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Detecting early safety signals 
of infliximab using machine 
learning algorithms in the Korea 
adverse event reporting system
Jeong‑Eun Lee1,5, Ju Hwan Kim1,5, Ji‑Hwan Bae1, Inmyung Song2 & Ju‑Young Shin1,3,4*

There has been a growing attention on using machine learning (ML) in pharmacovigilance. This study 
aimed to investigate the utility of supervised ML algorithms on timely detection of safety signals 
in the Korea Adverse Event Reporting System (KAERS), using infliximab as a case drug, between 
2009 and 2018. Input data set for ML training was constructed based on the drug label information 
and spontaneous reports in the KAERS. Gold standard dataset containing known AEs was randomly 
divided into the training and test sets. Two supervised ML algorithms (gradient boosting machine 
[GBM], random forest [RF]) were fitted with hyperparameters tuned on the training set by using a 
fivefold validation. Then, we stratified the KAERS data by calendar year to create 10 cumulative yearly 
datasets, in which ML algorithms were applied to detect five pre‑specified AEs of infliximab identified 
during post‑marketing surveillance. Four AEs were detected by both GBM and RF in the first year 
they appeared in the KAERS and earlier than they were updated in the drug label of infliximab. We 
further applied our models to data retrieved from the US Food and Drug Administration Adverse Event 
Reporting System repository and found that they outperformed existing disproportionality methods. 
Both GBM and RF demonstrated reliable performance in detecting early safety signals and showed 
promise for applying such approaches to pharmacovigilance.

Post-marketing surveillance studies are essential in ensuring drug safety through a periodic monitoring of the 
potential adverse events (AEs) that were not identified during clinical  trials1,2. Routine drug safety monitoring 
has traditionally been based on a spontaneous reporting system (SRS) by applying statistical data mining tools 
to promptly identify a safety signal, that is an AE related to a specific drug that requires further investigation 
on a causal  relationship3,4. This in turn enables the health authorities to take timely actions to mitigate further 
safety risks through a regulatory  action5,6.

Many data mining methods are available to detect safety signals in SRS, including frequentist-based methods 
(i.e., proportional reporting ratio [PRR] and reporting odds ratio [ROR]) and Bayesian approaches (i.e., gamma 
Poison shrinkage model [GPS] and information component [IC] of Bayesian confidence propagation neural 
network [BCPNN])7–9. Performances of these methods have been explored previously, with the latter generally 
demonstrating higher sensitivity and  specificity10. Recently, there has been a growing attention on the applica-
tion of machine learning (ML) algorithms in  pharmacovigilance11. Among studies that explored ML-based AE 
prediction, one study applied an ensemble ML algorithm trained with the AE profiles extracted from the US 
Food and Drug administration (FDA) Adverse Event Reporting System (FAERS) to identify 18 of 23 AEs iden-
tified during post-marketing  surveillance12. Another study utilized information on the known AEs and drug 
indications extracted from the Side Effect Resource (SIDER) database to train ML algorithms, and successfully 
predicted AEs responsible for a drug  withdrawal13. Besides AE prediction, few studies also have utilized ML 
algorithms to identify safety signals in the  SRSs14,15. Preliminary evidence has shown that ML algorithms were 
not superior over frequentist-based methods and Bayesian approaches in detecting safety signals; however, this 
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may be attributed to sparseness of certain combination of drug and AE leading to poor representativeness of ML 
training datasets, which may negatively impact the performance of ML  algorithms16.

While the value of the data mining methods has been well established in the SRS databases, relatively little is 
known on the performance of ML algorithms in post-marketing surveillance. Indeed, ML algorithms had been 
utilized in predicting potential drug-AE association with the processing of natural languages from social media 
or health-related  forums17,18; however, these approaches were laborious, requiring annotations of the lay lan-
guages by qualified medical  experts11. Contrastingly, information in the SRS databases is based on standardized 
international medical terminology or classification systems, thereby requiring less human input for constructing 
training datasets.

The Korea Adverse Event Reporting System (KAERS) database was established in 1988 and managed by 
the Korea Institute of Drug Safety and Risk Management (KIDS)19. Similar to FAERS, it contains spontaneous 
reports of suspected drug and AE (s) reported by the healthcare professionals, consumers, and pharmaceuti-
cal companies. All AE reports are processed and stored as an individual case safety report that are periodically 
submitted to regulatory bodies (i.e., Ministry of Food and Drug Safety, World Health Organization (WHO) - 
Uppsala Monitoring Centre) or provided for research use. Many efforts have been made to detect safety signals 
in the KAERS, applying a variety of data mining methods including frequentist-based  methods20–22, Bayesian 
approaches and tree-based scan  statistics23,24.

