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Abstract

The challenges which the large scale microalgal industry is facing are associated

with the high cost of key operations such as harvesting, nutrient supply and oil

extraction. The high-energy input for harvesting makes current commercial

microalgal biodiesel production economically unfeasible and can account for up to

50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal

cells is getting increasing attention because of high efficiency of bio-flocculation of

microalgal cells with no requirement for added chemicals and low energy inputs.

Moreover, some fungal and microalgal strains are well known for their exceptional

ability to purify wastewater, generating biomass that represents a renewable and

sustainable feedstock for biofuel production. We have screened the flocculation

efficiency of the filamentous fungus A. fumigatus against 11 microalgae

representing freshwater, marine, small (5 mm), large (over 300 mm), heterotrophic,

photoautotrophic, motile and non-motile strains. Some of the strains are

commercially used for biofuel production. Lipid production and composition were

analysed in fungal-algal pellets grown on media containing alternative carbon,

nitrogen and phosphorus sources contained in wheat straw and swine wastewater,

respectively. Co-cultivation of algae and A. fumigatus cells showed additive and

synergistic effects on biomass production, lipid yield and wastewater

bioremediation efficiency. Analysis of fungal-algal pellet’s fatty acids composition

suggested that it can be tailored and optimised through co-cultivating different

algae and fungi without the need for genetic modification.
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Introduction

Although substantial efforts are being made worldwide to produce renewable

biofuels, significant challenges still need to be overcome before microalgal–based

biofuel production becomes cost-effective and can impact the world’s supply of

transport fuel [1], [2], [3], [4], [5], [6]. Optimising algal harvesting/dewatering

technologies is a significant challenge that needs to be addressed for the

development of a cost-effective large scale algal biofuel. Additional challenges

include a sustainable nutrient supply and efficient, cost effective technologies for

lipid extraction.

Harvesting can account for up to 50% of the total cost of biodiesel production

and is not economically viable for the microalgal industry because of increased

energy requirements and the addition of chemicals (for reviews see [7], [8], [9],

[10], [11], [12], [13], [14]). The main techniques used for harvesting algal cells

include centrifugation, filtration, flocculation, gravity sedimentation and flotation

[15], [16], [14], [17], [18]. Filtration has been shown to be highly efficient, but

only for the large multicellular microalgae such as Coelastrum proboscideum and

Spirulina platensis and frequent filter replacement makes this method

uneconomical [14], [19]. Moreover, this process is slow, although, processing

speed can be increased through the addition of flocculants [20]. Centrifugation is

an efficient technology and can harvest about 90% of the microalgae; however this

comes with a high energy input cost, especially with a low value product such as

biofuel [21]. The floatation method includes air or gas bubbles or flocculants

attach to the algal cells carrying them to the surface [22], [23] [14]. Recently Garg

et al. (2014) showed that the recovery of marine microalga Tetraselmis sp. can be

increased up to 97.4% using improved froth floatation performance [24].

Flocculation is the process by which the algae forms clumps, pellets or pellet like

structures called flocs. The negatively charged microalgal surfaces prevent their

self-flocculation under normal growth conditions [25], [26], [14], [27]. In

general, flocculation technology addresses this issue by neutralizing or reducing

microalgal surface charge using chemical flocculants (inorganic and organic),

biological organisms or using an electrical impulse [28]. These methodologies,

however, are not universally successful and do not work for all microalgae strains

[28], [29]. Flocculation can be induced by biological organisms such as bacteria

and fungi [30], [21], [31], [32]. An efficient bacterial bioflocculant has been

isolated from the autoflocculating Scenedesmus spp and Chlorella vulgaris (C.

vulgaris) microalgae when they were grown in wastewater [33], [34], [35], [31].

Gram-positive bacteria Solibacillus silvestris and Bacillus sp also showed a

flocculation efficiency of up to 90% with the marine microalgae Nannochloropsis

oceanica [36], [32].

Filamentous fungi represent attractive bioflocculating agents because of their

self-pelletization and high microalgal trapping efficiencies. Fungal

self-pelletization has been observed for numerous filamentous strains and can be

explained by coagulative and non-coagulative mechanisms [37], [38], [39], [15],

[40]. The coagulative mechanism observed in representatives of Aspergillus spp,
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Basidiomycete spp, Phanerochaete spp involves spore coagulation leading to

developments of aggregates/pellets. As a result fungi produce dense spherical

aggregates [15], [37]. The non-coagulative mechanism involves spores

germinating into hyphae, which then intertwine into pellets. Representatives of

Rhizopus spp, Mucor spp and Penicillium spp display the non-coagulative

mechanism [15] [37]. Fungal assisted harvesting technology does not require

addition of chemicals or inputs of energy and has been shown to be an efficient

for one microalgal strain, C. vulgaris [15], [37], [41], [42]. If this technology can

be applied to the commercially important freshwater and seawater algal species

used for biodiesel production, the procedure can offer a solution to at least one of

the major problems associated with the energy-intensive and costly harvesting

processes.

