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Multi-drug resistance (MDR) and hypervirulence (hv) were exhibited by different well-
separated Klebsiella pneumoniae lineages in the past, but their convergence clones—
MDR-hypervirulent K. pneumoniae (HvKPs)—both highly pathogenic and resistant to
most available antibiotics, have increasingly been reported. In light of the clonal
lineages and molecular characteristics of the studied MDR-HvKP strains found in
the literature since 2014, this review discusses the epidemiology of MDR-HvKPs, in
particular summarizing the three general aspects of plasmids-associated mechanisms
underlying the formation of MDR-HvKPs clones: MDR-classic K. pneumoniae (cKPs)
acquiring hv plasmids, hvKPs obtaining MDR plasmids, and the acquisition of hybrid
plasmids harboring virulence and resistance determinants. A deeper understanding of
epidemiological characteristics and possible formation mechanisms of MDR-HvKPs is
greatly needed for the proper surveillance and management of this potential threat.

Keywords: Klebsiella pneumoniae, multi-drug resistance, hypervirulent, epidemiology, formation mechanism,
plasmid, horizontal gene transfer, mobile genetic elements

INTRODUCTION

Klebsiella pneumoniae is a clinically relevant opportunistic pathogen that causes a wide range
of infections. Hypervirulent K. pneumoniae (hvKPs) and “classic” K. pneumoniae (cKPs) are
two different variants of K. pneumoniae (Bialek-Davenet et al., 2014). The former are usually
hypermucoviscous (HM) and are clinically characterized by their abilities to cause life-threatening
invasive community-acquired infections, like entophthalmias and liver abscesses, in a healthy
population (Shon et al., 2013). Fortunately, the majority of them have retained susceptibility to
multiple commonly used antimicrobial agents except for ampicillin. The latter generally behave
as opportunistic avirulent pathogens, causing nosocomial infections in hospitalized patients.
Unfortunately, they have a propensity to acquire multiple resistant determinants, such as extended-
spectrum β-lactamases (ESBLs) and/or carbapenemase, to be multi-drug resistant (MDR) strains
making treatment more difficult (Navon-Venezia et al., 2017).

In the past, virulence and antibiotic-resistance have evolved separately in these two distinct
K. pneumoniae clonal groups (Bialek-Davenet et al., 2014). However, in the face of antibiotic
selection pressure, more and more isolates with combined hypervirulence (hv) and MDR have been
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detected and have reached public attention as “superbugs”
with the possibility of causing untreatable invasive infections.
To better understand such strains, this review focuses on
summarizing and discussing the epidemiological characteristics
and the possible formation mechanisms of them.

PATHOGEN AND EPIDEMIOLOGY

Over the past years, a “reference/standard” genotypic/phenotypic
marker for hvKP has been lacking, and a positive string test
indicating HM has been regarded as an important in vitro
parameter for hvKP identification in some early studies (Yao
et al., 2015). Yet, as research progressed, several controversies
regarding the association of HM phenotype and hv have
been raised. HM is not exclusive to hv, on the contrary,
hvKP does not absolutely present HM (Carlos Catalan-Najera
et al., 2017). In this review, studies involving hv (well-defined
by virulence-related assays) or HM (positive for string test)
strains were included.

Klebsiella pneumoniae has experienced the evolution of third-
generation cephalosporin-, carbapenem-, and even polymyxin-
resistance. Harboring a wide range of β-lactamases results
in third-generation cephalosporin-resistance in K. pneumoniae
isolates. Acquired resistance to carbapenems can be conferred by
carbapenemase production, such as KPC, OXA, and MBLs which
include NDM, VIM, IMP, as well as SIM (Tzouvelekis et al., 2012).
Then, the prevalence of carbapenem-resistant bacteria has led to
the use of polymyxins as a last-therapy option to treat associated
infections, which has resulted in the emergence of polymyxins-
resistant K. pneumoniae. This review includes literature about
any kind of MDR phenotypes hvKPs.

We performed an exhaustive search of PubMed, MEDLINE,
Web of Science, EMBASE, CNKI, and Wanfang database for
English-language literature published before January, 2020, with
the following search strategy (“hypervirulence”[All Fields] OR
“hypervirulent”[All Fields] OR “hypermucoviscous”[All Fields])
AND (“Klebsiella pneumoniae”[MeSH Terms] OR “Klebsiella
pneumoniae”[All Fields]) AND (“resistance”[All Fields] OR
“resistant”[All Fields]), then summarized and classified these
papers according to the country or region, STs, capsule
types, plasmid replicon types, resistance loci, and formation
mechanisms in Table 1, which we will refer to frequently
throughout this section.