Given the growing interest, this study aimed to investigate the utility of ML algorithms on early detection 
of AEs in the KAERS. Our recent pilot study successfully identified new safety signals for two anti-neoplastic 
drugs, nivolumab and docetaxel, using ML  algorithms15. Here, we expand from our previous work to explore 
the supervised ML-based early AE prediction, using KAERS data and drug label information as the feature and 
label data for ML training, respectively. Two ensemble ML algorithms, gradient boosting machine (GBM) and 
random forest (RF), previously demonstrated to be the most effective in classifying safety signals using real-world 
 data14, were applied to detect early safety signal, defined as an AE detected prior to it being updated in the drug 
label information. Specifically, we selected 5 AEs identified during post-marketing surveillance of a case drug, 
infliximab, an TNF-alpha inhibitor commonly prescribed for rheumatoid arthritis.

Results
Characteristics of the AE reports. Of 11,376 AE reports, 4482 included infliximab as the suspected drug. 
Gender was relatively evenly distributed (44.7%, 43.0% for men and women, respectively), and 30.9% of the 
reports were from age between 30 and 49 years. The report volume increased gradually throughout the study 
period, with a notable peak of 35.9% in 2016, and 28.0% of the reported AEs were categorized as serious AE. The 
majority were reported through post-marketing surveillance (60.6%), by manufacturer (83.3%), and from physi-
cian (74.8%), implying that these were filed from physician to manufacturer and subsequently got submitted as 
post-marketing surveillance reports to the KAERS (Table 1).

Primary analysis: early safety signal detection. Characteristics of the 5 pre-specified AEs of inflixi-
mab (i.e., agranulocytosis, cervical cancer, cerebrovascular accidents, leukemia, and transient visual loss) are 
described in Table S1. All AEs were reported by manufacturers and recorded as a serious AE except for transient 
visual loss.

Of the 5 AEs assessed, RF and GBM identified 4 early signals, whereas adjusted ROR and IC did not identify 
any signal prior to the AEs being updated in the label information of infliximab (Table 2). The 4 early signals iden-
tified by RF and GBM were detected in the first year they were reported with infliximab in the KAERS (Fig. 1).

• Agranulocytosis: WHO-Adverse Reaction Terminology (WHO-ART) Preferred Term “agranulocytosis” first 
appeared in the cumulative yearly dataset of 2009–2011. Both RF and GBM continuously identified this signal 
up to 2015, and the AE was updated in the label information of infliximab in 2017.

• Cervical cancer: WHO-ART Preferred Term “cervical carcinoma” first appeared in the cumulative yearly 
dataset of 2009–2013. Both RF and GBM continuously identified this signal up until it was updated in the 
label information of infliximab in 2017.

• Cerebrovascular accidents: WHO-ART Preferred Terms “cerebellar infarction” and “cerebral infarction” first 
appeared in the cumulative yearly dataset of 2009–2017. Both RF and GBM continuously identified this 
signal up until it was updated in the label information of infliximab, and the standardized difference values 
of GBM remained higher than that of RF throughout the early signal detection period.

• Leukemia: WHO-ART Preferred Terms “leukemia acute” and “leukemia granulocytic” first appeared in the 
cumulative yearly dataset of 2009–2015. Both RF and GBM identified this signal in the first year it appeared 
in the KAERS.

• Transient visual loss: WHO-ART Preferred Term “vision abnormal” first appeared in the cumulative yearly 
dataset of 2009–2015. Neither ML algorithms nor conventional data mining methods identified this AE 
throughout the data period.

Performance of the data mining methods. We measured the performance by comparing the signals 
detected by each data mining method with the reference standard. GBM demonstrated the best balance between 
sensitivity (79%) and specificity (79%), followed by RF with sensitivity and specificity of 60% and 91%, respec-
tively. While the ROR and IC had higher specificities (ROR025: 99%; IC025: 95%), their sensitivities (ROR025: 
18%; IC025: 21%) were considerably lower than that of ML algorithms. Performance measures expressed by 
area under receiver operating characteristics curves (AUROC) for the data mining methods are shown in Fig. 2.
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Secondary analysis: identifying new safety signals of infliximab. Among the unknown 148 AEs 
of infliximab in the KAERS, 27 safety signals were detected by both GBM and RF, whereas only 2 and 3 were 
detected by ROR025 and IC025, respectively (Table 3 and Table S2).

Table 1.  Characteristics of the AE reports of infliximab and methotrexate in the KAERS between 2009 and 
2018. AE adverse event, KAERS Korea Adverse Event Reporting System, RPVC regional pharmacovigilance 
center.

