in plasma drug concentrations
among individuals can be due to differences in drug absorption
and elimination rates, and these are reflected in distributions of
plasma PK parameters across a population. Additionally,
granuloma structural heterogeneity (including differences in
size and composition) can lead to differences in antibiotic
exposure at the lesion level. To capture both sources of
heterogeneity, which occur at different length scales, we
devised a sequential calibration scheme to calibrate the PK
model from data (Figure 3; parameters in Tables 2 and 3).
TABLE 4 | Pharmacodynamic parameter and sources for data used for parameter fitting/estimation. Units of 1/timestep represent per model timestep of 10 min.

Parameter INH RIF EMB PZA Sources

Intracellular C50 (mg/L) 0.070 20 5.22 70 (Jayaram et al., 2003; Jayaram et al., 2004; Hartkoorn et al., 2007; Sarathy et al., 2018)
Extracellular, replicating C50 (mg/L) 0.015 1.23 0.05 370 (Jayaram et al., 2003; Jayaram et al., 2004; Hartkoorn et al., 2007; Sarathy et al., 2018)
Extracellular,
Non-replicating C50 (mg/L)

17.7 81 1000 370 (Lakshminarayana et al., 2015; Sarathy et al., 2018)

Intracellular Emax (1/timestep) 0.0056 0.014 0.026 0.0006 (Jayaram et al., 2003; Jayaram et al., 2004; Hartkoorn et al., 2007; Sarathy et al., 2018)
Extracellular Emax (1/timestep) 0.0056 0.019 0.025 0.007 (Jayaram et al., 2003; Jayaram et al., 2004; Hartkoorn et al., 2007; Sarathy et al., 2018)
Intracellular hill constant, h 1 0.5 2.5 3.2 (Jayaram et al., 2003; Jayaram et al., 2004; Hartkoorn et al., 2007; Sarathy et al., 2018)
Extracellular hill constant, h 1 0.5 1.5 1 (Jayaram et al., 2003; Jayaram et al., 2004; Hartkoorn et al., 2007; Sarathy et al., 2018)
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Figure 4 shows antibiotic total concentrations (sum of free
and bound) within both plasma and granulomas for all four first-
line antibiotics (INH, RIF, EMB, and PZA). Results are shown
for 24 h following an oral dose and compared to experimental
data. Using our sequential calibration scheme, we capture a large
proportion of the experimentally observed antibiotic
concentration data in both plasma and granulomas. The C50

values for each bacterial subpopulation, obtained by fitting the
data referenced in Table 3, indicate the free-drug concentration
when a given antibiotic is at half its maximum bacterial killing
rate. INH, RIF, and EMB achieve sufficient concentrations to kill
extracellular replicating Mtb for a majority of the dosing period.
Both INH and EMB can achieve concentrations above the C50 for
intracellular Mtb. Only RIF approaches concentrations necessary
to achieve bactericidal activity against non-replicating Mtb.
Based on average granuloma concentrations, PZA appears to
have little sterilizing activity in granulomas.

Figure 4 also shows antibiotic total concentrations as a
function of position throughout the grid, at the time of
maximal average granuloma drug concentration following a
single oral dose of each antibiotic in the same in silico
granuloma, shown in grayscale to allow for the illustration of
gradual concentration changes. INH shows a relatively
homogenous distribution in the lesion that rapidly clears as
INH is eliminated in the plasma. RIF accumulates poorly in
granulomas at early time points but can slowly accumulate in the
Frontiers in Pharmacology | www.frontiersin.org 8
caseum following multiple doses (Supplementary Figure 2).
EMB tends to accumulate in regions with a high density of
macrophages but fails to diffuse into caseum significantly. PZA
shows a slight accumulation in caseum relative to the
macrophage-rich regions of the granuloma. To further validate
our model, Figure 5 shows PZA distribution identified
experimentally using matrix-assisted laser desorption/
ionization mass spectrometry imaging (MALDI-MSI) as we
have done previously (Prideaux et al., 2015) and compares the
PZA signal intensity distribution to two simulated granulomas.
Overall, our simulated distributions for other antibiotics agree
with observations made through MALDI-MSI in TB granulomas
(Prideaux et al., 2015; Zimmerman et al., 2017). These qualitative
features observed in the simulations for each antibiotic were not
used in calibrating the tissue PK parameters, but rather resulted
from estimating and fitting the tissue PK parameters to average
granulomas concentrations (Table 1).

