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The lungs are vulnerable to attack by respiratory insults such as toxins, allergens, and 
pathogens, given their continuous exposure to the air we breathe. Our immune system 
has evolved to provide protection against an array of potential threats without caus-
ing collateral damage to the lung tissue. In order to swiftly detect invading pathogens, 
monocytes, macrophages, and dendritic cells (DCs)—together termed mononuclear 
phagocytes (MNPs)—line the respiratory tract with the key task of surveying the lung 
microenvironment in order to discriminate between harmless and harmful antigens and 
initiate immune responses when necessary. Each cell type excels at specific tasks: 
monocytes produce large amounts of cytokines, macrophages are highly phagocytic, 
whereas DCs excel at activating naïve T cells. Extensive studies in murine models have 
established a division of labor between the different populations of MNPs at steady state 
and during infection or inflammation. However, a translation of important findings in mice 
is only beginning to be explored in humans, given the challenge of working with rare cells 
in inaccessible human tissues. Important progress has been made in recent years on the 
phenotype and function of human lung MNPs. In addition to a substantial population of 
alveolar macrophages, three subsets of DCs have been identified in the human airways at 
steady state. More recently, monocyte-derived cells have also been described in healthy 
human lungs. Depending on the source of samples, such as lung tissue resections or 
bronchoalveolar lavage, the specific subsets of MNPs recovered may differ. This review 
provides an update on existing studies investigating human respiratory MNP populations 
during health and disease. Often, inflammatory MNPs are found to accumulate in the 
lungs of patients with pulmonary conditions. In respiratory infections or inflammatory 
diseases, this may contribute to disease severity, but in cancer patients this may improve 
clinical outcomes. By expanding on this knowledge, specific lung MNPs may be targeted 
or modulated in order to attain favorable responses that can improve preventive or treat-
ment strategies against respiratory infections, lung cancer, or lung inflammatory diseases.

Keywords: respiratory, pulmonary, monocytes, dendritic cells, macrophages, bronchoalveolar lavage, lung tissue, 
bronchial tissue

iNTRODUCTiON

Respiratory diseases are among the leading causes of death worldwide, with lung infections, lung 
cancer, and chronic obstructive pulmonary disease (COPD) together accounting for several mil-
lion deaths annually (1). The human respiratory tract can be broadly divided into the upper and 
lower airways. The upper airways consist of the nose, the pharynx, and the larynx. Organized like 
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a tree, the lower airways begin with the trachea branching out 
into the bronchi, the bronchioles, and eventually the alveoli. A 
dense network of capillaries underlying the alveoli forms the basis 
of respiration with the critical exchange of oxygen and carbon 
dioxide that is necessary for life. The thin, permeable membrane 
of the alveolar epithelium is vulnerable to penetration of foreign 
particles and disruption upon inflammation. In humans, the total 
alveolar surface area is approximately 140 m2 (2). To ensure that 
such a vast area is well monitored, monocytes, macrophages, and 
dendritic cells (DCs) serve as sentinels at the interface between 
the external environment and our body. Together termed mono-
nuclear phagocytes (MNPs), they are a heterogeneous population 
of antigen-presenting cells that have been well described in the 
lungs of mice and rats at steady state (3–8). Additionally, blood 
monocytes infiltrate the lungs upon inflammation (9). Their 
heterogeneity extends beyond morphological or phenotypic 
characteristics as different mouse MNPs exert different func-
tionalities (10–12). MNPs play a central role in immune surveil-
lance by being adept at capturing antigen to destroy them or to 
present them in order to activate the adaptive immune responses 
(13, 14). However, as shown in mice, each subset excels at dif-
ferent aspects of antigen uptake, processing, and presentation, 
with distinct capacities to migrate and polarize T  cells, hence 
skewing immune responses differently (15–18). Importantly, 
investigations into MNPs are shifting toward tissue specificity, as 
immune cells residing in peripheral tissues have distinct traits 
compared to those in circulation, due to the cues given by the 
local microenvironment (19–21). The capacity of lung MNPs to 
regulate immunity has made them attractive targets for preven-
tive or treatment strategies against respiratory infections, lung 
cancer, or lung inflammatory diseases (22–24). Before applying 
our knowledge of lung MNPs to the development of vaccine or 
therapeutic strategies for patients, a thorough characterization of 
human lung MNPs is required, to ensure a functional alignment 
of lung DCs from mice and men.

DiSTiNCT ORiGiNS OF MONOCYTeS, 
DCs, AND MACROPHAGeS

The term MNPs was first coined in the 1960s by van Furth, refer-
ring to both circulating monocytes and tissue macrophages (25), 
as opposed to polymorphonuclear phagocytes (granulocytes) 
(26), but their history dates further back. In the 1880s, the con-
cept of phagocytosis (from ancient Greek, meaning “to devour”) 
was established by the Nobel Laureate Elie Metchnikoff, who 
described the ability of macrophages to engulf foreign entities as 
a defense mechanism (27, 28). Following labeling studies using 
radioactive thymidine, monocytes were defined as precursors of 
macrophages circulating in blood, as extensively studied by van 
Furth and others. In 1973, the Nobel Laureate Ralph Steinman 
discovered a novel type of “dendritic-shaped cell that can process 
and present antigen to activate naïve T  cells” in the spleen of 
mice, calling them DCs in his seminal papers (29–32). DCs then 
joined monocytes and macrophages as another member of the 
MNP system.