Characteristics

Infliximab Methotrexate

P valueN = 4482 100.00 (%) N = 6894 100.00 (%)

Gender < .0001

Male 2002 44.7 2563 37.2

Female 1929 43.0 4144 60.1

Unknown 551 12.3 187 2.7

Age group (year) < .0001

< 20 413 9.2 1635 23.7

20–29 486 10.8 387 5.6

30–39 735 16.4 611 8.9

40–49 650 14.5 841 12.2

50–59 666 14.9 1208 17.5

60–69 449 10.0 960 13.9

≥ 70 233 5.2 544 7.9

Unknown 850 19.0 708 10.3

Report year < .0001

2009 16 0.4 68 1.0

2010 77 1.7 219 3.2

2011 136 3.0 290 4.2

2012 122 2.7 642 9.3

2013 264 5.9 852 12.4

2014 521 11.6 747 10.8

2015 631 14.1 686 10.0

2016 1608 35.9 971 14.1

2017 670 15.0 1137 16.5

2018 437 9.8 1282 18.6

Serious AE < .0001

Yes 1255 28.0 1257 18.2

Report type < .0001

Spontaneous 1244 27.8 5605 81.3

Post-marketing surveillance 2718 60.6 38 0.6

Literature 404 9.0 542 7.9

Others 116 2.6 709 10.3

Report Source by person < .0001

Physician 3351 74.8 1696 24.6

Pharmacist 67 1.5 987 14.3

Nurse 493 11.0 3126 45.3

Consumer 112 2.5 96 1.4

Healthcare professional 6 0.1 110 1.6

Others 80 1.8 438 6.4

Unknown 373 8.3 441 6.4

Report Source by Affiliation < .0001

RPVC 632 14.1 6124 88.8

Manufacturer 3733 83.3 676 9.8

Medical institution 37 0.8 85 1.2

Pharmacy 1 0 5 0.1

Consumer 0 0 3 0

Others 79 1.8 1 0
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Sensitivity analysis: validating the generalizability of ML algorithms. We further applied our 
models to data retrieved from the FAERS from 3rd quarter of 2014 (Q3 2014) to 4th quarter of 2018 (Q4 2018) 
and consistently found superior performance of ML algorithms. GBM consistently showed the best performance 
with sensitivity of 64%, specificity of 83% and overall AUROC of 75% (Fig. 2). RF achieved the second highest 
overall AUROC (73%) with sensitivity of 64% and specificity of 76%, respectively (Fig. 2). Notwithstanding the 
relatively lower performance measures in FAERS than in KAERS, ML algorithms consistently performed better 
than ROR025 and IC025.

Discussion
We applied supervised ML algorithms, GBM and RF, to explore their utility in early signal detection of post-
marketing safety signals associated with infliximab in the SRSs. Among the 5 AEs with confirmed causality 
association to infliximab and added to the drug label information post-approval, GBM and RF identified 4 safety 
signals in the very first year these AEs appeared in the KAERS, whereas ROR and IC did not generate any early 
signals. According to the results of this study, ML algorithms performed better than the methods currently used 
by the regulatory agencies in South Korea (AUROC of 0.82 and 0.79 for GBM and RF, respectively, vs. 0.59 and 
0.58 for ROR and IC, respectively). However, applying the same algorithms to FAERS data over a shorter time 

Table 2.  Early signal detection results across different data mining methods in the KAERS between 2009 and 
2018. KAERS Korea Adverse Event Reporting System, WHO-ART  world health organization-adverse reaction 
terminology, RF random forest, GBM gradient boosting machine, aROR adjusted reporting odds ratio, IC 
information component.

Drug Adverse event term WHO-ART preferred team Label update (year)

Signaling prior to label 
update

RF GBM aROR IC

Infliximab

Agranulocytosis Agranulocytosis 2017 Y Y N N

cervical cancer Cervical carcinoma 2017 Y Y N N

Cerebrovascular accidents
Cerebellar infarction

2017 Y Y N N
Cerebral infarction

Leukemia
Leukemia acute

2018 Y Y N N
Leukemia granulocytic

Transient visual loss Vision abnormal 2010 N N N N

Figure 1.  Standardized differences of data mining methods by calendar year for each pre-specified AE updated 
in the labeling information of infliximab Abbreviations: AE, adverse event; GBM, gradient boosting machine; 
RF, random forest; ROR025, adjusted reporting odds ratio; IC05, information component.
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period of the infliximab lifecycle did not demonstrate the same performance, but they both outperformed ROR 
and IC respectively. The above findings show promise for applying such approaches to pharmacovigilance.