From Table 1, we can see that MDR-HvKPs have mainly been
detected since 2014 and have become research hotspot. All studies
since 2014 involving both MDR and hv K. pneumoniae isolates
account for a total of 47. China (including Taiwan) accounts for
33, and the remaining 13 are from other Asian countries (three
from India, one from Japan, and one from Iran), Europe (two
from the United Kingdom, one from France, one from Italy, and
one from Norway), North America (one from United States), and
South America (one from Brazil and another from Argentina).
In our opinion, such geographical distribution is attributed to
the prevalence characteristics of MDR and hv-KP strains around
the world. For example, the high prevalence of both hvKPs and
MDR-KPs in China and the significant proportions of incidence

of MDR-KPs in other Asian countries (Lee et al., 2016, 2017) may
contribute to the majority of reports about MDR-HvKPs coming
from these regions.

By comparing the allelic sequences of seven housekeeping
genes, multi-locus sequence typing (MLST) can structure
K. pneumoniae populations into lineages, which are typically
referenced by their sequence types (STs; e.g., ST11). The
common MDR-KP strains are strongly linked to particular clonal
complexes (CCs), like CC258, comprising ST258, ST11, ST512,
ST340, ST437, etc. (Schweizer et al., 2019), CC15 and CC14,
while hvKPs mainly belong to ST23 for the K1 capsular serotype
and to ST86, ST65, and ST25 for K2 (Bialek-Davenet et al.,
2014). Hence, the genetic backgrounds of the isolates, i.e., the
strains stem from whether resistant or virulent lineage, can be
determined by STs. MDR-HvKPs showed various STs in the
literature (Table 1). Among them, the most prevalent ST was
the KPC-producing CRKP highly related ST11, followed by the
dominant hvKP lineage ST23. This was in accordance with the
fact that ST11 and ST23 are predominant among MDR-KP
and hvKP strains, respectively (Bialek-Davenet et al., 2014). In
addition, STs showed different region distributions. In China,
ST23 accounted for about 69.57% (16/23) in all hvKPs and ST11
took on almost the same high proportion 77.27% (51/66) in all
MDR-KPs, respectively, which was consistent with the fact that
both KPC-KP and hvKP are prevalent in China (Lee et al., 2016,
2017). While in other countries, except for India and Brazil, ST11
was almost undetected; instead, STs representing a virulent clone,
such as ST23, ST25, and ST86, were more easily detected, which
was in line with the fact that hvKP has increasingly prevailed in
Europe and the Americas in recent years (Cubero et al., 2016;
Lee et al., 2017).

POSSIBLE FORMATION MECHANISMS

Bacterial phenotypic changes including resistance and virulence
acquisition are mainly driven by horizontal gene transfer (HGT)
(in addition to chromosomal mutations) mediated by mobile
genetic elements (MGEs), such as plasmids, insertion sequences
(IS), transposons (Tn), integrons (In) and integrative conjugative
elements (ICEs), driving dissemination and co-selection of
virulence and resistance genes through genomic rearrangement
during their replication or recombination process, mostly in
Gram-negative pathogens including K. pneumoniae (Frost et al.,
2005). Compared with transformation and transduction, thought
to be secondary effects of other biological processes, conjugation
plays a most impactful role in HGT due to the transfer of
plasmids and ICEs via direct cell-to-cell contact (Pinilla-Redondo
et al., 2018). Additionally, in most instances, hv or MDR
phenotype selection genes transferred by Tn, In, and IS were
mostly accumulated on plasmids followed by plasmid inter
bacterial transfer. Consequently, as the most pivotal vectors
for conjugation and genes recruitment, plasmids are arguably
the most indispensable and essential elements throughout the
entire convergence process of hv and MDR genes coming from
strains of distinct backgrounds. Accordingly, in this section, we
dissect the available mechanism studies apart from case reports
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TABLE 1 | Lists of papers referenced.

Country Sequence type(s) Capsule type(s) Resistance
mechanism(s)

Plasmid
replicon type(s)

Formation
mechanisms*

References

China ST29 (n = 1) K54 (n = 1) blaNDM-5 (n = 1) pvir IncHI1/IncFIB
pres IncX3

◦◦ Yuan et al., 2019

ST1764 (n = 7)
ST11 (n = 6)

K64 (n = 7)
K47 (n = 4), K64
(n = 2)

blaNDM-1 (n = 7)
blaKPC-2 (n = 6)

NA NA Liu Z. et al., 2019

ST86 (n = 1) K2 (n = 1) blaNDM-1, blaKPC-2

co-carrying (n = 1)
pvir IncHI1/IncFIB
pres IncFII(K) and pres IncN

◦◦ Liu Y. et al., 2019

ST11 (n = 12)
ST23 (n = 1)
ST660 (n = 1)
ST1660 (n = 1)