Single-Drug Treatments Sterilize
Granulomas at Different Rates and
to Different Extents
We next tested the abilities of each first-line antibiotic, when
dosed alone, to sterilize granulomas with average plasma PK
exposure and low or high-CFU (Groups 1 and 2 of Figure 3).
The rates and extents of sterilization differ for each antibiotic in
low-CFU granulomas, as shown in Figure 6A, due to differences
FIGURE 4 | Simulations capture both the experimentally observed temporal and spatial antibiotic concentrations. Simulations and data for each antibiotic [isoniazid
(INH), rifampin (RIF), ethambutol (EMB), and pyrazinamide (PZA)], dosed singly, are shown in different columns, respectively. The top row shows plasma
concentrations and the middle row shows average lesion concentrations with varying plasma pharmacokinetic (PK) parameters (median, solid blue line; range
between minimum and maximum of simulations, blue shade) and experimentally measured antibiotic concentrations (black points). Concentrations in granulomas are
in mg/kg (assuming tissue density is approximately 1 kg/L), and reflect the sum of concentrations of free, bound and intracellular drug. Horizontal lines represent the
C50 values for intracellular (green), extracellular replicating (magenta) and non-replicating (red) subpopulations of Mtb (C50 values not shown are above the range of
lesion concentrations displayed on the plot). Data in the middle row are measurements from human granulomas (INH, RIF, and PZA (Prideaux et al., 2015)) and
rabbit granulomas [EMB (Zimmerman et al., 2017)]. The bottom row shows spatial distribution of antibiotics in GranSim at the time of the maximal average lesion
concentration. Red outlines indicate edge of granuloma (outer line) and caseated locations (inner lines).
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in sterilizing activity against various subpopulations of bacteria
as well as the antibiotic distribution within granulomas. After
180 days of treatment, single-drug therapy with RIF sterilizes all
low-CFU granulomas. INH sterilized 93% low-CFU granulomas.
EMB and PZA each sterilize just 32% and 1.7% of low-CFU
granulomas, respectively. INH and EMB all have early sterilizing
Frontiers in Pharmacology | www.frontiersin.org 9
ability and were able to sterilize 29% and 31% of granulomas
after two weeks, respectively. RIF alone only sterilized 5% by 2
weeks, and PZA failed to sterilize any granulomas by two weeks.