Our study successfully applied the ML algorithms in two SRSs, focusing on their ability to generate early 
signals. Both RF and GBM detected 4 out of 5 pre-specified AEs of infliximab as early as the very first year they 
were reported in the KAERS. However, our study also has some limitations. First, passive surveillance data are 
inherently subject to potential selection bias and underestimation of AE reports. Another potential bias may 
arise from duplication of the reports. Case duplicates, defined as “two or more reports describing the same 
occurrence of one or more AEs for the same patient that are assigned different case numbers instead of being 
linked as the same case”25, may potentially alter data mining calculations. However, our limited access to the 
SRS did not allow for deduplication of the data in hand. Second, potential misclassification of infliximab-AE 
pairs as either positive or negative control for reference standard construction in our study may had impact on 
the performance of the ML algorithms. Indeed, quantitative performance of ML algorithm is largely dependent 
on a quality of reference standard, and misclassification of the negative controls may certainly bias the perfor-
mance measures in both  directions26. However, we used the standard approach presented by the Observational 
Medical Outcomes Partnership (OMOP) researchers to reduce potential for such  misclassification27. Third, the 
quantity and quality of an input data have major influences on performance of the ML algorithms and can lead 
to inconsistencies across different data  sources14. In the sensitivity analysis for evaluating the generalizability of 
our findings, ML algorithms could not utilize all features available in the KAERS due to some differences in data 
characteristics between KAERS and FAERS; for example, information on the report type could not be identified 
in the FAERS database. Besides, information on an active ingredient of pharmaceutical product was not pro-
vided in the FAERS before Q3 2014, which led to the shorter data period for sensitivity analysis, compared with 
the main analysis. Therefore, the number of label positive and negative derived from FAERS was smaller than 
that derived from KAERS; Utilizing less samples and features might have resulted in achieving relatively lower 
performance of ML algorithms in the FAERS. Fourth, safety signals identified from the unknown AEs do not 
necessarily indicate causal relationship. These signals need to be prioritized by rarity or seriousness and require 
further investigation by the medical experts.

ML algorithm’s performance is largely determined by the quantity of the training dataset. Sparseness of 
certain combination of drug and AE due to relatively small report volume size in KAERS, compared with other 
large-scale SRS such as FAERS or VigiBase of WHO, may have limited the performance of the ML algorithms 
in our study. For instance, both GBM and RF failed to predict “transient visual loss” as early safety signal partly 
due to relatively low quantity of reports that included WHO-ART Preferred Term “vision abnormal”. Moreover, 
apart from low report count, none of the reports that listed “vision abnormal” were recorded as serious AE 
(Fig. S1). Given that serious AE designation in the KAERS was included in constructing covariate feature, it 
was likely that the ML algorithms yielded low signaling probability for this particular AE. Nonetheless, both RF 

(a) Performance in KAERS database between 2009 and 2018 (b) Performance in FAERS database between 2014 and 2018

Methods Threshold AUROC Sensitivity Specificity Methods Threshold AUROC Sensitivity Specificity

GBM Prob 0.60 79% 79% 79% GBM Prob 0.52 73% 64% 83%

RF Prob 0.66 76% 60% 91% RF Prob 0.57 70% 64% 76%

ROR ROR025* 1 59% 18% 99% ROR ROR025* 1 58% 33% 83%

IC IC025† 1 58% 21% 95% IC IC025† 1 59% 30% 88%

Figure 2.  Receiver operating characteristic (ROC) curve illustrating the prediction performances of data 
mining methods used to detect safety signals of infliximab in KAERS (2009–2018) and FAERS (2014–2018). 
Abbreviation: KAERS, Korea adverse event reporting system; FAERS, FDA adverse event reporting system; 
AUROC, area under receiver operating characteristic curve; GBM, gradient boosting machine, RF, random 
forest; ROR, Reporting odds ratio; IC, Information component, Prob, probability. *ROR025 is the lower limit 
of a 95% confidence interval for estimated reporting odds ratio. †IC025 is the lower limit of a 95% confidence 
interval for estimated information component.
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and GBM successfully predicted 4 out of 5 AEs, promising as a new approach for early prediction of clinically 
significant AEs.

Expectedly, ML algorithms outperformed ROR and IC in predicting AEs as well as identifying new signals for 
infliximab. Such difference may be attributed to the statistical aspect of each method in calculating probability 
value for a drug-AE pair. Conventional data mining methods such as PRR, ROR, and IC simply calculate signal 
scores based on 2 × 2 contingency  table28. While they are relatively simple and fast to compute, their performance 
varies across different thresholds and limited by high rate of false  positives29,30. On the other hand, ML algorithms 
utilize a large number of features to calculate signal scores, and their performance is determined by the quality 
of input dataset. For instance, Schotland et al. used feature data generated by aggregating AEs from the FAERS 
and drug label information, sequentially, to construct an ensemble ML method, and tested whether unlabeled 
AEs at the time of drug approval could be predicted. The ML performance improved with increasing volume of 
input data, from precision, recall and specificity of 0.57, 0.78 and 0.61 with FAERS data to 0.67, 0.81 and 0.71 
with addition of drug label information to the feature data,  respectively12.