For decades since their discovery, monocytes were thought 
to only exist in peripheral blood, differentiating into DCs and 

macrophages upon entry into tissues (33). This was supported 
by the ease in which monocytes can be skewed to behave like 
DCs or macrophages in vitro (34–37), depending on the culture 
conditions, and also in  vivo during inflammation (38–41). 
However, more careful lineage studies in mice have identified 
hematopoietic precursors to DCs [called committed DC progeni-
tors (CDPs)] that are distinct from monocytes (Figure 1A, left 
panel) (42–44). CDPs can further differentiate to plasmacytoid 
DCs (PDCs) or pre-classical DCs (cDCs) that can become cDC1 
[CD141+ myeloid DCs (MDCs) in humans] or cDC2 (CD1c+ 
MDCs in humans). Maintenance of DC development is linked 
to their expression of Fms-like tyrosine kinase 3 (FLT3) and their 
ability to respond to FLT3 ligand (45, 46). In parallel, monocytes 
diverge at an earlier stage and are derived from a different pro-
genitor (called common monocyte progenitor) (47), relying on 
the cytokine colony-stimulating factor 1 for their development 
(Figure  1A, middle panel). These observations in mice have 
also been confirmed in humans following the identification of 
DC precursors in circulation, cord blood, and bone marrow 
(Figure  1B) (48, 49). Another paradigm-shifting discovery is 
that tissue-resident macrophages are not exclusively derived 
from circulating monocytes, as has been the dogma following van 
Furth’s findings in the 1960s. Instead, mouse tissue-resident mac-
rophages can develop from embryonic precursors such as yolk 
sac macrophages or fetal liver monocytes (5, 50–56) (Figure 1A, 
right panel). In short, there is mounting evidence to suggest 
that monocytes, DCs, and macrophages are not developmental 
progressions from one cell type to another, but instead originate 
from distinct precursors.

The matter is complicated by the plasticity of monocytes 
that can acquire different functional properties shared by mac-
rophages and DCs, depending on the inflammatory environment 
(57, 58). Identification of cell types based purely on expression of 
surface markers or functional specialization presents a challenge 
as several different populations share the same receptors, and 
subsets can acquire or lose functional capacities during inflam-
mation (59). Beyond semantics, the definition of cell popula-
tions is important for interpretation and translation of findings 
between different groups, especially when specific functional 
attributes are assigned to distinct populations. A shift toward 
complementing phenotypic identification with transcriptional 
profiling has allowed a better separation of DCs, monocytes, and 
macrophages, including a better alignment of cells across species 
and tissues.

TeCHNiQUeS FOR SAMPLiNG THe 
ReSPiRATORY TRACT OF HUMANS

There are several methods of sampling the human respiratory 
tract. The most common source of human lung tissue comes 
from surgical resections, due to lung tumor or other lung dis-
eases (Figure 2A) (60). The surrounding, non-diseased parts of 
the lungs are used in studies as a representation of healthy tissue. 
These samples constitute parenchymal lung tissue. However, as 
the lungs are highly vascularized, the surgical tissues obtained 
also consist of intravascular cells from the circulation. Lungs from 
organ donors that are available but not used for transplantation 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | The embryonic and hematopoietic development of mononuclear phagocytes (MNPs) in mice and men. (A) In mice, monocytes, dendritic 
cells (DCs), and macrophages originate from distinct lineages. DCs (left panel) and monocytes (middle panel) originate from hematopoietic stem cell (HSC) 
precursors known as committed DC progenitor (CDP) and common monocyte progenitor (cMop), respectively. Some tissue macrophages have an embryonic origin, 
either from yolk sac macrophages or fetal liver monocytes (right panel). DCs express different transcription factors critical to their development, such as basic leucine 
zipper ATF-like 3 (BATF3) for cDC1s, interferon regulatory factor 4 (IRF4) for cDC2s, and E2-2 for plasmacytoid DCs (PDCs). MNPs are also differentially dependent 
on various growth factors such as Fms-related tyrosine kinase 3 ligand (FLT3L) for DCs (left panel), CSF1 and CSF2 for monocytes (middle panel), and  
colony-stimulating factor 1 (CSF1) and CSF2 and IL-34 for macrophages (right panel). (B) In humans, in vitro culture models have been used to recapitulate in vivo 
DC hematopoiesis employing progenitors from human cord blood and bone marrow; hGMP, human granulocyte–monocyte–DC progenitor; hMDP, human 
monocyte–DC progenitor; hCDP, human common DC progenitor; hprec-DC, human migratory precursor.
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are an alternative source of lung tissue for immunological research 
(61). Perfusion of whole lungs is possible to remove intravascular 
cells, in order to discriminate between cells residing in the lung 
tissue and those in the lung vasculature (62). Further, investiga-
tion of lung-associated draining lymph nodes is possible with 
whole lungs, enabling the assessment of migration to lymphoid 
tissues and interaction with adaptive immune cells—key features 
of DCs (62, 63). A dependence on surgical lung material or 
lung transplants presents a challenge to experimental research, 
as both types of samples are not readily available. Furthermore, 
migratory immune cells such as MNPs isolated from adjacent 
sites may already be affected by unpredictable direct or bystander 
effects due to the diseased tissue. Lung specimens can also be 
acquired by performing a bronchoscopy to obtain bronchial wash 

(Figure  2B), bronchoalveolar lavages (Figure  2C), bronchial 
biopsies (Figure 2D), or bronchial brushing (64–66). Unlike the 
parenchymal tissue obtained from surgical resections or organ 
transplants, specimens obtained by bronchoscopy reflect cells 
lining the airways and those embedded within mucosal surfaces. 
Sequential lavages allow separation of bronchial and alveolar 
samples, termed bronchial wash (Figure  2B) and bronchoal-
veolar lavage, respectively (64). One of the advantages of using 
cells from lavages is that the cells undergo minimal manipulation 
prior to phenotypic and functional analyses, unlike tissue sam-
ples that need to undergo mechanical processing or enzymatic 
digestion in order to obtain single cells. An alternative approach 
to understanding human immune cells in inaccessible tissues is 
by harnessing the humanized mouse models (67, 68). However, 
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FiGURe 2 | identities of human mononuclear phagocytes (MNPs) differ in specific respiratory compartments sampled by different methods. Alveolar 
macrophages (AMs), interstitial macrophages (IM), tissue monocytes, monocyte-derived dendritic cells (mo-DCs), and three subsets of bona fide dendritic cells 
including cDC1, cDC2, and plasmacytoid DCs (PDCs) have been documented in different compartments of the human respiratory tract. (A) Cells within the lung 
parenchymal tissue can be assessed in whole lungs or surgical resections. Cellular components of the airways can be sampled by performing lavages including 
(B) a shallow bronchial wash or (C) a deeper bronchoalveolar lavage, whereas (D) cells within the respiratory mucosal tissue can be sampled by taking mucosal 
biopsies. Lung illustration modified from Servier Medical Art.
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humanized mouse models have their own caveats: the lung archi-
tecture of mice is different from that of humans, as murine lungs 
show less airway branching and lack respiratory bronchioles 
(69). Importantly, cytokines and chemokines produced by mouse 
epithelial cells may not act on the human cognate receptors (70). 
Knock-in mice expressing human cytokines have been developed 
to address this limitation (67). Since immune cells are in close 
contact with the respiratory epithelium (71), compromised 