Natural symbiosis between fungi and algae or fungi and cyanobacteria, also

known as lichens, have existed since plants evolved from green algae more than

400 million years ago and covering 6% of Earth’s land surface [43] (Figure S1). In

this mutually beneficial symbiosis, fungi consume the photosynthetic carbon

provided by the algae as sugars and nutrients; in return the fungus provides

protection to the algae by retaining water and serving as a larger capture area for

mineral nutrients [44]. This suggests that lichen can at least partially represent a

self-sufficient symbiotic association. Discovery of lignin and cellulose degrading

enzymes secreted by lichens suggests their saprophytic activities, at least in the

immediate vicinity of the thallus. These activities can be beneficial in periods of

limited microalgal photosynthetic activity at the time when lichens are covered by

snow or leaves [45].

In our work for the first time filamentous fungi A. fumigatus was tested for its

flocculation efficiency against a 11 microalgal strains representing,

photoautotrophic and heterotrophic, freshwater and marine, unicellular and

multicellular, small (3 mm) and giant (300 mm), motile and non-motile strains.

Some of these strains are commercially used for biofuel production. The lipid

levels and composition were analysed for fungal-algal pellets grown on glucose

and alternative carbon sources, in freshwater, seawater and wastewater containing

media. Our research showed that pelletization has additive and synergistic effects

on the level and composition of lipids and on the efficiency of wastewater

treatment.

Materials and Methods

A. fumigatus isolation

A. fumigatus isolates were sourced from an areas around piles of straw located at

either at Flinders University (Adelaide, Australia, GPS position: 35˚01928.020S,

138˚34916.820E) or at RMIT University, Bundoora campus,

(Melbourne,Australia, GPS position: 37˚40937.200S 145˚04919.520E). Both of

these sites both allowed sampling without specific permission. The field studies

did not involve endangered or protected species.
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These samples were kept in zip lock plastic bags and stored at 220 C̊ for further

investigation. The collected samples were serially diluted (10:1 to 10:6) using

phosphate buffer saline (0.1 M) and an aliquot (150 ml) of each dilution was

spread onto BH agar plates [46]. These plates were incubated for 6 days at 30 C̊

and 55 C̊ for mesophilic and thermophilic fungi respectively. For fungal

isolations, an antibiotic solution of 0.015 g/l of tetracycline (dissolved in sterilized

Milli-Q water, filtered through a sterile 0.22 mm filter) was added to the media.

Following isolation fungi were re-streaked until purified. All cultures were stored

in 25% of glycerol at 280 C̊.

Genotyping

The identification of the fungal strain was based on nucleotide sequence analysis

of the internal transcribed space (ITS) region. Genomic DNA was extracted as

described by [47,48]. The ITS1 region was amplified by PCR with primers ITS1:

TCCGTAGGTGAACCTGCGG and ITS2: GCTGCG TTCTTCATCGATGC [47].

Satisfactory 16S rDNA sequences were codon aligned, and compared with

published reference strains in the National Centre of Biotechnology Information.

An alignment between the query and reference sequences of more than 95%

denoted a positive match. Confirmatory phylogenetic reconstruction was also

performed using standard bioinformatic software such as the PAUP (Sinauer

Associates Inc., Sunderland, Massachusetts),

Preparation for seed fungal spores

For activation the stored spores were grown at 25 C̊ for five days on plates with

Potato Dextrose Broth (PDB) containing 20 g/l glucose. Sterile water (10 ml) was

added to harvest the spores and the spore solution was used as the inoculation for

the co-culture after the number of spores in the solution were counted.

Microalgal strains

Microalgal strains, their sources, characteristics and growth media are described in

Table S1. All strains were grown axenically in growth media suggested by

manufactures (Table S1). Thraustochytrid sp was grown under heterotrophic

conditions (10 g/l glucose), as suggested by the American Type Culture Collection

(ATCC). Autotrophic strains were grown under constant light (200 mmol m22 s21),

shaking at 150 rpm at 25 C̊. Growth rates were analysed by (i) counting the cell

numbers using a TC10 Automated Cell Counter (BioRad), (ii) measuring OD660 for

Thraustochytrid sp and OD750 for other strains, (iii) by determining the

concentration of chlorophyll A+B using a POLARstar Omega Multi-Mode

Microplate Reader with Fluorescent Polarization (BMG LABTECH) and (iv) by

biomass production. Chlorophyll was extracted with ethanol and extinctions at 649,

665, and 750 nm were determined. Chlorophyll concentration (mg/ml) was

calculated using the equation Chl (mg/mL)5[6.16(E665–E750)+20.04

(E649–E750)], K, where E is extinction at the corresponding wavelength; K is the
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dilution factor and 6.1 and 20.04 are extinction coefficients [49]. For biomass

analysis microalgal cultures were centrifuged at 6000 g and then was washed twice

with sterilized water and centrifuged again and dried at 65 C̊.

Pelletization and fungal-assisted flocculation

To achieve pelletization spore solutions (1.5–2.06107 spores/l) were cultivated at

28 C̊ in liquid fungal growth broth (FGB): 3 g/l peptone, 0.6 g/L KH2PO4,

0.001 g/l ZnSO4, 0.4 g/l K2HPO4, 0.005 g/l FeSO4, 0.5 g/l MnSO4, 0.5 g/l MgSO4.