In the recent years, ML-based pharmacovigilance has been extended to studies that predict unlabeled AEs 
for a new drug at the time of approval by using the pharmacological target adverse event (TAE) profiles based 
on comparator drugs. An ensemble ML algorithm based on the data from drug label information, literatures and 
FAERS demonstrated reliable performance in predicting potential AEs of a new drug (AUC of 0.87)31. Besides 
ML-based AE prediction, they have been applied in routine safety surveillance for generating potential safety sig-
nals for  evaluation14,15, as well as predicting unknown drug-drug  interactions32. Our study findings complement 
the recently growing evidence on potential application of the ML algorithms, focusing on their ability to facilitate 
the timeliness of safety signal detection that would in turn reduce patient harm and improve health outcomes.

Of two ML algorithms, RF demonstrated optimal performance with better balance between sensitivity (74%) 
and specificity (89%), compared with 57% and 95% for GBM. Few studies have also assessed performances of 
these algorithms. One study based on Australian medication dispensing data showed GBM out-performed RF 

Table 3.  Safety signal detection among the unknown AEs of infliximab reported in the KAERS between 2009 
and 2018. KAERS Korea Adverse Event Reporting System, WHO-ART  world health organization−adverse 
reaction terminology, RF random forest, GBM gradient boosting machine, aROR adjusted reporting odds ratio, 
IC information component. a Lower bound of the 95% confidence interval of adjusted ROR. b Lower bound of 
the 90% confidence interval of IC.

WHO-ART preferred term

Data mining methods

GBM RF aROR IC

Signal Probability Signal Probability Signal ROR025a Signal IC05b

Acne Y 0.92 Y 0.74 N 0.64 N − 0.33

Alopecia Y 0.94 Y 0.77 N 0.08 N − 2.66

Asthenia Y 1 Y 0.95 N 0.36 N − 1.34

Bilirubinaemia Y 0.93 Y 0.71 N 0.02 N − 4.37

Cytomegalovirus colitis Y 0.87 Y 0.75 N 0.2 N − 1.07

Death Y 0.88 Y 0.76 N 0.01 N − 2.89

Drug reaction paradoxical Y 0.88 Y 0.8 N < 0.01 N − 0.17

Epistaxis Y 0.93 Y 0.81 N 0.78 N − 0.63

Extravasation Y 0.86 Y 0.73 N 0.03 N − 2.11

Gastroenteritis Y 0.97 Y 0.76 N < 0.01 N − 0.07

Haematuria Y 0.99 Y 0.82 N 0.04 N − 1.83

Hepatocellular damage Y 0.88 Y 0.67 N 0.06 N − 3.27

Hypoaesthesia Y 0.9 Y 0.7 N 0.14 N − 1.39

Liver fatty Y 0.97 Y 0.79 N < 0.01 N − 0.17

Melaena Y 0.95 Y 0.89 Y 2.79 Y 0.62

Mouth dry Y 0.78 Y 0.65 N 0.26 N − 1.06

Oedema genital Y 0.9 Y 0.63 N < 0.01 N − 1.48

Oedema periorbital Y 0.88 Y 0.64 N 0.11 N − 1.99

Paraesthesia Y 0.82 Y 0.83 N 0.83 N − 0.16

Psoriasis Y 0.87 Y 0.71 N < 0.01 Y 0.19

Pulmonary infiltration Y 0.97 Y 0.82 N 0.32 N − 0.3

Stomatitis ulcerative Y 0.89 Y 0.78 N 0.08 N − 1.82

Stridor Y 0.82 Y 0.65 N < 0.01 N − 1.48

Stupor Y 0.84 Y 0.64 N 0.14 N − 3.17

Temperature changed sensation Y 1 Y 0.96 Y 4.23 N − 0.08

Tremor Y 0.85 Y 0.71 N 0.2 N − 0.8

Uveitis Y 0.66 Y 0.7 N < 0.01 Y 0.08
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with sensitivities of 77% and 57%,  respectively14. Another study compared performances of several data mining 
methods, including three ML algorithms, in which IC demonstrated the highest AUC of 0.69 and RF with the 
lowest AUC of 0.5216. Such discordance across different studies may attribute to the differential data volume, 
data characteristics, and lack of gold standard. Specifically, in context of differential data characteristics, there 
are currently no standardized guideline on mapping AEs listed in a drug label with the AE coding system used 
in each data source (i.e., WHO-ART used to code AE in the KAERS).

In conclusion, our study showed that the ML algorithms performed well in early detecting unknown AEs 
associated with infliximab. Before discussing the potential routine use of these methods in pharmacovigilance, 
additional efforts are needed to improve the consistency of the ML algorithms’ performance with other stand-
ardized drug-AE reference data. It is also vital to determine the acceptable performance levels in collaboration 
with the Korean and other regulatory agencies worldwide.