communication between epithelial cells and immune cells may 
influence immunological events in humanized mice. Finally, 
given the massive size of the respiratory tract, the composition 
of immune cells may not be equally distributed but instead vary 
depending on which portion of the lungs is being examined. 
Considering the anatomic compartmentalization within the 
lungs may be valuable when comparing findings between studies 
using different sources of respiratory material.
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PHeNOTYPiC AND FUNCTiONAL 
CHARACTeRiZATiON OF HUMAN  
LUNG MNPs

Cell surface markers continue to be a reliable source of informa-
tion for classification of DCs, monocytes, and macrophages based 
on their phenotype, preferably supported by transcriptomic and 
functional analyses. Comparative studies have attempted to unify 
the MNP populations between mice and humans. The cell surface 
markers used to identify and sort out individual populations of 
MNPs based on flow cytometry are summarized in Table  1. 
A common flow cytometric gating strategy used by our group 
and several others to identify DCs in blood and tissue is by first 
gating on all hematopoietic cells (CD45+), excluding all lineage 
cells [monocytes, B  cells, T  cells, natural killer (NK) cells, and 
neutrophils] and then gating on cells expressing the MHC class 
II molecule, HLA-DR+ cells to identify DCs (72, 73). CD11c can 
be used to distinguish MDCs from PDCs. Aside from peripheral 
blood, these DC populations have also been identified in human 
bone marrow, skin, gut, lungs, liver, spleen, lymph nodes, and 
tonsils (62, 73–78). However, the precise phenotype of DCs in 
human tissue continues to be investigated and debated upon, 
with the most studied tissue in humans being the skin (79, 80). In 
light of different markers used to identify DCs in different human 
tissues, Guilliams et al. propose a framework to standardize the 
identification of DCs in human tissues at steady state and during 
inflammation (81). Here, we revisit early studies investigating 
human lung MNPs and review the most recent developments 
in the field, with special attention to cellular players in specific 
respiratory compartments.

Alveolar Macrophages (AMs)
Alveolar macrophages are the first MNP population to be 
described, given the relative ease of obtaining them by bronchoal-
veolar lavage and their abundance (up to 95% of cells lavaged in 
healthy subjects are AMs) (82). AMs play an important role in 
removing surfactants and other foreign materials, ensuring that 
the lungs remain free of debris (83). Impaired AM function in 
patients result in pulmonary alveolar proteinosis, a rare disorder 
that can be treated with granulocyte/macrophage colony-stim-
ulating factor (84, 85). It was reported in the 1970s that human 
AMs have local proliferative capacity and therefore need not be 
replenished by monocytes from the bone marrow (86). Yet, AMs 
can also be replenished by monocytes from the bone marrow, 
as illustrated in patients receiving bone marrow transplants for 
hematologic disorders (87). The seemingly contradictory find-
ings are now better understood based on recent studies in mice 
indicating that AMs can be derived from yolk sac macrophages, 
fetal liver, and adult monocytes given a vacant niche (56). In more 
recent studies involving human lung transplantations, almost 
100% of AMs detected in BAL are donor derived, with a capacity 
to self-renew (88, 89). This finding supports the niche hypothesis, 
as transplanted lungs already occupied by the donor’s AMs need 
not be replaced by the recipient’s circulating monocytes (88, 89).

Pioneering studies on human MNPs in the lungs relied 
mostly on morphology visualized by microscopy and expression 

of single markers such as CD11c and HLA-DR by immunohis-
tochemistry. By flow cytometry, human AMs can be identified 
based on their large size and high granularity (90, 91). Additional 
markers currently used for identification of AMs include CD206, 
CD163, and CD169, although there may be overlaps with other 
lung phagocytes (Table  1) (92–94). The superiority of human 
AMs at internalization of bacterial particles, compared to lung 
DCs or monocytes was recently highlighted by Patel et al. upon 
in  vitro exposure of lung phagocytes to different bacteria such 
as Escherichia coli, Staphylococcus aureus, and Bacillus anthracis 
(95). However, unlike human lung DCs or monocytes, AMs do 
not upregulate CD83, CD86, or CCR7 upon exposure to bacteria 
(95). Despite their surface expression of HLA-DR, AMs are 
poor inducers of antigen-induced T  cell proliferation and also 
poor stimulators of allogeneic mixed lymphocyte reactions 
(MLR) (96–98). Instead, AMs promote tolerance by suppressing 
lymphocyte activation via production of transforming growth 
factor β (TGF-β) and prostaglandins (99, 100). Although AMs are 
typically quiescent in order to minimize damage to the delicate 
alveoli, they can mount inflammatory responses when necessary 
(101). They release soluble mediators such as IL-8, a chemotactic 
factor important in the recruitment of neutrophils into the air-
ways (102–104). Transcriptomic profiling of human AMs upon 
LPS stimulation has identified interferon-related genes that can 
fine-tune the early cytokine responses (105). The dynamic roles 
of AMs will be further discussed in this review during different 
disease conditions.