K64 (n = 7), K47
(n = 5)
K1 (n = 1)
K16 (n = 1)
K1 (n = 1)

blaKPC-2 (n = 15) NA NA Xu et al., 2019

ST65 (n = 1) K2 (n = 1) blaCTX-M-3,
blaCTX-M-14

coharboring

NA NA Fu et al., 2019

ST23 (n = 1) K1 (n = 1) blaVIM-1 (n = 1) pvir IncHI1B/IncFIBk
pres IncA and pres IncFII

◦◦ Dong et al., 2019

ST23 (n = 1) K1 (n = 1) blaNDM-1 (n = 1) NA ◦◦ Liu and Su, 2019

ST25 (n = 16)
ST11 (n = 3)
ST375 (n = 1)

K2 (n = 16)
Non-typeable (n = 3)
K2 (n = 1)

blaKPC-2 (n = 10),
blaNDM-1 (n = 1),
ESBLS (n = 5)
blaKPC-2 (n = 3)
ESBLS (n = 1)

NA NA Li et al., 2019

ST15 (n = 7) KL112 (n = 7) blaOXA-232 (n = 7) pres-OXAColKP3-type
pres-CTX IncFII
pres-MDR IncFIB
pvir IncHI1B/IncFIB

◦◦ Shu et al., 2019

ST23 (n = 1) K1 (n = 1) blaCTX-M-24 (n = 1) pvir -CTXM IncHI1B/IncFIB ◦ Shen et al., 2019

ST23 (n = 2)
ST412 (n = 1)
ST660 (n = 1)
ST700 (n = 1)

K1 (n = 2)
K57 (n = 1)
K16 (n = 1)
K1 (n = 1)

Undefined (n = 2)
PhoQD150G (n = 1)
PhoQD150G (n = 1)
mcr-1 and
PhoQD150G (n = 1)

NA NA Lu et al., 2018

ST23 (n = 1) K1 (n = 1) blaDHA-1 (n = 1) pres-DHA IncHI5
pvir IncHI1B/IncFIB

◦◦ Xie et al., 2018

ST2922 (n = 1) K1 (n = 1) blaDHA and
blaCTX-M-14 (n = 1)

pres IncR
pvir IncFIB/IncHI1B

NA Xu et al., 2018

ST36 (n = 1) K62 (n = 1) blaKPC-2 (n = 1) press-KPC IncFII
pvir IncHI1/IncFIB

◦◦ Feng et al., 2018

ST11 (n = 1) K47 (n = 1) blaKPC-2 (n = 1) press-KPC IncR,IncFII,
IncNpres-MDR IncA/C2
pvir IncHI1B/IncFIB

◦◦ Huang et al., 2018

Unknown
(n = 18)

K1 (n = 18) ESBLS and
overexpression of
efflux pumps (n = 18)

NA NA Lin et al., 2018

ST86 (n = 1) K2 (n = 1) blaNDM-1- and
blaKPC-2-
Coproducing (n = 1)

NA NA Wei et al., 2018

ST11 (n = 3) Unknown (n = 3) blaKPC-2 or blaNDM-1

(n = 3)
NA NA Wong et al., 2018

ST11 (n = 1) Unknown (n = 1) tet(A) variant and
blaKPC-2 (n = 1)

NA ◦ Gu et al., 2018

ST11 (n = 3) K47 (n = 3) blaKPC-2 (n = 3) NA ◦◦ Gu et al., 2017
Dong et al., 2018b

ST11 (n = 4) Unknown (n = 4) tet(A) variant and
blaKPC-2 (n = 1)

NA ◦◦ Yao et al., 2018

(Continued)
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TABLE 1 | Continued

Country Sequence type(s) Capsule type(s) Resistance
mechanism(s)

Plasmid
replicon type(s)

Formation
mechanisms*

References

ST11 (n = 16)
ST268 (n = 2)
ST65 (n = 1)
ST692 (n = 1)
ST595 (n = 1)

K20(n = 5),non-
T(n = 11)
K20(n = 1),non-
T(n = 1)K2 (n = 1)
non-T (n = 1)
non-T (n = 1)

blaKPC-2 and
blaSHV-11 (n = 16)
blaKPC-2 and
blaSHV-11 (n = 2)
blaKPC-2 and
blaSHV-11 (n = 1)
blaKPC-2 and
blaSHV-11 (n = 1)
blaKPC-2 (n = 1)

NA NA Zhan et al., 2017

ST23 (n = 2)
ST268 (n = 3)
ST65 (n = 1)
ST17 (n = 1)
ST420 (n = 1)
ST367 (n = 1)
ST1658 (n = 1)
ST35 (n = 1)

K1 (n = 2)
K1 (n = 1),K20
(n = 2)
K2 (n = 1)
Non-typeable
(n = 1)
K20 (n = 1)
K1 (n = 1)
K2 (n = 1)
Non-typeable
(n = 1)

