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Abstract

H2Av is a versatile histone variant that plays both positive and negative roles in transcription, DNA repair, and chromatin
structure in Drosophila. H2Av, and its broader homolog H2A.Z, tend to be enriched toward 59 ends of genes, and exist in
both euchromatin and heterochromatin. Its organization around euchromatin genes and other features have been
described in many eukaryotic model organisms. However, less is known about H2Av nucleosome organization in
heterochromatin. Here we report the properties and organization of individual H2Av nucleosomes around genes and
transposable elements located in Drosophila heterochromatic regions. We compare the similarity and differences with that
found in euchromatic regions. Our analyses suggest that nucleosomes are intrinsically positioned on inverted repeats of
DNA transposable elements such as those related to the ‘‘1360’’ element, but are not intrinsically positioned on
retrotransposon-related elements.
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Introduction

In Drosophila, as in many other eukaryotes, chromosomes are

packaged into euchromatin and heterochromatin [1,2,3]. Most genes

reside in euchromatin, and are thought to exist in a more open state

than those found in compact heterochromatin. Genes that are

ectopically placed within heterochromatin tend to be repressed

[4,5,6,7], which reflects a possible spreading of the heterochromatin

structure into such genes. Heterochromatic regions are gene poor.

However, many resident genes are expressed, and typically rely on

the heterochromatin environment for proper expression [8].

Heterochromatin contains many repeat sequences [9], and this

includes a variety of transposable elements. DNA transposons use

the host cell’s replication machinery to replicate itself through a

DNA intermediate, which involves terminal inverted repeats or

TIRs [10]. Retrotransposons multiply via an RNA intermediate,

and are divided into two groups: LTR retrotransposons that

contain ‘long terminal repeats’ at their end, and non-LTR

retrotransposons (LINE and SINE elements) that lack LTRs

[11]. A number of studies suggest that transposable elements are

involved in chromosome organization and function [12,13,14,

15,16,17], epigenetic regulation of specific genes [18,19,20], and

human diseases [21,22,23]. Knowledge of their nucleosome

organization may provide some insight into their contribution to

genome integrity and epigenetic regulation.

After DNA replication, many regions in the genome replace

their H2A and H3 with the histone variants H2A.Z and H3.3

[24,25,26,27,28], and this provides additional functionality to

those nucleosomes. Typically, these replacement histones reside at

active genes, and therefore may have special roles in regulating

gene expression. However, this is not strictly the case in that

H2A.Z can accumulate in an undirected manner at transcription-

ally quiescent regions of the genome, including heterochromatin

[29]. While H2A.Z is found in both euchromatin and hetero-

chromatin [29,30,31,32,33], it is not clear whether it serves the

same purpose in both locations, as it has been implicated in both

activation and repression [34,35,36]. In euchromatin, H2A.Z is

enriched at the 59 ends of genes [37,38,39], but its precise

positioning and function is less well defined in heterochromatin.

Nevertheless, H2A.Z might protect euchromatin from the ectopic

spread of silent heterochromatin in nearby regions [28].

In Saccharomyces, H2A.Z is incorporated into the 21 and +1

nucleosomes of euchromatic genes [40]. These positions flank a

nucleosome-free promoter region (NFR) [41]. In metazoans,

H2A.Z is relatively depleted upstream of the core promoter region,

and is concentrated at the +1 position with a decreasing gradient of

occupancy at nucleosome positions downstream of +1 [42,43].

However, chromatin that is isolated without in vivo crosslinking and

in the presence of low ionic stringency appears to accumulate

H2A.Z in promoter regions [44], indicating that promoter regions

may be accessible for H2A.Z assembly. In Drosophila, H2A.Z is

referred to as H2Av [45]. H2Av incorporates functions of both

H2A.Z and H2A.X that are encoded separately in other systems. In

this paper we will use ‘‘H2Av’’ when referring specifically to the

Drosophila protein, and ‘‘H2A.Z’’ when used more generally.

Inasmuch as H2A.Z tends to be more easily evicted from

chromatin [38], it may ease the entry of a transcribing polymerase

into a gene [46], compared to canonical histones. Nonetheless, the

+1 nucleosome is positioned to potentially control RNA

polymerase II entry into a gene [42,47,48,49,50]. For example,
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repositioning of the +1 nucleosome has been implicated in control

of cell cycle genes [51]. Moreover, RNA polymerase II is paused at

the 59 end of genes [52,53], just upstream of the +1 nucleosome

[42]. Inasmuch as nucleosome positioning can dictate the

accessibility of chromosomal elements, knowing their precise

position should shed light onto how genes, DNA replication, DNA

repair, and transposition are regulated.