As a carbon source we used 20 g/l glucose (A. fumigatus/GLU) or 1% acid

pre-treated wheat straw (TWS, A. fumigatus/TWS) with a shaking speed of

150 rpm for 72 h. Pellets were precipitated and growth medium was removed.

Algal cultures were precipitated, washed and resuspended to achieve a final

concentration of 5–86108 cell/mL and added to fungal pellets. The fungal-algal

mixtures were shaken at 150 rpm for 48 h under constant light (200 mmol m22

s21) at 25 C̊. Fungal and algal mono-cultures were also grown for 48 h as controls.

All of the experiments were biologically replicated at least three times. Cell

number, biomass, OD660/750 and chlorophyll concentrations were measured at

time 0, 24 h and 48 h. For flocculation efficiency (FE) analysis algal samples were

analysed 3 mins after stopping rotation (Figure S2). FE was calculated based on

changes in OD, cell numbers, biomass and in chlorophyll concentrations of

uncaptured algal cells in the co-cultivation media at time 0, 24 and 48 h later

according to the formula: FE%5[(A–B)/A]6100 where A5OD, cell number,

biomass, chlorophyll concentration at time 0; B5OD, cell number, biomass,

chlorophyll concentration after 24 h or 48 h. The morphology of the fungal and

algal cells and co-cultivation pellets was observed under bright field conditions

using a Leica DM 2500 with an attached camera (Leica DFC 310 FX).

A half maximal flocculation efficiency (FE50) was measured to find a minimum

amount of A. fumigatus required to harvest 50% of microalgal cells. Three

concentrations of A. fumigatus/GLU and A. fumigatus/TWS fungal pellets

(0.2–0.5 cm in diameter) were washed and mixed with 100 ml of microalgal

suspension (5–86108 cell/ml): 1) 10%, as 10 ml pellets suspension (150¡12 g

wet weight, 0.12¡0.03 g dry weight); 2) 5%, as 5 ml pellets suspension (75¡9 g

wet weight, 0.07¡0.02 g dry weight); 3) 2.5%, as 2.5 ml pellets suspension

(35¡6 g wet pellets, 0.04¡0.01 g dry weight). FE50 (g DW/l) was calculated by

correlating the dry weight of the pellets with the obtained FE for each algal strain.

Acid pre-treatment of wheat straw

One gram of fine powder (approximately 1 mm sin size) of dry wheat straw was

mixed with 1 M sulphuric acid and autoclaved for 10 min at 121 C̊, allowed to

cool, filtered through Whatman No. 1 filter paper, then washed with 0.1 M

sodium hydroxide followed by washing 10 times with sterile water. The powder

was dried at 80 C̊ and added to the media to a final concentration of 1%.
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Nile Red staining

For Nile Red staining the algal cells, fungal cells and co-cultivated pellets were

collected by centrifugation and re-suspended in 1 ml of 20% DMSO containing

5 ml of Nile Red stock solution (0.10 mg/ml of Nile Red dissolved in acetone) and

incubated at 50 C̊ with shaking at 150 rpm for 5 min. The stained pellets were

then subjected to fluorescent microscopy analysis to observe the formation of

lipid droplets in the co-cultivated cells using a Leica DM 2500 with an attached

camera (Leica DFC 310 FX) and Nile-Red filter, excitation at 543 nm, emission

555–650 nm.

Wastewater treatment

The anaerobically digested swine lagoon wastewater (ASW) was provided by Dr J

Hill, Termes Consulting Ltd, Melbourne. Swine wastewater was treated

anaerobically. Wastewater samples were centrifuged to remove large particles,

filtered through Whatman filter paper, autoclaved at 121 C̊, allowed to cool to

room temperature, and stored at 4 C̊. The concentrations of NH4
+–N and PO4

23-

P in the ASW were 680.7 mg/l and 145.7 mg/l, respectively. The concentration of

other inorganic nitrogen in the wastewater, such as NO3
2-N was very low and not

reported. Wastewater was diluted to 25% and 10% with sterile seawater for

experiments with Thraustochytrid sp and T. chuii. The A. fumigatus/PDB - algal

pellets were harvested by filtration and 200 wet pellets were added to 250 ml of

wastewater (approximately, 1 g/l DW). The mixtures were shaken at 150 rpm for

48 h. Samples of growth media were analyzed for ammonium, nitrate and

phosphate concentrations using an ion chromatography system Dionex ICS-1100

(Thermo Scientific, USA).

Lipid yield and fatty acid profile analysis

Extraction and analysis of lipid yield and FAME composition analysis of algal,

fungal and fungal-algal pellets were performed using a method previously

described [50].