SHV-75, CTXM-55,
SHV-11, TEM-1,
CTX-M-like, SHV-148,
CTX-M-14,
TEM-53 (n = 11)

NA NA Zhang Y.W. et al., 2016

ST86 (n = 7)
ST37 (n = 6)
ST23 (n = 5)

Unknown ESBLS (n = 18) NA NA Zhang J. et al., 2016

ST661 (n = 1) K1 (n = 1) mcr-1 (n = 1) NA NA Gu et al., 2016

ST14 (n = 1) K2 (n = 1) blaNDM-5 (n = 1) NA NA Liu et al., 2016

ST11 (n = 1) K1 (n = 1) blaKPC-2 (n = 1) pvir s-KPC IncFIIk ◦ Wei et al., 2016

ST23 (n = 1)
ST23 (n = 1)
ST1797 (n = 3)

K1 (n = 1)
K1 (n = 1)
K1 (n = 3)

blaKPC-2 (n = 1)
blaKPC-2 (n = 1)
blaKPC-2 (n = 3)

pvir s-KPC IncHI1B/ IncFIB
NA
NA

◦

◦◦

◦

Zhang R. et al., 2015
Dong et al., 2018a

ST65 (n = 1) K2 (n = 1) SHV-11,TEM-53-
producing
ompK35,36 decreased
(n = 1)

NA NA Zhang Y.W. et al., 2015

ST25 (n = 2)
ST65 (n = 5)
ST11 (n = 1)

K2 (n = 2)
K2 (n = 5)
Non-typeable
(n = 1)

blaKPC-2 (n = 6) NA NA Yao et al., 2015

Unknown (n = 5) K1 and K2 (n = 5) ESBLS (n = 5) NA NA Li et al., 2014

United Kingdom ST101 (n = 3)
ST383 (n = 3)
ST147 (n = 4)
ST15 (n = 2)
ST48 (n = 1)

Unknown blaOXA-48 and MDR
(n = 1), MDR (n = 2)
blaOXA-48 (n = 1),
blaNDM-5 (n = 2), MDR
(n = 1)
blaNDM-1 and MDR
(n = 2), MDR (n = 2)
blaNDM and MDR
(n = 1), MDR (n = 1)
blaNDM-5 and MDR
(n = 1)

pvir -MDR-OXA-48 and (or)
-NDM IncFII(K)/IncFIB(K)
pres-OXA-48 IncL/M
pres-NDM-1 IncFIB(pQil)
pvir -NDM-5 IncFIB(Mar)

◦ Turton et al., 2017,
2019

Argentina ST25 (n = 1) K2 (n = 1) blaKPC-2 (n = 1) NA NA Cejas et al., 2019

Japan ST23 (n = 1) K1 (n = 1) blaIMP-6 (n = 1)qq pres-IMP-6 IncN ◦◦ Harada et al., 2019

Norway ST15 (n = 2) K24 (n = 2) ESBLS (n = 2) pvir -CTXM

IncFIBK1 /IncFIIK1

◦ Lam et al., 2019

Iran ST23 (n = 5) K1 (n = 5) blaVIM-2 (n = 5) pres-VIM−2 IncN ◦◦ Tabrizi et al., 2018

United Kingdom ST23 (n = 1) K1 (n = 1) blaNDM-1 (n = 1) NA NA Roulston et al., 2018

Italy ST512 (n = 1) Unknown (n = 1) blaKPC-3 (n = 1) NA NA Arena et al., 2017

France ST86 (n = 1) K2 (n = 1) blaCTX-M-3 (n = 1) pres IncL/M NA Surgers et al., 2016

India ST2318 (n = 1) Non-typeable
(n = 1)

ESBLS (n = 1) NA NA Shankar et al., 2016b

(Continued)
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TABLE 1 | Continued

Country Sequence type(s) Capsule type(s) Resistance
mechanism(s)

Plasmid
replicon type(s)

Formation
mechanisms*

References

India ST11 (n = 1)
ST43 (n = 1)
ST231 (n = 1)

Unknown blaOXA-232, blaOXA-181,
blaOXA-1, blaNDM-1

IncFIA IncFIB IncFII
IncHI1B Col

NA Shankar et al., 2016a

India ST14 (n = 1) Unknown (n = 1) Mutation in OmpK36
(n = 1)

NA NA Rafiq et al., 2016

United States ST23 (n = 1) Unknown (n = 1) blaKPC-2 (n = 1) pres-KPC IncFIA NA Cejas et al., 2014

Brazil ST11 (n = 7) Unknown (n = 7) blaKPC-2 qnrS1
blaCTX-M-2 (n = 7)

press-KPC IncFIIk NA Andrade et al., 2014

*Single ◦ represents acquiring hybrid plasmid by KPs, double ◦◦ represents acquiring additional plasmid(s), pvir by MDR KPs or pres by hvKPs, respectively.