Previously, we reported a high-resolution euchromatin-wide map

of H2Av nucleosome positions using MNase ChIP-seq technology in

which nucleosome occupancy was covalently trapped at its in vivo

location [42], and this provided some insight into how chromatin is

organized around cis-regulatory elements and genomic features.

Here we report on the heterochromatin portion of the dataset and

describe the sequence and organizational properties of H2Av around

annotated (FlyBase r5.14) heterochromatic genes and transposable

elements in comparison to their euchromatin counterparts. Given the

diverse functions of H2Av in all aspects of chromosome biology, the

ill-defined nature of heterochromatin, and the limitations to which

extracted H2Av mono-nucleosomes can be quantitatively measured,

we limit our analysis here to a qualitative comparison between

mapped H2Av locations and surrounding annotated features. Our

analysis is intended to provide a resource describing H2Av

nucleosome organization and properties in heterochromatic regions

(as compared to euchromatic regions) and its implications, rather

than providing a deep mechanistic understanding of H2Av function.

Results and Discussion

Heterochromatic and euchromatic H2Av nucleosomes
are very similar

In characterizing heterochromatic H2Av nucleosomes, we first

examined their instrinsic properties, then examined their distribution

around genomic features. Drosophila heterochromatin predominates in

pericentric regions, and encompasses most or all of the Y chromosome

[3] (Figure 1A). Approximately 33% of the female Drosophila genome

is heterochromatic, compared ,46% in males [3]. Drosophila

heterochromatin consists of tandemly repeated short sequences

(satellite DNAs), middle repetitive elements (e.g. transposable elements),

and some single-copy sequences. Previously, we had covalently

crosslinked nucleosomes to their native in vivo locations using

formaldehyde, then isolated the chromatin and digested it to

nucleosome core particles using micrococcal nuclease (MNase) [42].

In accord with standard protocol for genome-wide mapping of

nucleosomes, .80% of the chromatin was reduced to mono-

nucleosomes using high concentrations of MNase, and the vast

majority of nucleosomes were rendered soluble, indicating that the

chromatin was being uniformly sampled. Importantly, the nucleosomes

were immunoprecipitated with H2Av antibodies under stringent

conditions that removed any non-covalently crosslinked nucleosomes.

By ensuring that the H2Av nucleosomes were crosslinked in vivo, we

avoided complications associated with potential repositioning and/or

redeposition of H2Av nucleosomes during the in vitro work up.

Inasmuch as the entire length of the nucleosomal DNA was

sequenced, the maps simultaneously demarcated both nucleosome

borders in a single read. This provided twice the information as short-

read sequencing, and thus provided high accuracy, which we have

demonstrated to have a median error of ,4 bp [40]. Attributing the

nucleosome dyad position to the midpoint between the two sequenced

ends also diminished (but did not eliminate) effects of MNase cleavage

bias. We determined whether the length of DNA protected by the

histone octamer was the same in heterochromatic and euchromatic

regions. As shown in Figure 1B, the distribution of sizes of

heterochromatic H2Av nucleosomes was nearly identical to that of

its euchromatic counterpart, with both peaking at approximately

147 bp. The consistency of length distributions between both types of

nucleosomes indicates that under the conditions employed other

factors are not likely to be bound to bulk heterochromatic H2Av

nucleosomes in a way that alters their protection pattern. In both types

of nucleosomes, shoulders were evident at ,132 bp and 112 bp,

representing nucleosomal DNA that is ,15 and ,35 bp shorter than

the most frequent length, respectively. This likely represents some

‘‘breathing’’ of the DNA at the nucleosome borders, thereby making

them more nuclease accessible.

Patterns of dinucleotides have been associated with nucle-

osome positioning [40,42,54,55,56,57,58,59,60,61,62,63,64,65].

We therefore compared the dinucleotide pattern previously

determined for euchromatic H2Av nucleosomes with those found

in heterochromatin. As shown in Figure 2, the dinucleotide

distributions across nucleosomes were essentially identical between

euchromatic and heterochromatic H2Av nucleosomes. However,

heterochromatic regions displayed an overall higher content of

AA/TT/TA dinucleotides, which are well-defined components of

nucleosome positioning sequences. In both heterochromatic and

euchromatic chromatin, nucleosomal DNA tended to be more G/

C-rich and A/T-deficient than linkers (regions .73 bp from the

dyad). Thus, any sequence-based positioning by the underlying

nucleosomal DNA is likely to employ the same basic rules in

heterochromatin as it does in euchromatin, but may be more

pervasive in heterochromatic regions.