Our simulations show that INH can quickly distribute within
granulomas, and in sufficient concentrations to kill both
intracellular and extracellular replicating bacteria, and therefore
FIGURE 6 | Single-antibiotic treatments and combination therapy of low-CFU (A, C) and high-CFU (B, D) granulomas show different sterilizing rates and extents for
each of the first-line antibiotics and all four antibiotics together (HRZE). (A, B) show the percentage of granulomas sterilized over the course of treatment for both
groups of granulomas. (C, D) show the distribution of sterilization times for only the granulomas that sterilized for each treatment, with the time when 90% of
granulomas were sterilized indicated by a red line. Percentage below each treatment indicates the total percentage of granulomas that sterilized. For example, EMB
sterilized 32% of low-CFU granulomas (C), and of those sterilized granulomas, a majority of them sterilized in the first few days (indicated by the box plot collapsing
to a line).
FIGURE 5 | Comparison of spatial distribution of pyrazinamide (PZA) in GranSim (A) and in experimental images of granulomas using matrix-assisted laser
desorption/ionization mass spectrometry imaging (MALDI-MSI) (B). The simulation images show heat maps of the spatial distribution of PZA at 5 h after a single-PZA
dose. In the simulated concentration heat maps, shown in color to mimic the images from MALDI-MSI (A), the red area corresponds to lung tissue outside of the
granuloma, the darker blue regions indicates regions inside the granuloma with higher densities of macrophages, and the lighter blue to green sections show
correspond to caseated regions. Both simulation images are on a 200 by 200 grid, representing a 4 mm by 4 mm section of lung tissue. Experimental images (B)
show PZA distribution in granulomas imaged with MALDI-MSI, with granuloma boundary outlined in black, and caseated regions outlined in white. Both simulation
and experiments show some accumulation of PZA inside caseous regions, relative to the cellular portions of the granuloma.
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provides rapid sterilization for some granulomas, as shown in
Figures 4 and 5. However, with poor sterilizing ability against
non-replicating Mtb found in caseum (Sarathy et al., 2018), INH
usually requires many months to sterilize granulomas that have a
high number of non-replicating Mtb and leads to the drawn-out
sterilization of non-replicating Mtb in INH-treated granulomas.
EMB, similar to INH, has poor ability to kill non-replicatingMtb, so
our simulations show it is only able to sterilize a subset of
granulomas, even though it distributes throughout cellular regions
of the granuloma. However, it does rapidly kill both extracellular
replicating and intracellular Mtb, indicated by the percentage of
granulomas sterilized by two weeks, which is consistent with
favorable early bactericidal activity (EBA) for EMB (Donald and
Diacon, 2008). Because INH and EMB are bacteriostatic and have
low ability to kill non-replicating Mtb, sterilization time (for INH)
and total Mtb remaining in the granuloma (for EMB) are highly
correlated with the initial number of non-replicating bacteria
present in the granuloma (Supplementary Figure 3). RIF shows
more complete sterilization of low-CFU granulomas than any other
individual antibiotic as it has some sterilizing ability against each
subpopulation of bacteria.

We observe similar trends with single-drug treatments in
high-CFU granulomas (Figure 6B). Overall, the sterilization
times are longer when compared to low-CFU granulomas.
INH and RIF both sterilize lower percentages of the high-CFU
granulomas than they do low-CFU granulomas. High-CFU
granulomas are also more likely to have higher total numbers
of non-replicating Mtb, decreasing the ability of INH to
completely sterilize these granulomas. RIF, with weakened
ability to kill intracellular Mtb due to low granuloma
concentrations, fails to kill all intracellular Mtb in some
granulomas. This weakness is amplified in larger granulomas,
slowing diffusion of antibiotics into the granulomas.

Specialization of Individual Antibiotics
Contributes to Success of Combination
Therapy
Combination therapy—all four first-line antibiotics—sterilizes
low-CFU granulomas at nearly the same rate as the best single-
antibiotic treatment (RIF) (Figure 6). All granulomas are
sterilized after 147 days of combination therapy, with 33%
sterilized after 2 weeks. The difference in early versus late
sterilizing ability for the single-drug treatments is one reason
why the combination therapy shows faster and more complete
sterilization than any one drug on its own. Early in treatment,
INH and EMB do much of the killing, and the presence of RIF
completes the sterilization.

The benefit of combination therapy is more dramatic for
high-CFU granulomas (Group 2 of Figure 3). Here, treatment
with INH or RIF show only 33% and 39% sterilization after 180
days of therapy, respectively, compared to 97% of granulomas
sterilized with HRZE (Figure 6D). Although RIF is able to
sterilize granulomas as well as HRZE in low-CFU granulomas,
the same behavior is not observed in high-CFU granulomas. RIF
is relatively slow at killing intracellular bacteria. In the low-CFU
granulomas, the number of intracellular Mtb is low enough
Frontiers in Pharmacology | www.frontiersin.org 10
where RIF can kill these bacteria eventually. In high-CFU
granulomas, RIF is not always able to kill intracellular Mtb fast
enough to keep up with its replication, and therefore fails to
sterilize all high-CFU granulomas. The presence of INH and
EMB provide assistance in killing the intracellular Mtb, so the
combination of antibiotics allows for more complete
sterilization. Our model predicts that the different abilities to
kill each of the subpopulations of bacteria and the different
distributions within granulomas complement each other in
combination therapy.