(Table 1) to extract and further expand to three general aspects of
plasmids-associated mechanisms underlying the convergence of
hv and MDR phenotypes.

MDR-cKPs Acquire Hypervirulence
Plasmids
Virulence plasmid acquisition is an important mechanism for
the increased virulence of MDR-cKPs. The best characterized
virulence plasmids are the 224 kbp plasmid pK2044 from K1,
ST23 strain NTUH-K2044; the 219 kbp plasmid pLVPK from K2,
ST86 strain CG43; and the 121 kbp plasmid Kp52.145pII from
K2, ST66 strain Kp52.145, on which the virulence-associated loci
and genes were highly conservatively organized (Lam et al., 2018).
There are some convincing and rational explanations to the
comparative rarity of hv plasmids in avirulent MDR-KP clones
compared to in hvKPs. First, dominant hv plasmids hosting
KP ST23 accounts for only ≤ 2% of clinical K. pneumoniae
isolates in the global range, except for in the Asia-Pacific rim,
despite circulating among humans with hv plasmid maintenance
for more than 100 years, far longer than the most well-known
MDR clones (Wyres et al., 2020), suggesting that the hv plasmids
rarely move horizontally and are highly restricted to hvKP clones,
i.e., lineage specificity of plasmid distribution. Second, large
numbers of plasmids, like hv plasmids in K. pneumoniae, devoid
of genes permitting their transfer by conjugation and relying on
the transfer function of other plasmids to enable their transfer,
are mobilizable but not self-transmissible (Smillie et al., 2010),
which radically limits the frequency of the horizontal transfer
of hv plasmids. Third, as large low-copy-number plasmids,
virulence plasmids contain specific replication and maintenance
systems to ensure their transmission to daughter cells of specific
genetic backgrounds (Million-Weaver and Camps, 2014), which
is reminiscent of the fact that they might often impose fitness
costs on other unsuitable host. Despite those restrictive factors, in
fact, MDR-cKPs acquiring virulence plasmids have recently been
reported. Yao et al. (2018) screened four ST11 CR-HvKP strains
from clinical patients in Henan province, China, each of which
carried both a KPC-2-encoding and a virulence plasmid. Further
sequencing of the virulence plasmid showed high homology to
pLVPK. Resembling that, Gu et al. (2018) reported the emergence
of a tigecycline- and carbapenem-co-resistant ST11 hvKP isolate
from a patient’s gut in Zhejiang, China. One of its three plasmids

shared high homology with pLVPK and another co-carried
blaKPC-2 and tet(A). In the Lancet, Gu et al. reported a fatal
outbreak of ST11 CR-HvKP strains in a Chinese hospital. In
addition to their intrinsic conjugative MDR plasmids carrying
blaKPC-2 genes, the five representative causative strains acquired
an additional virulence plasmid that aligned well to most parts
of pLVPK (Gu et al., 2017). Subsequently, Dong et al. made
the whole genome sequences (WGS) of three ST11 CR-HvKP
isolates surveyed in the previous Gu et al.’s study and five
plasmids harbored by each of them. The presence of homologous
regions between the virulence plasmid and blaKPC-2-bearing
conjugative MDR plasmid suggested that their co-integrated
transfer might mediate the transmission of the non-conjugative
virulence plasmid from hvKP to ST11 CRKP (Dong et al., 2018b).
The main explanation for these facts is that the virulence plasmids
are not self-transmissible but often mobilized to access new hosts
with the help of other ICEs or conjugative resistance plasmids
encoding the conjugation transfer complex in the same host
cell (Ramsay and Firth, 2017). Of note, the parental hvKPs,
typically susceptible to antimicrobial agents, generally do not
originally carry the conjugative resistance plasmid, so in this
scenario, the event that hv plasmids are synergistically mobilized
by conjugative resistance plasmids in the same host cell to new
strains happens after the conjugative resistance plasmids are
transferred into hvKPs first, as will be discussed in the next
section.