Materials and methods
Data source. Our study data source included AE reports in the KAERS between 2009 and 2018. Each report 
contains information on the demographic characteristics, administered drug (s), and suspected AE (s). Admin-
istered drug (s) are either labeled as “suspected drug”, “concomitant drug”, or “drug-drug interaction”. Each 
report may include one or more AEs, and classified as “serious AE” if they resulted in one or more of the follow-
ing conditions: persistent or significant disability, congenital anomaly, life-threatening, death, hospitalization, 
prolonged hospitalized days, or other unspecified clinical intervention. Moreover, AEs reported by healthcare 
professionals or consumers are classified as “spontaneous”, pharmaceutical companies as “post-marketing sur-
veillance” and monthly literature search for published case series or reports conducted monthly by KIDS as 
“literature”. AEs are coded according to the World Health Organization Adverse Reaction Terminology 092 
(WHO-ART) and drugs according to the WHO’s Anatomical Therapeutic Chemical (ATC) classifications.

Study scheme. We used the ML algorithms and conventional data mining methods to detect safety signals 
for infliximab in the KAERS between 2009 and 2018. All AE reports that included two commonly prescribed 
disease-modifying antirheumatic drugs (i.e., infliximab and methotrexate) were analyzed to identify safety sig-
nals for infliximab. We first extracted all AE reports that contained immunosuppressants (ATC: L04) from the 
KAERS, and then created an initial dataset that listed infliximab or methotrexate as a “suspected drug”. For 
follow-up report of an initial report, only the latest reports were included. The initial dataset was segmented 
based on the reporting year, and 10 cumulative yearly datasets were created by merging each subsequent year 
data to the 2009 data (Fig. 3). Then, retrospective data screening was conducted from 2009 dataset to 2009–2018 
dataset to evaluate whether the five pre-specified AEs of infliximab were detected prior to they were updated in 
the drug label information. After evaluating performance of each data mining method, we applied them to detect 
safety signals from unknown AEs in the KAERS that are neither listed in the drug label information of infliximab 
and other drugs belonging to same therapeutic class (i.e., TNF-alpha inhibitor).

Generating input dataset for machine learning. We first constructed an input dataset required for 
ML algorithm to generate signaling probability of an AE. The input dataset contains information on the known 
and unknown AEs of a drug (labeled data) and quantifiable properties and characteristics of AEs (feature data).

Labeled data. Labeled data contains information on the known and unknown AEs of the study drugs. Known 
AEs, referred as reference standard, are retrieved from the drug label information and used to orient for train-
ing and testing of the ML algorithms. Unknown AEs are the ones that may be related the reported drug (s), for 
which causality relationship cannot be ruled out; this data is used by ML algorithms to detect new safety signals 
of the study drug.

To construct a labeled data, we first created a reference standard by extracting safety data of the study drug 
(i.e., infliximab) as well as other drugs belonging to the same therapeutic class (i.e., etanercept, adalimumab 
and golimumab) in the US FDA-approved drug label information; The labels (revised versions between 2009 
and 2018) were obtained from the Labeling Archives of the National Library of Medicine DailyMed  website33. 
Using the reference standard, AEs identified in the initial dataset were classified into the following categories: 
label-positive (Y), label-negative (N), and unknown AE (U). AEs labeled “Y” were the known AEs of the study 
drugs, “N” the ones not listed in both labeling information of the study drugs and other drugs belonging to same 
therapeutic class, and “U” the rest of the AEs in the initial dataset. The “Y” and “N” constituted the reference 
standard, and “U” the unknown AEs of the study drugs in the labeled data,  respectively14,34,35. The numbers of 
AEs labeled “Y”, “N”, and “U” are presented in Table S2. Reference standard was used as an orientation for train-
ing and testing the ML algorithms.

Feature data. Supervised ML algorithms generate a signaling probability for each AE based on a feature data. 
We considered two aspects for selecting information to be included as the features: (1) minimizing potential 
bias due to missing data, and (2) enhancing the applicability of our methodology to other SRS databases. To 
take these into account, we used commonly required information for a valid individual case safety report (ICSR) 
described in “Guideline on good pharmacovigilance practice Module VI”: An identifiable patient, an identifi-
able reporter, a suspect drug, and an adverse  event36. We generated a total of 35 features that included statistical, 
organ-specific, and covariate features. The statistical feature included the number of reports for a specific AE 
associated with infliximab from a 2 by 2 contingency table commonly used for disproportionality-based signal 
detection.
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We also included the organ-specific features because typical AE is manifested or closely related to a specific 
organ, organ system, or mechanism of action. The system organ classes (SOCs) within the WHO-ART represents 
the category by which a specific AE is distinguished based on etiology, manifestation site, or purpose. A total of 
32 SOCs were included as the organ-specific features, and 3 to 4 digits numeric codes (i.e., 100, 200…3200) of the 
SOCs were assigned a number from 1 to 32 to minimize the potential negative impact that the large numerical 
value might have on ML algorithms’ performance.