During combination therapy (HRZE), a majority of bacterial
death is due to antibiotics; antibiotics are responsible for roughly
an order of magnitude more bacterial death than the immune
response, and two orders more than bacterial death in caseum
representing a lack of oxygen and nutrients (Supplementary
Figure 4). This trend is consistent across the single-drug
treatments with the exception of PZA, which shows the
poorest efficacy and thus allows for continued bacteria growth
and continued slow killing via the immune response.

High-CFU and Low PK Exposure Lengthen
Sterilization Times During Combination
Therapy
We next tested how sterilization time and thus the necessary
length of treatment is affected by plasma PK variability between
individuals and granuloma heterogeneity. We compared the
sterilization times of all four granuloma groups (Figure 3B)
when treated with daily doses of HRZE. Figure 7A shows the
distribution of sterilization times for each of these treatment
scenarios. Simulating the low-CFU granulomas with low PK
exposure (Group 2) results in a shift in the distribution towards
longer sterilization times relative to average PK exposure (Group
1), with the 90% sterilization time increasing from 97 to 133
days. In contrast, 165 days of HRZE are required to sterilize 90%
of the high-CFU granulomas with average PK exposure, and 90%
sterilization cannot be reached within 6 months of treatment
when those same granulomas have low PK exposure.

With some granulomas failing to sterilize after 180 days of
treatment, we sought to analyze the characteristics of those
granulomas. We grouped our granulomas into four different
“risk” categories: low (sterilize in under 90 days of HRZE),
medium (sterilize between 90 and 150 days), high (sterilize
after 150 days), and unsterilized. For each of these groups, we
compared characteristics of the granulomas before treatment to
see what types of granulomas have different levels of risk.
Unsterilized and high-risk granulomas tend to be higher in
CFU, size, and amount of caseation (Supplementary Figure
5), with median CFU/granuloma levels before treatment of
1.1x105, 6.0x104, 2.1x104, and 1x103 for the unsterilized, high,
medium, and low risk categories. However, these pretreatment
characteristics are not sufficient in predicting whether a specific
granuloma will fail to sterilize during treatment, as there are
some granulomas with high CFU, diameter, and caseation that
sterilize within 90 days. Although these low risk granulomas look
like high risk or unsterilized granulomas, they have higher
percentages of intracellular Mtb. At the beginning of treatment
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with HRZE, these intracellular bacteria can be quickly killed,
making the granulomas easier to sterilize.

Variation in plasma PK exposure may impact treatment with some
antibiotics more profoundly than others. To test this, we sampled a set
of 200 plasma PK parameters from the ranges used in calibrating the
PKmodel (Table 2).With each of these plasma PK parameter sets that
generate different levels of exposure in plasma, we treated the same
granuloma with each single-drug treatment (Figure 8). Overall, RIF is
most impacted by natural variability in plasma exposure, and varying
plasma PK parameters for RIF results in a wider spread of treatment
outcomes than other antibiotics, ranging from aminimum sterilization
time of 38 days to unsterilized granulomas by the end of treatment
(Figure 8). This indicates that optimizing dose for RIF and other
antibiotics that are particularly sensitive to variations in PK existing in
human populations may be critical in designing better regimens.

Treatment Time Can Be Shortened for
Some Granulomas by Increasing the Dose
of RIF
There have been numerous efforts to shorten TB treatment
regimens and clinical trials that involve replacing one or more
antibiotics in the standard regimen or increasing doses of the first-
line antibiotics (Gillespie et al., 2014; Jindani et al., 2014). Increasing
RIF dosage to 20 mg/kg is a strategy applied in several clinical trials
(Diacon et al., 2007; Boeree et al., 2017; Peloquin et al., 2017), and is
rational because it could lessen the impact PK variability has on RIF
given our results (Figure 7).We investigated how increasing the RIF
dose impacts granuloma sterilization time while accounting for
granuloma heterogeneity and PK variability. To simulate high RIF
dose treatments, we simulated each treatment group of granulomas
Frontiers in Pharmacology | www.frontiersin.org 11
with the same combination regimen as before but increased the RIF
dose to 20 mg/kg.