Statistical analysis

All experiments in this study were conducted in triplicate. The experimental data

were subjected to one-way analysis of variance (ANOVA) as implemented in the

GraphPad InStat 3 statistics platform. Tukey simultaneous tests were conducted

to determine the statistical differences between treatments. In order to ascertain

that the observed variations in growth rates, efficiency of nutrients uptake and

the yield of pyrolysis products were statistically significant, the probability (p)

values were determined. A 95% confidence level (p#0.05) was applied for all

analyses.
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Results

Flocculation of microalgal cells by A. fumigatus

The cultures of filamentous fungi A. fumigatus produced dense spherical pellets,

approximately 2–5 mm in size, when grown on FGB containing glucose (20 g/l)

under 150 rpm rotation (A. fumigatus/GLU) (Figure 1A). To assess flocculation

efficiency A. fumigatus/GLU pellets were mixed with high cell density cultures of

microalgal cultures (5–86108 cell/ml) representing fresh water and marine strains

(Figure 1). The list of freshwater algal strains includes: Chlorella vulgaris (C.

vulgaris), Chlamydomonas reinhardtii (C. reinhardtii), Pseudokirchneriella

subcapitata (P. subcapitata) and Scenedesmus quadricauda (S. quadricauda). The

marine microalgae tested include Thraustochytrid sp, Dunaliella tertiolecta (D.

tertriolecta), Dunaliella salina (D. salina), Nannochloropsis oculata (N. oculata),

Nannochloris oculata (Nl. oculata), Tetraselmis chuii (T. chuii) and the

dinoflagellate, Pyrocystis lunula (P. lunula). Phenotypic characteristics of

microalgal strains are shown in Table S1.

A. fumigatus showed up to 90% flocculation after first 24 h of co-cultivation

with no obvious differences in flocculation efficiency between freshwater and

seawater, motile and non-motile species (Figure 2A). The largest algae

(dinoflagellate) assessed, P. lunula (over 300 mm), showed the lowest rate of

flocculation. For some of the algal representatives the concentration of

uncaptured microalgal cells in media were increased after 24 h (shown as a

decrease in flocculation efficiency), which can be explained by their release from

the fungal filaments and/or their independent growth in the media. Half maximal

flocculation efficiency (FE50) as a minimum amount of A. fumigatus cells required

to harvest 50% of microalgal cells is shown on Table 1. Detailed microscopic

analysis of the A. fumigatus-algal pellets showed that microalgal cells can tightly

bind to the fungal filaments (Figure S3 and Figure 3). For some microalgal strains

such as T. chuii a clear lack of cell walls was observed for cells entrapped in fungal

filaments.

To test the efficiency of algal flocculation by A. fumigatus grown on alternative

carbon source fungal spores were grown on carbon-free broth containing 1%

TWS (A. fumigatus/TWS). Compared to A. fumigatus/GLU pellets A. fumigatus/

TWS produced smaller size pellets (approximately 2–4 mm size) which, however,

were significantly larger than pellets produced in media containing no added

carbon sources (approximately 1 mm in size) (Figure 1C). As a preliminary step

we wanted to assess the potential anti-algal effect of TWS digested by A. fumigatus.

For this we grew algal cells in the presence of 5% and 20% media collected 72 h

after incubation of A. fumigatus with TWS. Suppression of algal growth was

observed in the presence of 20% added media (Figure S4). To avoid this effect A.

fumigatus/TWS pellets were washed before mixing with microalgal cultures.

Figures 1 and 2B shows flocculation rates of the A. fumigatus/TWS pellets which

were found to be lower than the flocculation rate of A. fumigatus/GLU pellets

(Figure 2A). This can be explained by the effect of residual amount of chemicals

in the growth media as well as by digestion of algal cell walls by the cocktail of
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hydrolytic enzymes secreted from A. fumigatus in the presence of TWS. No

significant increase in the numbers of uncaptured algal cells was detected in the

media after 24 h of co-cultivation. As expected FE50 for A. fumigatus/TWS pellets

showed higher values compare to FE50 observed for the flocculation of microalgal

strains by A. fumigatus/GLU pellets (Table 1).

Lipid production in A. fumigatus-microalgal pellets

Mono-cultured A. fumigatus/GLU pellets before mixing with microalgal cultures

showed a lipid content of 12% of its dry weight (DW) biomass and a lipid yield of

8.1 mg/l (Time 0, Table 2). Not surprisingly, A. fumigatus/TWS pellets showed

significantly lower lipid content, 2.9% of DW with a lipid yield of 1.7 mg/l (Time

0). Mono-cultured microalgal strains showed a wide range of lipid concentrations

with the heterotrophic Thraustochytrid sp showing highest levels, up to 38% of its

DW biomass.

Lipid production in the fungal-algal pellets showed complex profiles reflecting

at least three main factors: (i) total biomass production, (ii) lipid concentrations

Figure 1. Flocculation of microalgal strains by A. fumigatus. A, B) A. fumigatus pellets; C) A. fumigatus
pellets grown on carbon-free FGB (A. fumigatus/FGB, left), FGB with 1% TWS (A. fumigatus/TWS, middle)
and FGB with 20% glucose (A. fumigatus/GLU, right); D–H) Flocculation of P. subcapitata by A. fumigatus/
FGB (left), A. fumigatus/TWS, (middle) and A. fumigatus/GLU (right). Time, 0 (D, E); 24 h (F) and 48 h (G, H);
I) A. fumigatus pellets grown in mono-culture in algal media for 48 h (control, left) and A. fumigatus pellets
grown with P. subcapitata in algal media for 48 h (right); J) Flocculation of T. chuii: Time 0 (left), 48 h (right); K)
Flocculation of N. oculata: time 0 (left), 48 h (right).