Dendritic Cells
Dendritic cells have been described in the nasal mucosa  
(106–108), the epithelium, and submucosa of conducting air-
ways (6, 7, 109, 110), the lung parenchyma (7), and also alveolar 
surfaces (91). The first reference to human lung DCs was in 
1986, when Sertl et al. identified HLA-DR+ cells in preparations 
of human airway epithelium, lung parenchyma, and visceral 
pleura by light and electron microscopy (7). HLA-DR+ DCs 
with extending processes are interspersed between columnar 
epithelial cells in the large airways; in samples obtained from 
the lower trachea and mainstem bronchi. Lung mononuclear 
cells isolated from whole lungs are able to stimulate T cells in an 
allogeneic MLR more efficiently than blood monocytes (111). 
Removal of FcR+ cells improved the efficiency of stimulating 
allogeneic T  cells, suggesting that the lung mononuclear cells 
consist of both DCs and monocytes/monocyte-derived cells 
(111). However, compared to blood monocytes, lung DCs are 
less potent at producing pro-inflammatory cytokines such as 
interleukin 1 (IL-1) and tumor necrosis factor (TNF) in response 
to LPS (112). In bronchoalveolar lavage, mononuclear cells can 
be distinguished from the majority population of AMs by flow 
cytometry based on their lack of autofluorescence (73, 90, 91, 113).  
Immunohistochemical staining in situ suggests a local interac-
tion between lung DCs and T cells, as they form small clusters 
in the subepithelial tissue of the bronchus (91). In vitro, the 
non-autofluorescent mononuclear cells excel at stimulating 
T cell proliferation, compared to the highly autofluorescent AMs  
(90, 114, 115). Several differences in the expression of cell surface 
receptors allow a distinction between lung DCs and blood DCs: a  
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TABLe 1 | Cell surface markers of mononuclear phagocytes in human lungs.

Ontogeny Macrophages Monocytes Committed DC progenitor Reference

Surface 
marker

Alveolar 
macrophages

interstitial 
macrophages

Tissue 
monocytes

Monocyte-
derived DC

cDC1 CD141+ MDC 
(iRF8 dependent)

cDC2 CD1c+ MDC 
(iRF4 dependent)

PDC

AF ++ − − − − − − (73, 95)
BTLA n.d. n.d. n.d. − ++ + n.d. (75)
CADM1 n.d. n.d. n.d. n.d. + − n.d. (81)
CD1a − − − −/+ − −/+ − (62, 73, 74)
CD1c − − − + − + − (62, 63, 73–75)
CD11b + + + + − + − (62, 75, 81)
CD11c + + + + + + − (62, 63, 68,  

73–75, 95)
CD14 − + + + − − − (62, 73, 95)
CD16 + + ++ − − − − (62, 73, 93)
CD64 + + + − + + − (62, 75, 130)
CD103 + n.d. − − −/+ + + (122)
CD123 − − − −/+ − −/+ + (73, 93)
CD141 + − − −/+ ++ + − (63, 73, 74)
CD163 + + + + − − − (62, 73, 130)
CD169 + − n.d. − − − − (93)
CD172a n.d. n.d. n.d. + − + n.d. (75, 81)
CD206 + + + + − + − (62, 73, 93)
CD207 n.d. n.d. n.d. n.d. − −/+ − (123)
CD303 − − − − − − + (73)
Clec9A − − − − + − − (74)
HLA-DR + + + + ++ ++ ++ (62, 63, 68, 73–75, 

81, 93, 95, 122, 
123, 130)

Lineagea − − − − − − − (62, 63, 68, 73–75, 
81, 93, 95, 122, 

123, 130)
TGFbR n.d. n.d. n.d. n.d. + + n.d. (68)
XCR1 − − − − + − − (74)

aCD3, CD19, CD20, CD56, CD66abce.
n.d., not determined; DCs, dendritic cells; PDC, plasmacytoid DC; cDC, classical DC; IRF, interferon regulatory factor; MDC, myeloid DC.

6

Baharom et al. MNPs in Human Lungs

Frontiers in Immunology | www.frontiersin.org May 2017 | Volume 8 | Article 499

portion of DCs residing in the bronchial epithelium express 
CD1a (110), and mannose receptor (CD206), as illustrated by 
their capacity to take-up soluble antigens (114). Due to the lim-
ited use of phenotypic markers for identification of lung MNPs, 
lung DCs referred to in earlier studies may be a mixed population 
of bona fide DCs and monocyte-derived cells. Furthermore, the 
isolation methods used are often extensive, involving enzymatic 
digestion followed by Ficoll separation and plastic adherence 
(114), which may lead to the induction of phenotypical and 
functional differences.

Following the identification of specific blood DC antigen 
(BDCA) markers (116), similar subpopulations of human DCs 
have been detected in the nasal mucosa, lung parenchyma, 
vascular walls as well as bronchial and alveolar surfaces; PDCs 
expressing BDCA-2 and BDCA-4 or MDCs expressing either 
BDCA-1 (CD1c+ MDCs or cDC2) or BDCA-3 (CD141+ MDCs 
or cDC1) (62, 68, 73–75, 93, 117–121) (Figure 2). Additionally, 
DCs expressing CD1a can be detected in both the epithelium 
and submucosa of the airways (117, 118, 122). More detailed 
phenotypic analyses revealed that a subpopulation of CD1c+ 

MDCs express CD1a, mannose receptor (CD206) and langerin 
(CD207) in human lungs, unlike blood CD1c+ MDCs (62, 73,  
74, 123). Similar to their blood counterparts, lung CD141+ 
MDCs also express CLEC9A, whereas lung PDCs express CD123  
(68, 73, 74). Many of the markers mentioned above are unique to 
humans. However, CADM1 and CD172a, commonly expressed 
in different tissues of mice and men, can be used to identify cDC1 
(CD141+ MDCs) and cDC2 (CD1c+ MDCs), respectively, thus 
allowing comparisons of DC subsets across species and tissues 
(65). Additionally, identification of DC subsets via transcription 
factors such as IRF8 and IRF4, required for the development or 
function of cDC1 and cDC2, respectively (124), has been suc-
cessfully used in identifying human lung DCs too (63, 81). This 
standardization will be valuable in streamlining investigations of 
the same cell from a specific lineage that may express distinct 
markers under different conditions.