Increasing the RIF dose in combination therapy results in
shorter average sterilization times as compared to the standard
combination therapy (Figure 7B). The 90% sterilization times for
low-CFU granulomas decrease by 25 days for average PK and 41
days for low PK exposure. High-CFU granulomas with average PK
exposure showed a decrease in 90% sterilization times by 33 days
when treated with a high RIF dose, and the low PK exposure
simulations increased the percent of sterilized granulomas from
62% to 91% (the latter giving a 90% sterilization time of 179 days).
Overall, the improvement observed is greater in the low PK
exposure simulations than in average PK simulations.
DISCUSSION

Treatment of drug-susceptible TB requires multiple months of
antibiotics, after which treatment may still fail due to unsterilized
granulomas. A better understanding of the first-line combination
therapy, HRZE, will help to develop rational approaches to reduce
treatment duration and improve cure rates. To analyze the use of
first-line antibiotics and the factors that impact granuloma
sterilization and conditions of treatment failure, we developed a
computational framework that captures both granuloma
heterogeneity and PK variability observed in human studies to
determine the rate and extent of sterilization during treatment with
first-line TB antibiotics at the granuloma scale.

To place the findings of our work into better context with
clinical evidence that has been gathered on first-line TB
FIGURE 7 | Distributions of sterilization times for different granuloma treatment groups, referenced in Figure 3B, treated with HRZE indicate factors that negatively
impact sterilization. (A) shows simulations of the standard regimen (HRZE). (B) shows the simulations of high rifampin (RIF) dose treatments (20 mg/kg). Each
boxplot shows the sterilization time distribution of a treatment group, with outlying simulations as dots and the red line indicating the time of 99% sterilization.. Low
CFU granulomas with average pharmacokinetic (PK) exposure sterilize the fastest. Low CFU granulomas with low PK exposure show a shift to longer sterilization
times compared with average exposure. Similarly, high CFU granulomas with average exposure sterilize faster than high CFU granulomas with low exposure. Results
for low CFU and high CFU with average PK are shown in Figure 6 and are plotted again here for comparison.
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antibiotics, we compared our simulations for single-drug
treatments and combination treatments to early bactericidal
activities (EBA) measured in multiple studies (Table 5). The
EBA estimates based on the simulations are shown as the
decrease in log10(CFU)/day for each treatment. Many of our
simulated estimates are near the clinically measured EBA values
(given as reported ranges or confidence intervals). For simulated
EBA estimates that do not match clinical results, our simulations
tend to predict lower EBA values than those observed clinically.
Our EBA estimates account for the entire granuloma's CFU
Frontiers in Pharmacology | www.frontiersin.org 12
count, and it is possible that we predict lower EBAs as our
simulations detect more remaining bacteria than those that
would be detected clinically in sputum due to limitations of
detection in assays used.

We found that typical PK variability and granuloma
heterogeneity can create scenarios that profoundly impact
sterilization rates and treatment success. The level of antibiotic
concentration in plasma leads to commensurate concentrations
within granulomas, creating differences in sterilization rates.
Individuals with lower plasma PK exposure are at higher risk
TABLE 5 | Comparison of antibiotic treatment simulations to clinical early bactericidal activity (EBA) data. Table shows the simulation EBA, calculated as the decrease in
log10 (CFU) per day over the day intervals indicted. Values reported are the mean daily decrease in CFU over all granulomas simulated with the standard regimen doses
and average PK. Standard deviation is indicated in parenthesis. The clinical EBA values reported are taken from a number of studies and reviews. The simulation EBA
for (0-x) days is calculated as (log10(CFU day 0)-log10)(CFU day x))/x.