doi:10.1371/journal.pone.0113497.g001
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in fungal and algal cells before and during co-cultivation and (iii) the harvesting

efficiencies of algal cells by A. fumigatus pellets. After 48 h of co-culture of A.

fumigatus/GLU with oleaginous microalgae (lipid concentration .10% of DW)

lipid concentration in pellets were found lower than in mono-cultured algae, but

similar or higher to that seen in mono-cultured A. fumigatus. The total lipid yields

(mg/l) in most of pellets were also found similar or higher than the additive lipid

content of mono-cultured algal and fungal strains (Table 2). Co-cultivation of A.

fumigatus/GLU pellets with C. vulgaris, C. reinhardtii, Thraustochytrid sp, D.

tertriolecta, D. salina and N. oculata showed synergistic effect on total lipid yields.

Lipid concentrations of A. fumigatus/TWS pellets with all microalgal strains

were found to be lower than in mono-cultured algae, but similar or higher than in

mono-cultured A. fumigatus/TWS (Table 2). The lipid yields (mg/l) after

co-culturing A. fumigatus/TWS with most of the microalgal strains, was similar or

lower than the additive amount of total lipid yields.

Figure 2. Flocculation efficiency of microalgal cells by A. fumigatus. Flocculation of microalgal cells by A.
fumigatus/GLU pellets; (B) A. fumigatus/TWS pellets. Flocculation efficiency of A. fumigatus with all
microalgal strains showed significance levels, p,0.01.

doi:10.1371/journal.pone.0113497.g002
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Fatty acid composition in fungal-microalgal pellets

Fatty acids composition (measured by composition of FAMEs) of A. fumigatus/

GLU and A. fumigatus/TWS pellets with microalgal species is shown in Figure 4.

Fatty acids in fungi are represented mainly by palmitate (C16:0), stearate (C18:0),

oleate, C18:1 and linoleate C18:2 [51], [47], [48], [52]. Fatty acid composition of

A. fumigatus/GLU was also dominated by palmitate, C16:0 (ca 20%), oleate, C18:1

Table 1. Half maximal flocculation efficiency (FE50) of A. fumigatus grown on glucose and TSW.

Species A. fumigatus/GLU A. fumigatus/TSW

FE50 (gDW/l) R2 FE50 (gDW/l) R2

Thraustochytrium sp 6.2¡1.2 0.89 7.1¡2.2 0.85

C. vulgaris 4.9¡1.1 0.82 7.28¡2.3 0.86

P. subcapitata 4.5¡1.1 0.86 7.2¡2.2 0.86

S. quadricauda 4.6¡1.2 0.82 7.2¡1.8 0.81

D. tertiolecta 6.1¡1.4 0.85 6.7¡1.2 0.82

Nl. oculata 5.5¡1.4 0.85 6.3¡1.6 0.85

N. oculata 7.5¡2.1 0.84 6.9¡2.2 0.87

T. chuii 9.3¡3.0 0.78 6.3¡1.7 0.81

C. reinhardtii 7.4¡2.8 0.81 6.9¡2.2 0.78

D. salina 6.9¡2.4 0.78 7.2¡2.3 0.78

P. lunula 20.1¡6.4 0.81 24.6¡7.1 0.84

doi:10.1371/journal.pone.0113497.t001

Figure 3. Microscopic analysis of A. fumigatus-miroalgal interactions. Images of miroalgal cells attached
to A. fumigatus filaments. A, B) D. tetrioletta; C,D) T. chuii; E,F): P. subcapitata; G,H) T. chuii. A,B,C,D,F,G,H:
UV light images. Red spots represent chloroplast’s fluorescence; E) bright-field image CV: cell walls.
Scale520 mm.

doi:10.1371/journal.pone.0113497.g003
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(ca 30%) and linoleate, C18:2 (ca 30%) (Figure 4). A. fumigatus/TWS pellets

showed almost similar concentrations of palmitate (C16:0), stearate (C18:0) and

oleate (C18:1) as A. fumigatus/GLU, but a higher concentration of palmitoleate

(16:1) and linolenate (18:3) and lower concentration of linoleate (C18:2).

Microalgal representatives showed different profiles of fatty acids compositions.

Fatty acids composition of the fungal-algal pellets obviously reflected the

compositions in both fungal and algal strains and the efficiencies of their

co-pelletization. In all cases, both A. fumigatus and microalgal strains contributed

to the level of palmitate (C16). A. fumigatus was a main contributor of the oleate

(18:1) and linoleate (C18:2). Some microalgae were the main contributors of the

linolenate (C18:3).