Hv (HM) KPs Obtain
Multidrug-Resistance Plasmids
From the comparatively lower genome’s diversity in hvKPs
than MDR-KPs, Wyres et al. (2019) inferred that hv clones
are less likely to acquire resistance genes than MDR clones
are to acquire virulence genes. Nevertheless, evidence seemly
shows the opposite. We found that out of all the documents
reviewed, the total number of Hv (HM) KP isolates obtaining
MDR plasmids was much more than that of MDR-cKPs acquiring
hv plasmids, 111 vs. 87, respectively. (Not absolutely, but it
seems to be a doubt). In Zhang R. et al.’s (2015) study, both
carbapenems-susceptible HvKP and CR-HvKP strains harbored
an ∼200-kb virulence plasmid but the latter had acquired two
additional plasmids with blaKPC-2 gene located on a transferable
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plasmid. Tabrizi et al. described the emergence of VIM-2-
encoding K1 ST23 CR-HvKP in an outbreak in Iran. Plasmid
analysis revealed a class 1 In carrying blaVIM-2 located on an
∼45-kb IncN conjugative plasmid (Tabrizi et al., 2018). As
reported by Feng et al. (2018), a blaKPC-2-mediated carbapenem-
resistant ST36 hvKP clinical isolate had two plasmids, one
IncHI1/IncFIB plasmid highly similar to the known pLVPK,
another IncFII plasmid carrying blaKPC-2 and proved self-
transmissible. Similarly, the first IMP-producing K1 ST23 CR-
HvKP in Japan carried a pLVPK-like plasmid and an IncN
plasmid harboring class 1 In-mediated blaIMP-6. According to
the fact that blaIMP-6 was, while rmpA was not, detected in the
transconjugant, the authors inferred that the blaIMP-6-carrying
plasmid was conjugative, but the plasmid carrying virulence
gene was not, and they were two individual plasmids (Harada
et al., 2019). Liu et al. presented an NDM-1 and KPC-2 co-
producing K2 ST86 CR-HvKP strain with four plasmids in China.
Apart from an IncHI1/IncFIB virulence plasmid identical to
pLVPK, the strain additionally acquired two carbapenemase-
producing plasmids including blaNDM-1-carrying IncN plasmid
and IncFIIK plasmid which carried blaKPC-2 and an array of other
resistance elements (Liu Y. et al., 2019). Xie et al. delineated a
blaDHA-1-carrying IncHI5 plasmid which had a 26-kb accessory
region where the blaDHA-1 gene was located upstream of
ISCR1 isolated from a K1 ST23 MDR-HvKP strain. Apart from
this MDR plasmid, this strain carried another two plasmids,
including its virulence plasmid (Xie et al., 2018). In Dong et al.
(2019) study, a VIM-1-producing K1 ST23 CR-HvKP strain
harbored three plasmids; a virulence plasmid highly homologous
to that recovered from other ST23 hvKPs; and a blaVIM-1-
bearing plasmid possessing a unique resistance island structure
presumably generated by multiple gene mobilization events.
Yuan et al. (2019) showed that apart from an IncHI1/IncFIB
pLVPK-like plasmid, a blaNDM-5-carrying K54 ST29 CR-HvKP
isolated from Sichuan, China, harbored a blaNDM-5-carrying
IncX3 self-transmissible plasmid. Recent WGS work of an
NDM-1-producing K1 ST23 CR-HvKP in China, by Liu and
Su (2019), showed that in addition to a pLVPK-like virulence
plasmid, it had a conjugative resistance plasmid carrying a
blaNDM-1 and another six types of resistance genes surrounded
by ISs. All of these studies were typical examples in which
hvKP clones additionally acquired resistance plasmids all proved
conjugative. On the theoretical basis that most large resistance
plasmids encode their own transfer and are conjugative, we
could further speculate from these papers that the surveyed
phenotypically convergent strains originally carried a virulence
plasmid and thereafter acquired extra resistance plasmids, which
are readily transmitted by horizontal transfer between different
lineages and species. Nevertheless, if we only consider the
strong transfer of resistance plasmids, we cannot explain why
the composite strains are still far less than MDR-KP strains.
Therefore, we guess that the success of the MDR and hv
convergence results from interaction of various positive and
negative factors. Clear examples of the positive factors include
the following: (i) most resistance plasmids encode all functions
needed for their horizontal transfer, such as DNA replication
and copy number control functions, mating pair formation

genes, and an origin of transfer (oriT) (Pinilla-Redondo et al.,
2018), which facilitated their transfer into other strains like
hvKPs; (ii) acquisition of antibiotic resistance genes to become
MDR-HvKPs promotes adaptive evolution of hvKP clones in
an antibiotic environment; (iii) most acquisition of antibiotic
resistance will reduce the virulence and fitness of the strain,
especially in the absence of antibiotic selection (Durao et al.,
2018); while in the era of antibiotics, antibiotic selection pressure
promotes plasmids persistence once resistant mutants form;
(iv) conjugative resistance plasmids are usually large and have
a low-copy-number, which to some extent circumvent use of
host material, and as such, has less effect on host fitness than
high-copy-number ones; (v) host genetic background might
be a pivotal determinant of plasmid fitness. Strain-dependent
compensation to the cost of resistance acquisition might occur
in hv strains. Intriguingly, not as many strains of concurrent
hv and MDR phenotypes, as imagined in the context of so
many positive advantages, implied the essential role of negative
factors: (i) considerably lower genome diversity and plasticity
than that of MDR-KP is a hint that there might be some sort
of barrier for hvKP to uptake and/or integrate DNA fragments;
(ii) hv strains typically sensitive to antibiotic are selectively killed
by antimicrobial agents before they acquire resistance plasmids.
Therefore, antibiotic usage creates conditions for the growth and
development of MDR-cKP populations rather than producing
a noticeable number of MDR-HvKPs. Altogether, we provide
explanations for the complex interactions between resistance
plasmids and hvKPs, which shed light on the mechanisms
of Hv (HM) KPs obtaining and maintaining MDR plasmids.
Notwithstanding Wyres et al.’s (2019) opinion posed at the
beginning of this section, that hvKPs are unable or difficult to
obtain resistance plasmids, it is possible to state that the genomic
traits of hvKPs just weaken the strong transmission kinetics of
MDR factors into themselves than into cKPs, producing relatively
fewer MDR-hvKPs than MDR-cKPs. Under the interaction
of many factors, it is still very easy for hvKPs to obtain
resistance plasmids.