Importantly, there are functional differences between the 
different subsets of lung DCs. First, they express different reper-
toires of toll-like receptors, enabling them to respond to different 
microbial products. CD1c+ MDCs and CD141+ MDCs express 
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TLR1, TLR2, TLR3, TLR4, TLR6, and TLR8 at the mRNA level, 
whereas PDCs express TLR7 and TLR9 (125). This is consistent 
with the TLR repertoire of the corresponding subsets in blood 
(126). Upon stimulation of TLR4 with LPS and TLR3 with 
poly(I:C), both lung CD141+ MDCs and CD1c+ MDCs induce 
TNF, IL-1β, and IL-6, whereas stimulation of TLR7/8 induces 
pro-inflammatory cytokines on lung PDCs (73, 125). Second, 
they have different T  cell stimulatory capacities. Altogether, 
lung DCs are superior at stimulating allogeneic MLR compared 
to the highly autofluorescent AMs or lung CD14+ monocytes  
(62, 117, 118). Among the lung DC subsets, CD1c+ MDCs are 
best at activating T cells, followed by CD141+ MDCs with a more 
intermediate capacity, and PDCs being the poorest inducers 
of T  cell proliferation in an allogeneic MLR, when compared 
side-by-side (125). Further, CD4+ T cells cocultured with lung 
MDCs upregulate the activation marker CD25 compared to 
unstimulated T  cells and can also differentiate into memory 
T  cells by upregulating expression of CD45RO (119). Human 
lung CD1c+ MDCs are potent at inducing a Th17 phenotype 
upon Aspergillus fumigatus challenge by producing IL-23p19, 
compared to CD141+ MDCs or CD14+ cells in the lungs (75). 
Further, human lung CD1c+ MDCs induce CD103 expression 
on CD8 T cells, a marker of tissue residency, via expression of 
TGF-β, unlike CD141+ MDCs (68). Following exposure to live-
attenuated influenza virus (LAIV) in vitro, human lung CD141+ 
MDCs can induce both Th1 (IFN-γ) and Th2 (IL-4) responses 
(127). Interestingly, lung CD141+ MDCs are more efficient than 
lung CD1c+ MDCs at inducing Th2 responses, due to increased 
expression of OX40 ligand upon exposure to LAIV (127). 
However, most studies investigating T cell activating capacity of 
human lung DCs have been conducted in vitro. Assessment of 
lung-associated lymph nodes suggests that only CD1c+ MDCs 
(cDC2) accumulate in follicular zones of lung-draining lymph 
nodes (62, 63).

Monocytes and Monocyte-Derived Cells
In human peripheral blood, monocytes can be subdivided into 
three populations based on their expression of CD14 and CD16: 
classical monocytes (CD14+CD16−), intermediate monocytes 
(CD14+CD16+), and non-classical monocytes (CD14dimCD16+). 
By comparison, less is known about monocytes in the lungs, as 
they were long thought to differentiate into DCs or macrophages 
upon arrival into peripheral tissues (9, 25). Only recently have 
tissue monocytes been demonstrated in peripheral tissues includ-
ing lungs of mice, deriving from Ly6Chi classical monocytes (5, 
12). In human lungs, Schlitzer et  al. and Haniffa et  al. refer to 
CD14+ cells as CD14+ DCs (74, 75), whereas Yu et al. could iden-
tify a large population of CD14+ cells that express HLA-DR and 
CD11c but had not characterized them further as they were not 
the focus of their study (68). Applying a similar flow cytometric 
gating strategy as used for blood monocytes, we and others have 
identified three populations of monocytes in lung tissue and 
bronchoalveolar lavage at varying proportions (62, 73, 93). In the 
airways, cells corresponding to intermediate monocytes are the 
most frequent monocyte subset (73). All monocyte populations 
from the airways responded by producing TNF upon stimulation 
of TLR3, TLR4, and TLR7/8 ex vivo (73). Lung CD14+ cells could 

also stimulate both CD4 and CD8 T cells in MLRs, but not as 
potently as CD1c+ MDCs (62). Desch et al. further subdivided 
CD14+ cells into tissue monocytes and monocyte-derived DCs 
based on expression of CD1c (62). We could confirm that a 
subpopulation of monocytes upregulated CD1c in the airways 
and in bronchial tissue, without upregulating typical macrophage 
markers (73). In contrast, CD14+ cells in the human dermis are 
referred to as monocyte-derived macrophages, as their gene 
expression program strongly overlaps with human monocytes 
and macrophages, but not with human DCs (128). The charac-
terization of interstitial macrophages (IM) in human lung paren-
chymal tissue has been limited (129). Based on studies in rodents, 
IM originate from bone marrow-derived monocytes and unlike 
AMs, have a short half-life (130, 131). As a consequence, they may 
share common phenotypic markers with monocytes. In rhesus 
macaques, IM share many cell surface markers as blood CD14+ 
monocytes using an extensive flow cytometric panel, except for 
CCR2, a tissue-homing chemokine receptor that is not expressed 
by IM, presumably downregulated by their monocytic precur-
sors upon entering tissue (130). Yu et  al. propose the usage of 
sialoadhesin (CD169) to distinguish between AMs (CD169+) and 
IM (CD169−) (93, 94). Taken together, our detailed knowledge on 
human MNPs during steady state has greatly improved in recent 
years. Nevertheless, many questions remain, including the extent 
to which functional qualities of these subsets are cell-intrinsic 
or influenced by the environment. Investigation of human lung 
MNPs during respiratory infection or inflammation offers an 
insight into how these cells behave during dysregulated situations.