Covariate features included confounding factors, such as gender, age, report type, and report source by 
occupation and affiliation, which are commonly considered in the post-marketing safety surveillance  studies37,38. 
Age was categorized into seven groups (0–20, 21–29, 30–39, 40–49, 50–59, 60–69, and older), consistent with a 
previous study on the safety signals of  infliximab39. Variables for report type included spontaneous report, post-
marketing surveillance study report, and case reports from literature. There were five (physician, pharmacist, 
nurse, other health professional, and consumer) and three (regional pharmacovigilance center, medical institu-
tion, and drug manufacturer) categories for report source by occupation and affiliation, respectively. Relative 
importance of features in signal detection using the ML algorithms are provided in Fig. S1.

Primary analysis: early safety signal detection. We explored the performance of ML algorithms in 
detecting early safety signals through retrospective screening of the 10 cumulative yearly datasets. The algo-
rithms were developed using each cumulative dataset to detect safety signals; for example, 2009–2012 data 
included AE cases reported between 2009 and 2012, with each AE classified as “Y”, “N” or “U” according to 
the reference standard constructed based on the drug labels updated in 2012. Then, AEs labeled “Y’ and ‘N’ in 

Figure 3.  Step-by-step process from dataset construction to evaluation of the data mining methods in detecting 
early safety signals of infliximab in the KAERS between 2009 and 2018. Abbreviations: KAERS, Korea Adverse 
Event Reporting System; ATC, Anatomical Therapeutic Chemical Classification.
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the 2009–2012 dataset were used to train and evaluate ML algorithms, and data mining methods were used to 
identify safety signals among the AEs labeled “U”.

Early signal was ascertained by whether it was detected prior to being updated in the drug label informa-
tion. The five AEs selected a priori were the ones updated post-approval of infliximab through post-marketing 
surveillance after 2009 and described in details below:

• Transient visual loss: This term was listed on the infliximab label revised in 2010. WHO-ART Preferred Term 
“vision abnormal” was considered to be an equivalent term describing this AE.

• Agranulocytosis: This term was listed on the label revised in 2017. WHO-ART Preferred Term “agranulocy-
tosis” was considered to be an equivalent term describing this AE.

• Cervical cancer: This term was listed on the label revised in 2017. WHO-ART Preferred Term “cervical car-
cinoma” was considered to be an equivalent term describing this AE.

• Cerebrovascular accidents: This term was listed on the label revised in 2017. WHO-ART Preferred Terms 
“cerebellar infarction” and “cerebral infarction” were considered to be an equivalent term describing this AE.

• Leukemia: This term was listed on the label revised in 2018. WHO-ART Preferred Terms “leukemia acute” 
and “leukemia granulocytic” were considered to be an equivalent term describing this AE.

ML algorithms for safety signal detection. Among the available ML algorithms, we chose two commonly used 
supervised classifiers, RF and GBM, which have been shown to demonstrate high specificity and positive predic-
tive value in detecting AEs from large-scale medication dispensing data of  Australia14.

• RF: The RF classifier is an ensemble model that combines the multiple decision tree classifiers of AEs. Many 
different subsets of a training dataset with randomly sampled features are used to train RF classifier. There-
fore, it averages multiple deep decision trees which are trained on different parts of the same training dataset 
and eventually aims to reduce the variance and control over-fitting. RF had better predictive accuracy and 
performance in detecting signals than other supervised ML algorithms such as Support Vector Machine or 
Logistic  Regression14.

• GBM: The GBM classifier is another ensemble classifier that combines many weak classifiers to generate 
stronger model. GBM begins by learning a base weak classifier and then generates the next model that reduces 
predictive errors of the precedent classifier. A stronger machine is eventually made as a result of the repeated 
process of developing the next model to minimize error.

Each algorithm produces an output value that ranges from 0 to 1, representing a probability of association 
between infliximab and an AE. When calculating signal detection performance using a reference standard, the 
signaling threshold is defined as a probability value that has the highest area under receiver operating charac-
teristic curve (AUROC). AUROC is defined as:

Training ML algorithms. From the input data, we constructed gold standard dataset that contained label-posi-
tive (i.e., “Y”) and -negative AEs (i.e., “N”). Gold standard dataset was randomly divided into the training (75%) 
and test sets (25%), adjusting for imbalances in the distribution of the label-positive and -negative AEs with the 
Synthetic Minority Over-sampling Technique (SMOTE). We fitted RF and GBM with hyperparameters tuned 
on the training set by using a fivefold stratified cross-validation. Hyperparameter tuning is a strategy to optimize 
ML’s performance by identifying the optimal values of adjustable parameters in training process, such as the 
number of nodes in a decision tree to be made that affects the performance of decision tree. Five-fold stratified 
cross-validation is a resampling technique to evaluate ML algorithm on a finite sample by dividing data into five 
subsets with the same proportion of labels in the reference standard. The first fold was used as test set and the 
remaining as training sets, and repeated until all 5 folds were used as the test set.