Virulence-Resistance Hybrid Plasmids
Small MGEs, such as Tn, IS, or In, that “hitchhike” on the
plasmids, especially resistance plasmids (Pinilla-Redondo et al.,
2018), contribute to the capture and dissemination of MDR
and/or hv genes whose co-existence on the same plasmid
constitutes the perfect mosaic structure-hybrid plasmid. The
transfer of the hybrid plasmids into either hvKP or cKP strains
form MDR-HvKPs. The possible evolution pathway of MDR-
HvKPs mediated by the hybrid plasmid is shown in model
diagram Figure 1.

Some clear examples have been demonstrated. Zhang et al.
reported the emergence of five K1 CR-HvKP strains causing
fatal infections in hospital patients in Zhejiang Province, China.
The K1 ST23 CR-HvKP70-2 harbored an ∼200-Kp plasmid
on which blaKPC and rmpA were located, and this plasmid
was not transferred to Escherichia coli. Similarly, blaKPC-2 was
detected on two virulence genes-harboring plasmids which were
not transferable to E. coli in other three genetically related K1
ST1797 isolates (Zhang R. et al., 2015). The non-conjugativity
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FIGURE 1 | Model diagram of the possible evolution pathway of MDR-hvKPs mediated by a hybrid plasmid. ¬ MDR plasmids first transfer into hvKPs, then
antimicrobial resistance genes are integrated or transposed into hv plasmid harbored by hvKPs, resulting in the formation of hybrid plasmids with most hv
genes-bearing regions and the MDR-hvKPs of hv-associated STs (¬-A). Alternatively, if the genes encoding the self-transfer conjugative system are integrated into
the virulence plasmid, together with the resistance determinants, the hybrid plasmids will be conferred self-transmission and conjugativity transfer into any bacterial
host including cKPs to become MDR-HvKPs (¬-B). In addition, with the help of other conjugative plasmids this hybrid plasmid can be possibly transferred into other
cKPs to form MDR-hvKPs of MDR- or cKP-linked STs (¬-C).  If the In, Tn, and (or) Is further carry hv genes from the hv plasmid into other resistance plasmids,
hybrid plasmids with most sites of resistance plasmid characteristics are formed. They can be transferred into either hvKPs (¬--A) or cKPs (¬--B) to form
MDR-hvKPs via their conjugal transfer system.

implied that these hv-MDR plasmids were very likely originally
harbored by the hvKPs and carried the hv plasmid backbone, then
formed mosaic structures via MGEs-mediated integration with
the blaKPC-2-bearing DNA fragment which comes from other
conjugative blaKPC-2-carrying resistance plasmid(s) transferred
into the hv host before (Figure 1¬-A). This hypothesis was
subsequently proved in Dong et al.’s study where a hybrid
plasmid recovered from CR-HvKP strain KP70-2 was found to be
almost structurally identical to numerous known hv conferring
plasmids harbored by other hvKP strains, except for an extra
MDR-encoding region flanked by two copies of IS26 in the
same orientation and MGEs-mediated resistance genes dfrA14
and blaKPC-2. The authors concluded that multiple IS elements
were responsible for the integration of the MDR region into the
virulence plasmid (Dong et al., 2018a). Similarly, the complete
genome of an ESBL-producing K1 ST23 MDR-HvKP showed
that the strain obtained a rare plasmid harboring virulence
and blaCTX-M-24 genes. Furthermore, a full-plasmid BLAST
comparative analysis illustrated that this plasmid exhibited
high similarity with three IncHI1B/IncFIB virulent plasmids
retrieved from the GenBank, except for a unique blaCTX-M-24-
harboring region. Further exploration proved that following
the IS-mediated blaCTX-M-24 gene insertion, into the conserved
virulence plasmid backbone region, the hybrid plasmid formed
(Shen et al., 2019). In conclusion, these studies suggested that
hv strains are capable of acquiring MDR determinants through
the integration of the MDR region mediated by MGEs, like

Tn, In, and seemly dominant IS, into its intrinsic virulence
plasmid. The integration of additional resistance elements into
the virulence plasmids of hvKPs constitutes perfect mosaic
plasmids possessing dual characteristics of conserved virulent
regions and newly acquired MDR-encoding sites, but maybe not
conjugative (Figure 1¬-A).