Simulation, Mean (SD) Clinical

Antibiotic EBA
0-2
Days

EBA
0-5
Days

EBA
0-14
Days

EBA 0–2 Days EBA 0–5 Days EBA 0–14 Days

INH 0.16
(0.062)

0.13
(0.066)

0.079
(0.051)

Ranges from 0.37–0.77 involving 13 studies
summarized in (Donald and Diacon, 2008)

0.25 (range of 0.19–0.40) as
summarized in (Donald and Diacon,
2008)

Ranges from 0.189–0.192 involving two
studies summarized in (Donald and Diacon,
2008)

RIF 0.15
(0.044)

0.12
(0.037)

0.086
(0.027)

Ranges 0.174–0.631 involving 8 studies
summarized in (Donald and Diacon, 2008)

0.226 (SD 0.144) reported in (Sirgel
et al., 2005)

b0.11 (SD 0.096) reported in (Donald and
Diacon, 2008) from (Jindani et al., 1980)

EMB 0.45
(0.36)

0.20
(0.16)

0.082
(0.061)

0.25 (95% CI: 0.06–0.45) pooled in
(Bonnett et al., 2017)

NA b0.16 (SD 0.090) reported in (Jindani et al.,
2003)

PZA 0.014
(0.009)

0.014
(0.007)

0.012
(0.006)

0.01 (95% CI: -0.07–0.09) pooled in
(Bonnett et al., 2017)

NA b0.11 (SD 0.038) reported in (Jindani et al.,
2003)

HRZE 0.49
(0.34)

0.24
(0.15)

0.11
(0.052)

0.3 (95% CI: 0.09–0.50) pooled in (Bonnett
et al., 2017)

a0.16 (95% CI: 0.09–0.24) pooled in
(Bonnett et al., 2017)

0.16 (95% CI: 0.11–0.21) pooled in (Bonnett
et al., 2017)
aEBA 0–7 Days
bEBA 2–14 Days
FIGURE 8 | Simulation treatment outcomes of single-drug treatments of the same in silico granuloma vary with different plasma pharmacokinetic (PK) parameter
sets. A single granuloma was treated with each of the single-drug treatments with 200 different plasma PK parameter sets. Above shows the CFU for each
granuloma simulation over time during treatment for isoniazid (INH) (A), rifampin (RIF) (B), ethambutol (EMB) (C), and pyrazinamide (PZA) (D). The standard deviation
of sterilization times for different plasma PK parameter sets for RIF normalized to mean sterilization time is 0.40. This indicates greater variability in sterilization times
due to changes in plasma PK for RIF compared to INH, for which the value is 0.19. EMB and PZA have standard deviations of log-transformed CFU normalized to
the mean at the end of treatment standard deviations of 0.033 and 0.034, respectively.
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of antibiotic underexposure in selected granulomas. When
coupled with complex and caseous granuloma structure with
impaired vascular supply, this can lead to longer sterilization
times using standard HRZE TB therapy (Figure 7). Other
models using various experimental data, including hollow fiber
experiments, show that low drug exposure can lead to decreased
rates in bacterial killing (Srivastava and Gumbo, 2011), and have
used variability in PK to predict variability in required treatment
durations (Magombedze et al., 2018). The model we present
builds on these findings by providing the ability to simulate
sterilization in a granuloma, while accounting for human-based
PK variability and granuloma structure. The benefit of
simulating treatment in the context of the whole granuloma is
that it includes the spatial microenvironments that can influence
both antibiotic distribution and bacterial susceptibility or
tolerance to antibiotics. Treating each Mtb as an individual
agent also provides the ability to simulate treatment while
accounting specifically for antibiotic resistance (Pienaar et al.,
2018). Our model is a tool that can provide quantitative
predictions and sterilization times for a given regimen at a
granuloma level, the possibility to predict entire host treatment
through linking of plasma pharmacokinetics, and the potential to
search for optimal treatment regimens (Cicchese et al., 2017).