Conventional data mining methods for safety signal detection. Adjusted ROR: Signal threshold of lower bound of 
95% CI for adjusted ROR (ROR025) > 1 was used to detect safety  signal40. We applied multivariate logistic model, 
expressed with the following formula, to present RORs adjusted for the potential  confounder41–45:

where Y = reporting year, G = gender, A = age-stratified group,  Rt = report type,  Rs = report source by occupation, 
 Ra = report source by affiliation, S = serious AE.

BCPNN: The BCPNN is based on the Bayesian statistical principles for quantification of dependencies between 
drug and AE. Disproportionality that shows the dependencies calculated by BCPNN is called the Information 
Component (IC) and defined as:

where Px = probability that specific drug is a suspected drug in a case report, Py = probability that specific AE 
is reported in a case report, Pxy = probability that specific drug-AE combination is listed on a case report. IC 

AUROC =
Sensitivity + Specificity

2
.

Log (odds) = intercept + β1Y + β2G + β3A + β4Rt + β5Rs + β6Ra + β7Rs+β8 S

IC = log ·2 ·
Pxy

PxPy
,
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> 0 indicates that a particular drug-AE combination is reported more frequently than expected in a dataset; 
the higher the value of the IC, the more relevant the specific drug-AE combination stands out in the database.

Comparing performance of the data mining methods. Given that signal detection thresholds differ across the 
data mining methods, we calculated standardized differences to compare performance between the methods. 
The standardized difference refers to a difference between predictive value and signaling threshold in the stand-
ard deviation unit, and it was calculated as:

where Ps = Predictive value of an outcome of the signal detection algorithms, To = Optimal thresholds of the 
signal detection algorithms with the highest AUC, SD = Standard deviation which represents amount of varia-
tion or dispersion of the predictive values across all unknown AEs.

Infliximab-AE pairs with standardized difference > 0 were considered as the safety signals.
Also, we used the principles for evaluation of clinical diagnostic tests to quantify performances of the ML 

algorithms and conventional data mining methods in correctly differentiating AEs of infliximab. Reference stand-
ard was used to determine whether the safety signals were either true positives, false positives, true negatives, or 
false negatives to calculate sensitivity and specificity of each data mining method. Sensitivity was defined as the 
proportion of “label-positive” AEs that were correctly identified as signals (i.e., true positive/ [true positive + false 
negative]), and specificity as the proportion of “label-negative” that were correctly identified as non-signals (i.e., 
true negative/ [true negative + false positive]).

Secondary analysis: identifying new safety signals of infliximab. Among the AEs designated “U” 
in the labeled data (unknown AE dataset), we used the ML algorithms to identify safety signals for infliximab. 
For each detected signal, we also calculated signal detection scores of ROR025 and IC05 to determine whether 
it was also detected by these data mining methods.

Sensitivity analysis: validating the generalizability of ML algorithms. To validate our study find-
ings, we further applied the ML algorithms to data retrieved from FAERS. First, we converted WHO-ART terms 
for defining AEs in the standard reference to Medical Dictionary for Regulatory Activities (MedDRA) terms. 
Then, we constructed an input dataset using AE reports in the FAERS from Q3 2014 to Q4 2018. Then, we 
applied ML algorithms to the input dataset to investigate drug-AE pairs in the standard reference and compared 
their predictive performance using the AUC of ROC plot.

All statistical analyses were performed using Python software version 3.7.5 (Python Software Foundation, 
Wilmington, DE, United States), SAS® software, version 9.4 (© 2002–2012 by SAS Institute Inc., Cary, NC, United 
States), and Microsoft Office 365 ProPlus (Microsoft Corp., Redmond, WA, United States). All methods used in 
this study were performed in accordance with the relevant guidelines and regulations.

Ethical approval. The Institutional Review Board of Sungkyunkwan University (IRB no. 2019-04-020-001) 
approved this study and waived the need for an informed consent as only deidentified data were used.

Data availability
The proposed framework implemented using SAS and Python, along with results generated in the study are avail-
able in the “Early-detection” repository, https:// github. com/ SKKUP EPV/ Early- detec tion. git. Our study used the 
Korea Adverse Event Reporting System (KAERS) database, established by the Korea Institute of Drug Safety & 
Risk Management (KIDS) in South Korea (Data number: 1905A0020). KIDS forbids the transfer, rent, or sale of 
the database to any third party other than the researcher, who obtained the approval for the provided database 
(Official website of KIDS: http:// open. drugs afe. or. kr/; Contact information of data access committee: + 82-2-
2172-6700). We accessed the data used in our study in the above mentioned manner, which we expect future 
researchers to do so in the same manner, and did not receive special privileges from KIDS.
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