Swine wastewater as an alternative source of nutrients for

fungal-microalgal pellets

We assessed the ability of A. fumigatus/Thraustochytrid (Af/Thr) and A. fumigatus/

T. chuii pellets (Af/Tc) pellets to uptake the main nutrients (NH4
+-N and PO4

23-

P) from diluted ASW prepared from swine lagoon wastewaters (Table 3,

Figure 5). For these experiments, the swine wastewater was diluted to 10% and

25% with sterile seawater. After 48 h of Af/Thr incubation in 25% wastewater the

concentration of NH4
+-N was reduced from 164.3 mg/L to 22.2 mg/l (86%

uptake) and the concentration of PO4
23-P was reduced from 38.7 mg/L to

11.8 mg/l (69% uptake). This removal efficiency was close to the additive

efficiencies of NH4
+-N, and PO4

23-P removal achieved separately by

Thraustochytrid sp (30% and 18%, respectively) and A. fumigatus (43% and 31%,

respectively) (Table 3). In 10% ASW both nutrients were almost compoletely

removed after 48 h of incubation (96% removal for NH4
+-N and 84% removal of

PO4
23-P). Similar NH4

+-N, and PO4
23-P removal efficiencies were observed after

treatment of 25% and 10% ASW by Af/Tc pellets. Nutrient uptake by Af/Thr and

Af/Tc pellets led to 2.1- and 1.6-fold increases in their biomass production after

48 h of treatment and the lipid yield increased by 1.4-fold for both pellets

(Figure 6).

Discussion

A. fumigatus-mediated microalgal flocculation

Three microalgal features: small size (5,30 mm), low concentration (0.02–0.05%

DW) and negative surface charge make their large-scale harvesting the most costly

step in biodiesel production. Fungal-assisted microalgal flocculation attracts

attention because of its high harvesting efficiency. So far it has been shown for just

one microalgal strain, the freshwater algae, C. vulgaris. Efficient flocculation of the

C. vulgaris has been shown for a number of cultured filamentous fungal strains,

including representatives of Aspergilium sp, A. niger and A. oryze [42], [22], [37],

[53], [38], [41]. Our work found that A. fumigatus can efficiently flocculate a wide

Co-Cultivation of Fungal and Microalgal Cells
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Figure 4. Fatty acids composition of A. fumigatus, microalgae and A. fumigatus-microalgal pellets. 1) A. fumigatus/TWS; 2) A. fumigatus/GLU; 3)
microalgal strains; 4) A. fumigatus/TWS-algal pellets; 5) A. fumigatus/GLU-algal pellets.

doi:10.1371/journal.pone.0113497.g004
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range of microalgal strains including marine and motile representatives. Lowest

flocculation efficiency was found for the largest in size (300 mm) dinoflagellate,

P. lunula. The detailed mechanisms of the fungal-algal interactions are still not

clear. It was suggested that the algae have negative surface charge (223.7 mV) due

to of the presence of proton-active carboxylic, phosphoric, phosphodiester,

hydroxyl and amine functional groups [19], [15]. Fungal hyphae and mycelia

contain polysaccharides that were shown be positively charged (+46.1 mV) and

therefore can potentially neutralize the negative charges on the algal surface,

Table 3. Concentrations of nutrients in 25% swine wastewater before and after treatment with Thraustochytrid sp and T. chuii and their pellets with A.
fumigatus.

ASW A. fumigatus Thraustochytrid sp
Thraustochytrid sp+A.
fumigatus

Concentration NH4
2, mg/l PO4

23, mg/l NH4
2, mg/l PO4

23, mg/l NH4
2, mg/l PO4

2,3 mg/l NH4
2, mg/l PO4

23, mg/l

ASW, 100% 680.7¡23.1 145.4¡13.7 NA NA NA NA NA NA

ASW, 25% 164.3¡13.2 38.7¡3.4 92.8¡11.6 19.6¡4.3 94.8¡10.1 21.0¡4.6 22.2¡5.8 11.8¡2.1

ASW, 10% 66.1¡4.3 16.1¡3.0 19.7¡3.2 7.1¡2.1 21.9¡5.5 7.0¡1.1 2.1¡0.8 2.5¡0.8

ASW A. fumigatus T. chuii T. chuii+A. fumigatus

Concentration NH4
2, mg/l PO4

23, mg/l NH4
2, mg/l PO4

23, mg/l NH4
2, mg/l PO4

23, mg/l NH4
2, mg/l PO4

23, mg/l

ASW, 100% 680.7¡23.1 145.4¡13.7 NA NA NA NA NA NA

ASW, 25% 164.3¡13.2 38.7¡3.4 92.8¡11.6 19.6¡4.3 112.1¡11.2 23.0¡4.6 36.9¡10.0 19.0¡5.6

ASW, 10% 66.1¡4.3 16.1¡3.0 19.7¡3.2 7.1¡2.1 29.5¡5.1 9.6¡2.3 2.9¡1.4 3.0¡1.1

doi:10.1371/journal.pone.0113497.t003

Figure 5. Application of A. fumigatus/Thraustochytrid sp and A. fumigatus/T. chuii pellets for 25%
swine wastewater treatment. A) A. fumigatus/Thraustochytrid sp pellets (left) and A. fumigatus/T. chuii
pellets (right) 48 hr after mixing with 25% swine wastewater. 25% swine wastewater at t50 (middle); B)
samples of 25% wastewater before (1) and after treatment with Thraustochytrid sp (2), A. fumigatus (3) and A.
fumigatus/Thraustochytrid sp (4). Tape water (5).

doi:10.1371/journal.pone.0113497.g005
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thereby enabling attachment to the fungal cell wall [54]. Microscopic examination

of the algal cells in our study showed they bind to the fungal cells rather than get

entrapped within the fungal filaments, potentially as a result of static interaction

between opposite charged surfaces. The fact that no significant differences in

harvesting efficiency were observed between non motile and motile C. reinhardtii

and T. chuii suggests that this interaction may be strong.