We show that treatment with any of the current first-line TB
antibiotics alone is not sufficient to sterilize all granulomas, and
that combinations of antibiotics result in more rapid and
complete sterilization. Although RIF shows the best sterilizing
ability on its own and is about as effective as HRZE in low-CFU
granulomas, RIF alone fails to sterilize many of the high-CFU
granulomas, where it only sterilizes 39% of granulomas
compared to 97% with HRZE. Although our simulations
predict that PZA sterilizes very few granulomas on its own,
evidence suggests that PZA does show sterilizing ability when
administered on its own, and suggests that our simulations
underestimate its activity and that there is discrepancy between
the in vitro activity of PZA and in vivo efficacy that our model
does not capture (Irwin et al., 2016; Lanoix et al., 2016; Blanc
et al., 2018).

Granulomas with increased CFU and lower antibiotic
exposure can dramatically increase sterilization time and
increase the risk of granulomas that do not completely
sterilize. Granulomas with high risk of not sterilizing tend to
be larger and have more CFU; however, the type of bacteria
present in those granulomas may affect the risk of treatment
failure as well. Granulomas with high CFU may still have a low
risk of treatment failure if they have high percentages of
intracellular Mtb. Because some of the antibiotics in HRZE are
good at quickly killing this subpopulation, these granulomas that
look like high risk granulomas pretreatment, quickly become low
risk granulomas as treatment begins.

RIF is the antibiotic that provides the best sterilizing ability on
its own, but also is the antibiotic that shows the highest inter-
individual PK variability (Stott et al., 2018) and is most impacted
by PK variability. To reduce the impact the sensitivity RIF has to
PK variability, we simulated HRZE treatment while doubling the
RIF dose. Indeed, we did observe faster granuloma sterilization
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and more complete sterilization in high-CFU, low PK
granulomas, yet some granulomas in that group still failed to
sterilize. Additionally, there was only a slight improvement in
sterilization times for granulomas that were already easy to treat,
indicating there might only be a modest improvement in
treatment for a subset of those granulomas. Understanding an
individual's PK profile for different drugs would be an important
step in developing a personalized medicine approach
to treatment.

While our model can recapitulate key experimental observations
and also predict TB treatment outcomes, there are several
limitations to our findings. Clinical results measure outcomes at
the host level, and GranSim fundamentally simulates treatment and
sterilization at the granuloma scale. The relevance of our results
relies on the assumption that treatment at the granuloma scale is
indicative of treatment at a host scale. Our model simulates primary
granulomas and does not fully capture the full complexity of
multiple pulmonary lesions as is observed during TB disease. It is
appreciated that non-replicating and persisting Mtb are critical
targets to achieve full sterilization of lesions, and while we observe
this in our model, their importance could be amplified in cavitary
disease or fibrotic lesions that are not captured in our model.
Further, directly relating in vitro antimicrobial activity to in vivo
efficacy does not necessarily capture the full range of antimicrobial
activity that occurs within granulomas and may partially account
for any discrepancies between our simulation results and clinical
observations. An additional limitation of our model is that it
currently assumes there are no interactions occurring between
antibiotics, and synergistic or antagonistic combinations may be
relevant in determining regimen efficacy (Swaminathan et al., 2016;
Ma et al., 2019). Going forward, we are currently introducing
synergistic and antagonistic antibiotic interactions to improve the
PD model and further refine our estimates and predictions of
granuloma sterilization (Chandrasekaran et al., 2016; Cokol et al.,
2017; Cokol et al., 2018). The current model also does not include
the development of antibacterial resistance, which may profoundly
impact granuloma sterilization; see (Pienaar et al., 2018) for a
previously published model examining development of resistance
and a discussion of modeling resistance development. Finally, this
work drew on data sets from a variety of human and animal studies,
and predictions of treatment efficacy for other and newer drugs is
dependent on the acquisition of similar data sets.

The significant impact that population PK variability and
granuloma heterogeneity have on granuloma sterilization
highlights the continued need for new approaches and drugs for
treatment, and optimization of new regimens. Close collaboration
between wet lab and computational scientists will help facilitate the
evaluation of these new approaches and provide amore efficient and
comprehensive development of new ways to treat TB.
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