LUNG MNPs iN ReSPiRATORY DiSeASeS

At steady state, monocytes, macrophages, and DCs are impor-
tant in maintaining homeostasis and ensuring tolerance toward 
harmless antigens arriving in the lungs. In the event of infection 
or inflammation, how lung MNPs behave in a perturbed environ-
ment may clarify the individual roles the different subsets play in 
initiating immunity or contributing to pathogenicity. Respiratory 
diseases encompass several pathological conditions affecting the 
lungs. Together, lung diseases remain among the leading causes 
of death and disability (1). Focusing on diseases of the lower 
respiratory tract, respiratory diseases can be further subdivided 
into bronchial (e.g., acute bronchitis, COPD, and asthma) or 
interstitial [e.g., sarcoidosis and idiopathic pulmonary fibrosis 
(IPF)] diseases (132–134). Bronchial diseases are often obstruc-
tive leading to blocked airways, whereas interstitial diseases are 
restrictive leading to decreased lung volume. Infections with 
viruses or bacteria can affect both bronchial and interstitial 
compartments. Lung MNPs are also implicated in lung cancers, 
divided into small-cell lung carcinoma or non-small-cell lung 
carcinoma. Here, we discuss the existing literature on the involve-
ment of human lung MNPs in the lung diseases that have been 
best studied (Table 2). However, care should be taken in prescrib-
ing function to specific populations in pathological conditions, as 
the distinction between monocytes, DCs, and individual subsets 
within them are limited in earlier studies.

A striking observation in many studies is that cigarette smoking 
can alter both frequency and function of lung MNPs (135–140). 
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TABLe 2 | Dysregulations in frequencies or functions of lung mononuclear phagocytes in human disease.a

Disease Cells investigated Study setup Observations Reference

COPD AMs •	 88 COPD patients underwent BAL (59 non-exacerbation-prone, 29 
exacerbation-prone).

•	 AMs challenged in vitro with bacteria and TLR ligands.

•	 AMs of exacerbation-prone COPD patients exhibit exhaustion.
•	 Lower production of IL-8 and TNF upon bacterial exposure.

(151)

COPD Langerin+ DCs (most likely cDC2) •	 14 never smokers, 15 smokers without COPD, and 44 COPD patients 
underwent surgery due to cancer.

•	 Increased number of DCs in airways of patients correlate with 
severity of disease.

•	 CCL20 increased in lungs of COPD patients, implicated in 
recruitment of CCR6+ DCs.

(152)

COPD cDC1 and cDC2 •	 3 never smokers, 11 smokers without COPD, and 28 COPD patients 
underwent surgery due to lung volume reduction, pulmonary nodules, 
or lung transplantation.

•	 Increased expression of co-stimulatory molecules correlate with 
severity of disease as assessed by GOLD stages.

(154)

COPD cDC2 •	 7 never smokers, 44 smokers without COPD, and 41 COPD patients 
underwent surgery.

•	 13 never smokers, 12 smokers without COPD, and 19 COPD patients 
underwent BAL before and on day 7 of rhinovirus controlled infection.

•	 cDC2s (CD1c+ MDCs) display a semi-mature phenotype and are less 
responsive to LPS.

(158)

Allergic asthma cDCs and PDCs •	 7 patients with allergic asthma were challenged with allergen or saline 
in different lung segments and underwent bronchoscopies.

•	 Increased number of DCs in airways after allergen challenge in 
asthma patients.

(168)

IPF, sarcoidosis AMs •	 15 patients with IPF and 46 patients with sarcoidosis underwent 
bronchoscopy for collection of BAL and lung biopsies.

•	 Spontaneous production of CCL18 by BAL cells of patients with 
pulmonary fibrosis.

•	 Supernatants from AMs of patients containing CCL18 induce 
collagen production by normal lung fibroblasts.

(179)

IPF cDC2 (single stains of CD1a, 
CD1c, and CD209 defined as 
immature DCs, CD83, CD86, and 
CD208 defined as mature DCs)

•	 12 patients with IPF underwent surgery (either open lung biopsies or 
lung transplantation).

•	 Immunohistochemistry on snap-frozen tissue.

•	 Increased number of immature DCs in lungs of IPF patients, 
compared to controls.

•	 Chemokines CCL17, CCL19, CCL20, CCL21, CCL22, and CXCL12 
strongly expressed in fibrotic lungs.

(180)

IPF, sarcoidosis cDCs and PDCs •	 10 sarcoidosis patients and 8 IPF patients underwent BAL. •	 Numbers of DCs in BAL of IPF patients are similar to controls but 
more immature.

•	 Fewer CD1a+ DCs (most likely cDC2) in BAL of sarcoidosis patients.

(182)

Tuberculosis AMs •	 Patients underwent BAL for diagnostic purposes but were negative for 
infections or other lung diseases.

•	 AMs were isolated by overnight adherence to plastic and infected with 
mycobacteria in vitro.

•	 Infection of AMs in vitro with virulent mycobacteria higher levels of 
TNF than AMs infected with attenuated mycobacteria.

•	 Higher TNF production correlates with increased growth rate of 
mycobacteria.

(192)

Tuberculosis CD1a+ DCs (most likely cDC2) •	 93 patients positive for Mycobacterium tuberculosis underwent BAL. •	 CD1a+ DCs can be identified in BAL of patients, expressing an 
immature phenotype.

(193)

Influenza, RSV CD14+ monocytes, cDCs, and 
PDCs

•	 Nasal wash samples were collected from 22 children <36 months, 
eventually confirmed to be influenza positive.

•	 Increased numbers of monocytes, cDCs, and PDCs in nasal wash of 
patients with influenza, higher than in patients with RSV.

•	 Increased levels of CCL2 (involved in recruitment of monocytes and 
DCs) in nasal wash of influenza patients.