Effect of A. fumigatus-microalgal association on biomass and lipid

production

Another attractive advantage of fungal-assisted flocculation is that both partners

can contribute to the total biomass and lipid levels and compositions. As a result,

the total biomasses of most fungal-algal pellets were found to be higher than the

additive biomass of mono-cultured algal and fungal strains. Potential utilization

of the cell wall carbohydrates by A. fumigatus can explain the synergistic effect of

algal-fungal pelletization on total biomass enhancement. A correlation between

enhanced biomass of the fungal-algal pellets and secretion of cell-wall degrading

cellulases was also observed after co-cultivation of the filamentous fungi,

C. echinulatathis with C. vulgaris [55]. In our experiments the potential cellulase

activity correlated with the observation of cell wall-free microalgal protoplasts

found either attached to the fungal cells or remained uncaptured in cultivation

media. The saprophytic behaviour of the fungal component of natural lichens

involving secretion of phenol oxidases, peroxidases, and cellulases benefit their

growth when algal photosynthesis is limited [56].

Concentrations and total yield of lipids were not always correlated with the

amount of generated total biomass after co-cultivation. This was most clearly seen

after flocculation of microalgae with A. fumigatus/TSW pellets. Analysis of fatty

acids showed both partners contribute to the fatty acids composition of the pelled

Figure 6. Biomass and lipid production in A. fumigatus/Thraustochytrid sp and A. fumigatus/T. chuii
pellets grown in 25% swine wastewater. Af/Thr: A. fumigatus/Thraustochytrid sp pellets; Af/Tc: A.
fumigatus/T. chuii pellets. A. fumigatus/microalgal co-cultures which showed synergistic effects with
significance levels: *p,0.05; **p,0.01.

doi:10.1371/journal.pone.0113497.g006
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biomasses. This suggests that fatty acids composition can be can be tailored and

optimised using different sets of fungal and microalgal partners. Synergistic effects

of co-cultivating A. niger, A. oryzae and C. echinulata, with C. vulgaris on biomass

production and lipid yield has also been found by others [41], [42], [38], [22].

Mono-cultured algal and fungal cells have been extensively used for efficient

recovery of the main nutrients, N and P and microelements including heavy

metals from different types of wastewaters [57], [58], [27], [59], [9], [11], [60],

[61]. A. fumigatus/Thraustochytrid and A. fumigatus/T. chuii pellets showed the

additive effect on absorption rates of ammonium and phosphates from ASW

diluted by seawater. Dilution of wastewater with seawater reduces the

consumption of freshwater making the procedure more economical. Efficient

wastewater treatment by fungal/algal pellets Aspergillus sp/C. vulgaris pellets has

been previously shown by others [53], [42]. Wastewater with much lower

concentrations of NH4
+, though similar concentrations of PO4

3+ (51.2 mg/l for

both) was used in this study.

Alternative carbon sources in fungal-assisted flocculation

In our study A. fumigatus grown on TWS as the sole source of carbon led to the

production of A. fumigatus/TWS pellets which showed relatively high rates of

trapping for most of the microalgal strains within the first 24 h. Lignocellulosic

waste containing cellulose, hemicelluloses and lignin is one of the largest carbon

sources that can be used as feedstock for large scale fungal biomass production. To

convert cell wall polymers into reduced sugars fungal cells produce a cocktail of

secreted hydrolytic enzymes, including cellulases, hemicellulases, pectinases,

laccase manganese peroxidase and lignin peroxidase [62], [53], [41]. Cellulases are

represented by three key enzymes, endoglucanases (EGs), cellobiohydrolases

(CBHs) and b-glucosidases, which work synergistically to degrade the cellulose

fraction [63]. Cellulolytic A. fumigatus Z5 growing in the presence of rice straw

showed a induced endoglucanase, exoglucanase, b-glucosidase, laminarinase,

lichenase, xylanase and pectin lyase activities [64]. The application of wheat straw

biomass for fungal-assisted flocculation, however, needs to be optimised to reduce

the production of anti-algal chemicals and to increase the lipid content in fungal

cells grown on a straw biomass.

Biofuel production from fungal-algal pellets

Fungal-algal biomass can be used for bio-diesel production through extraction of

lipids followed by their transesterification (TE). In general, lipid extraction

processes are energy intensive and costly since they involve expensive solvents and

significant consumption of electricity [65], [66]. The following benchmark was

proposed by US DOE for sustainable biofuel production from algae: the

extraction process should consume (per day) no more than 10% of total energy

produced (per day) (based on an algae energy content of 5 Wh/g) [67]. Some

microalgal strains, such as Nannochloropsis occulata have very tough cell walls that

Co-Cultivation of Fungal and Microalgal Cells
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require special pre-treatment for extraction of intracellular lipid [68]. Once

extracted, lipids can be quantitatively transformed into biodiesel via TE

technology with yields in excess of 98% (although, the use of algal oil in this

process is a relatively new area of activity) [69].