However, if the genes encoding a self-transfer conjugative
system are integrated into the virulence plasmid together
with the resistance determinants, the hybrid plasmids will be
conferred self-transmission and conjugativity. Alternatively, with
the help of other conjugative plasmids, this hybrid plasmid
could possibly be mobilized to transfer. Hence, if the fitness
cost brought into the host bacteria is not considered, they
enable one-time simultaneous transfer of resistance and virulence
genes into any type of K. pneumoniae clones, including
cKPs, to facilitate emergence of MDR-HvKPs (Figures 1¬-
B,¬-C). Indeed, a growing body of evidence supports the
hypothesis. Huang et al. (2018) identified a hybrid virulent
plasmid which comprised both parts of the pLVPK and
an IncHI2-type resistance plasmid in a KPC-2-producing
K47 ST11 MDR-HvKP strain in Taiwan. According to the
study of Lam et al. (2019), both two ESBL-producing K24
ST15 K. pneumoniae isolates carried large hv-MDR mosaic
plasmids which include sequences typical of IncFIBK virulence
plasmids, such as pK2044, fused with regions of homology
with typical IncFIIK conjugative MDR plasmids. Similarly,
Turton et al. (2019) also described hybrid plasmids containing
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both resistance and virulence clusters in 12 CR-HvKP isolates
belonging to ST15/48/101/147/383. Yet, considering the special
characteristics of classic hv plasmid, such as its notable lineage
specificity, narrow-host-range, and low-copy-number traits, it
might inhibit a second virulent plasmid transfer into the same
strain, which thus might cause hvKPs to not acquire and maintain
other hybrid plasmids with most hv genes-bearing regions.
These surveyed CR-HvKP strains of hvKP-linked STs generally
carrying a single hv or MDR-hv hybrid plasmid can support
this hypothesis.

Besides, if the In, Tn, and/or Is further carry the virulent
sites/genes from the hv plasmid into other resistance plasmids,
hybrid plasmids with most sites of the resistance plasmid
traits are formed. They can be transferred into either hvKPs
(Figure 1¬--A) or cKPs (Figure 1¬--B) to form MDR-hvKPs
mediated by their conjugal transfer system.

From a biological point of view, the highly mosaic nature of
antimicrobial resistance and virulence determinants converging
within a single vector, the purported co-selection, efficiently
facilitates the evolution in two directions, which is a shortcut
to an evolutionary success for a proficient bacteria, since
selection by relevant antibiotics will also select for virulence
traits (Turton et al., 2019). It should be noted that, due to the
integration of multiple plasmids elements, including self-transfer
conjugative system as well as expanded replicons number and
host ranges, hybrid plasmids with MDR and hv biphenotypes
can widely spread and infect many types of bacterial hosts
and eventually become notorious environmental contaminators
(Xie et al., 2020).

CONCLUSION

In the context of what has already been reported by others
regarding the MDR and hv convergence in K. pneumoniae,
epidemiological characteristics and formation mechanisms of
MDR-HvKPs researched in these papers have been discussed and
elaborated in the current review.

Collectively, an epidemiology analysis enhances our
understanding that the genetic background and geographical
distribution characteristics of MDR-HvKP are highly consistent
with the epidemic characteristics of hvKP and MDR strains
and the monitoring and control of both will help prevent
the occurrence of superbugs. The formation mechanism
analysis has brought to light that hvKP and MDR strains

could evolve into MDR-HvKPs through acquiring MDR,
hv plasmids, or resistance/virulence hybrid plasmids. The
formation mechanisms of biphenotypic composite bacteria
are different in distinct genetic background K. pneumoniae
clones, but the horizontal transfer of plasmids plays a decisive
role. In addition, the adaptive evolution ability of the strain
promotes the formation, persistence, and transmission of MDR-
HvKP.

In the current review, we identified the important role of
plasmid-mediated HGT endowing convergence of hv and MDR
in K. pneumoniae. A plasmid-centered outlook, as opposed to the
traditional host-centric view, should be taken into consideration
by clinicians to turn the focal point from the specific host strains
to resistance and virulence plasmids (and other MGEs) and to
adopt surveillance strategies to track, hinder, or minimize the
horizontal dissemination of them. Notably, avoiding drug abuse
after the composite strains form may reduce the persistence of
plasmids and extreme strains.
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