(199)

(Continued)
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Cigarette smokers have substantially increased numbers of AMs 
in the lungs, with identical capacity to phagocytose bacteria 
compared to AMs of non-smokers (141, 142). AMs of smokers 
have altered metabolic and enzymatic activities (138, 140, 143). 
Production of cytokines such as IL-1 is also reduced in AMs of 
smokers (139). Hence, it is important to compare observations in 
patients with not only age- and sex-matched healthy controls but 
also with similar smoking status. Other inhaled particles includ-
ing air pollutants, such as diesel exhaust, however, typically cannot 
be controlled in study subjects. These inhaled particles have been 
shown to impair the ability of AMs to phagocytose, described 
in detail in the following review (144). As such, comparisons of 
patient groups with endemic healthy controls exposed to similar 
particulate matter in the air would account for the contribution 
of environmental factors.

Chronic Obstructive Pulmonary Disease
Lung MNPs play a central role in COPD, a disease character-
ized by aberrant inflammatory responses to cigarette smoke 
and other inhaled particles (145–147). Persistent inflammation 
occurs in the lungs of COPD patients (148). A key player is 
the pro-inflammatory cytokine TNF, potentially produced by 
lung MNPs, which is increased in sputum and serum of COPD 
patients (149). However, anti-TNF treatment with infliximab 
alone was not effective on COPD patients (150). The timing of 
treatment may be an important factor, as AMs in exacerbation-
prone COPD patients exhibit exhaustion: upon bacterial chal-
lenge in vitro, poorer cytokine responses are observed compared 
to non-exacerbation-prone COPD patients (151). Langerin+ 
DCs expressing CCR6 accumulate in the airways of COPD 
patients, increasing with disease severity and higher levels of 
the chemoattractant CCL20 (the ligand for CCR6) (152, 153). 
Maturation markers such as CD40, CD80, CD83, and CD86 are 
also upregulated on lung DC subsets in COPD patients, cor-
relating with disease severity (153–155). Conflicting with this 
observation, others report that in their cohort of COPD patients, 
DCs are more immature than DCs isolated from smokers with-
out COPD (156, 157). Tsoumakidou et al. support the hypothesis 
that lung DCs in COPD patients are tolerogenic by reporting that 
lung CD1c+ MDCs produce more IL-10 and induce regulatory 
T cells, unlike CD1c+ MDCs from smokers without COPD (158). 
Differences in source of lung tissue and sample preparation may 
contribute to the conflicting data, underlining the importance of 
harmonized protocols to allow for comparisons across different 
study cohorts.

Asthma
Asthma is characterized by bronchial hyperresponsiveness and  
influx of inflammatory cells, and the role of lung MNPs in 
asthma has been widely studied (159–161). Lambrecht et  al. 
pioneered the field more than 15 years ago by illustrating how 
DCs induce Th2 responses to inhaled antigens in mice (162, 163).  
Indeed, studies in humans indicate that DCs, especially CD1c+ 
MDCs, accumulate in sputum and bronchial mucosa of asthmatic 
patients upon allergen challenge (164–169). The increase in 
DCs in the lungs can be controlled by inhaled corticosteroids, D
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currently the preferred treatment for asthma management (164). 
In pediatric patients with steroid-treated asthma, their airway 
DCs expressed lower levels of the co-stimulatory molecule CD86 
(167). Supporting data in mouse models suggesting that DCs are 
responsible for maintaining Th2 responses to inhaled allergens 
(170), Greer et  al. report an increase in CD1c+ MDCs in the 
epithelium of patients with high expression of Th2 genes in the 
airways, but not in those with low Th2 genes (169). In addition to 
Th2-driven asthma, Th17 cells and cytokines have been described 
as driving more severe disease with neutrophilic inflammation 
(171). Although human MNPs have not been investigated in 
contributing to Th17-mediated asthma, existing studies suggest 
that CD1c+ MDCs can control mucosal IL-17 responses (75). 
AMs are also implicated in airway remodeling (172), a central 
feature of asthma. Further, AMs from asthmatic patients appear 
to overexpress CCL17, the ligand for CCR4 that is upregulated 
on T cells homing to the lungs (17, 173). This may contribute to 
airway inflammation experienced by asthmatics.

Sarcoidosis and iPF
Pulmonary sarcoidosis is characterized by the formation of 
granulomas in the lungs: T  cells accumulate in the lungs sur-
rounding an unknown antigen that has been phagocytosed by 
AMs or DCs (174). AMs from sarcoidosis patients produce a 
variety of cytokines including TNF, IL-2, and IL-6 (175). Massive 
TNF production by AMs is indicative of increased disease pro-
gression (176). Pulmonary fibrosis, observed in both IPF and end 
stage sarcoidosis, is hypothesized to be a consequence of aberrant 
wound healing; abnormally excessive production of fibrous con-
nective tissue results in fibrosis (177). Rennard et al. illustrated 
in the 1980s that AMs from patients with IPF and pulmonary 
sarcoidosis produce 10 times more fibronectin, a chemoattract-
ant for human lung fibroblasts, than AMs from healthy controls 
(178). Prasse et al. further identified CCL18, a signature cytokine 
produced by anti-inflammatory macrophages, as the key com-
ponent perpetuating pulmonary fibrosis by stimulating collagen 
production by fibroblasts (179).

Similar to COPD and asthma, DCs accumulate in the lungs 
of patients with IPF and sarcoidosis, in particular CD1c+ MDCs 
(169, 180–185). In IPF patients, DCs aggregate together with 
infiltrating lymphocytes, forming an organized lymphoid struc-
ture, close to fibroblasts that produce chemokines for recruitment 
of immune cells (186). In an in vitro study, Freynet et al. illustrate 
that lung fibroblasts from IPF patients may modulate DC function 
by downregulating their capacity to stimulate T cells in an MLR 
(187). However, as DCs derived from the Mutz-3 myeloid cell 
line were used in this study, it remains to be assessed if primary 
lung DCs of IPF patients would respond in a similar manner. In 
sarcoidosis, the precise role of DCs is still unclear: there is evi-
dence suggesting that lung DCs initiate the inflammatory T cell 
response (188), whereas others report that DCs in sarcoidosis 
patients are anergic and less immunostimulatory (182, 189). This 
may be a consequence of studying patient samples at different 
times of disease progression and further studies are needed to 
better dissect this. A more detailed review of MNP involvement 
in granuloma formation has been discussed by Broos et  al. 
recently (190).