Unlike microalgae the application of oleaginous fungi for biodiesel production

is so far very limited in spite of obvious advantages over conventional plant and

algal resources. Oleaginous fungi can accumulate over 20% (w/w) of their dry cell

mass in the form of neutral lipids, with a high content of saturated and

monounsaturated fatty acids, such as palmitic (C16:0), stearic (C18:0) and oleic

(C18:1) commonly used for biodiesel production. Additional fungal features

which makes them attractive feedstock for biofuel production includes their

simple and fast growth rates in bioreactors unaffected by light intensity and their

ability to utilize a wide range of lignocellulosic waste biomass as renewable carbon

sources and wastewater nutrients as sources of nitrogen (N) and phosphorus (P)

[70], [71], [57], [47]. Moreover, pelletization of fungal cells during growth makes

their harvest much easier and cheaper than the isolation of microalgal strains (for

review see [15]). The major limitation of fungal cells as feedstock for biofuel

production is their tough cell walls which contains a complex structure composed

of extensively cross-linked chitin, glucans and other polymers [72], [73].This may

sharply increase the energy penalty for a large scale extraction procedure.

Pyrolysis, the thermal decomposition (400 to 550 C̊) of organic compounds in

the absence of air/oxygen has recently attracted the increased attention of

researchers due to a number of advantages, including relatively mild operational

conditions and production of several valuable products: pyrolysis gas, bio-oil and

bio-solids (bio-char and mineral ash). In most cases, bio-oil is a target product of

pyrolysis because it could be further processed via catalytic hydrodeoxygenation

(CHDO) and/or hydrocracking to liquid hydrocarbon products similar to

petroleum-derived fuels. Recently, we reported pioneering studies on the pyrolysis

of algal and aquatic plants representatives, which showed a great potential as a

feedstock for the production of bio-oil and bio-char [74], [75], [66], [76], [77].

Some of these species were used for the efficient bioremediation of animal and

mining wastewaters representing an attractive, ecologically friendly and

potentially cost-effective solution for the conversion of waste biomass into

sustainable bioenergy [75], [66]. In spite of the impressive biomass production

rate, the high content of carbohydrates, proteins, lipids, and fatty acid

composition there is no report on bio-oil production from the pyrolysis of

oleaginous fungi. Considering the relatively low lipid content of fungi

pyrolysis-CHDO seems to be more preferable route compared to extraction-TE.

Detailed techno-economic evaluation of both approaches would be necessary to

make a final determination of their economic feasibility and commercial viability.
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Conclusions

The described algal-fungal association shows a potential to solve a number of key

challenges that algal biotechnology is facing, in particular:

(i) Efficient harvesting of freshwater and seawater microalgae. A.

fumigatus showed efficient harvesting of 10 from 11 microalgal strains.

Most of these strains are widely used by research groups and commercial

companies for bio-diesel and value chemicals production. For the first

time fungal-assisted flocculation was shown for marine microalgae.

(ii) Enhancement of total biomass, lipid production and optimization of fatty

acids composition. The additive and synergetic effects of A. fumigatus -algal

pelletization on total biomass and lipid production were found for most of

the microalgal strains. Our results showed that composition of fatty acids can

be tailored and optimised through co-cultivating different algae and fungi

without the need for genetic modification. Application of oleaginous fungal

and algal strains can significantly improve total lipid yield.

(iii) Use of carbon, nitrogen and phosphorus from waste biomass as

alternative, sustainable and renewable nutrient supply. Use of

alternative carbon and N and P sources along with subsequent

wastewater purification can potentially improve the economics of large

scale algal biotechnology. Dilution of wastewater with seawater reduced

the amount of freshwater required, thereby making the whole process

more economic.

Supporting Information

Figure S1. Lichen phenotypes. Bar510 cm.

doi:10.1371/journal.pone.0113497.s001 (TIF)

Figure S2. Sedimentation of A. fumigatus/T. chuii pellets.

doi:10.1371/journal.pone.0113497.s002 (TIF)

Figure S3. Microscopic analysis of A. fumigatus-miroalgal pellets. A,B,M)

Thraustochytrid sp; C,D) D. tertriolecta; E,F) P. subcapitata; G,H) T. chuii; I,J) N.

oculata; K) C. reinhardtii; L) P. lunula; N) A. fumigatus filaments; O) A. fumigatus/

Thraustochytrid sp pellets; P) A. fumigatus/T. chuii pellets. A,C,E,G,I,K,L: bright-

field images; B,D,F,H,J: UV light images. Red spots represent chloroplast’s

fluorescence; M,N,O,P: Nile Red staining. Yellow spots represent oil bodies.; CV:

cell walls. Scale550 mm.

doi:10.1371/journal.pone.0113497.s003 (TIF)

Figure S4. Evaluation of microalgal growth rates in the media containing 5% and

20% of A. fumigatus/TWS media. A) Algal growth media containing 5% of A.

fumigatus/TWS media; B) Algal growth media containing 20% A. fumigatus/TWS media.

doi:10.1371/journal.pone.0113497.s004 (TIF)

Table S1. Microalgal sources, characteristics and growth media.

doi:10.1371/journal.pone.0113497.s005 (XLSX)
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