Respiratory infections
Despite extensive studies in mice on the role of MNPs in detect-
ing, controlling, and clearing infection in the lungs, investigation 
of human lung MNPs during respiratory infection has been lim-
ited. Most existing studies exploring the role of human MNPs and 
respiratory pathogens have used blood-derived MNPs exposed to 
specific pathogens in vitro. Most patients with respiratory infec-
tions do not typically undergo surgery or bronchoscopy, except 
for patients with tuberculosis. Bronchoscopies are occasionally 
performed on patients infected with Mycobacterium tuberculosis 
(M.tb) as a diagnostic strategy. Pathogenesis of tuberculosis 
involves a complex interplay between the bacterium and the host 
immune response, reviewed in greater detail by Sasindran and 
Torrelles (191). A key player, AMs can serve as a reservoir for the 
bacterium (191). When exposed to M.tb in vitro, AMs produce 
the pro-inflammatory cytokine TNF that correlates with the abil-
ity of AMs to support bacterial replication (192). An accumula-
tion of immature DCs has also been reported in the airways of 
tuberculosis patients (193).

Another respiratory infection that is a global public health 
concern is influenza. In influenza-infected patients and also in 
participants of human challenge studies with influenza virus, 
cytokine levels during infection have been reported to increase 
both in the lungs and in circulation (194–196). As a potential 
contributor to pro-inflammatory cytokines, both monocytes 
and DCs have been reported to accumulate in the nasal mucosa 
of patients infected with influenza virus, at higher levels than 
in patients with respiratory syncytial virus (RSV) infection 
(197–200). However, in  vitro infection of AMs with a highly 
pathogenic strain of influenza A virus does not cause excessive 
TNF production (201). In contrast, in vitro infection of AMs with 
RSV leads to production of TNF, IL-6, and IL-8 (202). In sum-
mary, our increased appreciation of how MNPs behave differently 
depending on their anatomical location suggests that earlier 
observations using blood MNPs may merit revisiting to more 
accurately understand the role of human lung MNPs, present at 
the site of infection, during infection with respiratory pathogens.

Lung Cancer
In lung cancer, various innate and adaptive immune cells are 
present in the cancer microenvironment (often referred to 
as the immune contexture), including MNPs (203, 204). The 
identification of cancer antigens has accelerated the develop-
ment of antigen-specific immunotherapy targeting specific DCs 
to enhance the effector immune response, including cytotoxic 
T  lymphocytes (CTLs), NK  cells, and macrophages, ultimately 
responsible for destruction of tumor cells (23). In a study 
involving 74 patients with non-small-cell lung cancer, DCs are 
reported in lymphoid structures close to the tumor in pathologic 
lung biopsies (205). The density of mature DCs in these tumor 
sites correlate with improved clinical outcome (205). Similarly, 
another study involving 458 patients found that increased 
numbers of mature DCs in tumor-associated tertiary lymphoid 
structures correlated with an infiltration of T  cells carrying an 
effector memory phenotype (206). In both studies, DCs were 
identified as cells expressing DC-LAMP (CD208) (205, 206). A 
more detailed phenotypic analysis of these cells would help in 
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identifying and attributing functional qualities based on our 
existing knowledge from studies of human lung MNPs. In other 
studies, expression of programmed death-ligand 1 (PD-L1) on 
DCs found at tumor sites indicates poor prognosis, as lung DCs 
with high PD-L1 expression can retain their immature status and 
thus limit the activation of immunity (23, 207, 208). Hence, drugs 
such as monoclonal antibodies that target PD-L1 on DCs or the 
receptor PD-1 on T cells may boost immune responses by remov-
ing the inhibitory mechanism of DCs on T cells (209).

CONCLUDiNG ReMARKS

Our understanding of human lung MNPs has improved sig-
nificantly in the past decade, with combined efforts to describe 
human counterparts to well-described populations in mice. 
However, differences in tissue sampling, processing protocols, 
and phenotypic gating strategies may hamper the ability to 
directly compare findings between research groups. A more col-
laborative approach, such as an expansion of the Immunological 
Genome project (210) focusing on human MNPs, could resolve 
inconsistencies and also provide broader understanding of the 
transcriptomic profiles of each population. More attention can 
also be given to monocytes and monocyte-derived cells in the 
lungs, given their plasticity and wide range of functionalities. An 
important body of research exists to support the view that lung 
MNPs are involved in various lung diseases, as illustrated by their 
overabundance in the lungs. Production of pro-inflammatory 
cytokines by MNPs contributes to an amplification of the inflam-
matory response in the lungs, central to the pathology of many 
lung diseases. Further efforts should focus on mechanisms 
leading to the aberrant accumulation of inflammatory MNPs in 

the lungs in order to aid the development of suitable therapeutic 
strategies. During respiratory infections, a relevant question to 
address is whether MNPs encountering pathogens, especially 
those lining the airways, can translocate and migrate to draining 
lymph nodes in order to participate in the activation and expan-
sion of pathogen-specific T cells. Although tracking of individual 
cells would be technically difficult to perform in humans, this 
knowledge may influence the effectiveness of live vaccines that 
are delivered intranasally. Further, cancer immunotherapies may 
be enhanced by targeting specific populations of lung MNPs 
that can activate cancer antigen-specific CTLs and ensure that 
they home back to the lungs and remain in the tissue. Finally, 
the contribution of the microbiome has not been considered by 
most studies, despite indications that even in healthy humans, 
a diverse community of microbes exists in our lungs (211). A 
broader and deeper understanding of the complex cellular and 
molecular mechanisms dictating tissue trafficking and immune 
activity of human lung MNPs can be pivotal in our fight against 
respiratory diseases.
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