H2Av nucleosomes tend to be more restricted at
heterochromatic vs euchromatic genes

As shown in Figure 3, nucleosomal sequences obtained

independently from the forward and reverse strands were co-

Figure 1. Length distribution of H2Av nucleosomal DNA in
heterochromatic and euchromatic regions. A, Schematic of
heterochromatic (black) and euchromatic (gray) regions of the
Drosophila genome. B, Read length distribution of reads aligned to
euchromatic and heterochromatic genomic regions, respectively. The Y-
axis represents percentile of total mapped reads in euchromatin and
heterochromatin, separately.
doi:10.1371/journal.pone.0020511.g001

Heterochromatin Map of Drosophila H2Av Nucleosomes
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incident at predicting nucleosome midpoints, which provides

independent validation of the H2Av nucleosome positions. This

two-strand verification indicated that most locations lacking H2Av

were not likely due to low coverage. However, a number of caveats

preclude quantitative interpretation of the coverage. First,

nucleosomes from region to region may differ in their extractabil-

Figure 2. Dinucleotide frequency distribution. The dinucleotide count was calculated for both the forward and reverse strands, reading from
the 59 to 39 direction. The frequency distribution of one dinucleotide (e.g. 59-AC-39) plotted at the top from left to right is equal to its complement
(e.g. 59-GT-39) reported from right to left at the bottom. Self-complementary dinucleotides are reported on only one axis.
doi:10.1371/journal.pone.0020511.g002

Figure 3. Examples of detected H2Av locations in heterochromatic regions. Three panels are shown, exemplifying different heterochromatic regions
and at different zoom levels. The blue graph represents the number of forward strand reads mapped to each coordinate (and shifted 39 to a higher coordinate
by 73 bp to reflect the nucleosome midpoint). The red bar graph, scaled in the opposite direction, for comparison, represents the number of reverse strand
reads mapped to each coordinate (shifted 39 to a lower coordinate by 73 bp). Nucleosomes were predicted through GeneTrack using an exclusion zone of
147 bp and sigma of 20 bp [67,68]. The blue and red hash marks indicate nucleosome midpoint positions. Two examples are shown.
doi:10.1371/journal.pone.0020511.g003
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Figure 4. H2Av nucleosome density on chromosomes and organization at mRNA genes. A, Weighted H2Av read counts were normalized
to the amount of sequence present in each chromosomal region, and plotted. B, Nucleosomal DNA tag counts at each coordinates were plotted for
both euchromatin and heterochromatin regions on the X chromosome. The height of blue bar indicates the total normalized tag count at each
coordinate. Regions for euchromatin and heterochromatin is scaled differently along the X-axis. The Y-axis is on same scale. C, Euchromatin and
heterochromatin genomes were divided into three categories: mRNA, other transcripts (tRNA, miRNA, transposons, etc), and non-coding regions.
H2Av densities were calculated as total tag numbers divided by total base pair in all features in that particular category. D, Shown are a composite
plots of the H2Av nucleosome occupancy distribution relative to TSSs (transcription start site, left panel) and TTSs (transcript termination site or polyA
site, right panel) for the set of annotated heterochromatic and euchromatic genes. The number of genes included is indicated by N. Nucleosomal
DNA read counts were weighted, binned, then normalized to the number of regions present in each bin, and plotted as a smoothed distribution. In
order to represent a ‘‘pure’’ pattern, we removed those regions that were ,300 bp from an adjacent TSS or TTS. Light gray-filled plot represents the
distribution of reads in euchromatin. The black trace represents the distribution in heterochromatin.
doi:10.1371/journal.pone.0020511.g004
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ity from the nucleus. Second, in a population, nucleosomes may

differ in the extent to which H2A.Z is incorporated. Third,

nucleosomal sequences may differ in their efficiency of amplifica-

tion by PCR. The latter however is controlled to some extent by

the generation of independent maps on each strand, since they are

derived from the same population of nucleosomes for a given

position. An unambiguous deconvolution of these multiple

contributions was not possible, and this limits what can be

gleaned from occupancy data. Nucleosome positioning, however,

is less senstive to these parameters and thus is the primary focus of

this study. Nonetheless, we made occupancy comparisons that

were averaged across large genomic regions or averaged across a

large number of similar positions (e.g. +1 nucleosome of all mRNA

genes in a particular chromatin class), which to some extent

alleviated fluctuations at individual nucleosome locations.

We examined the density of H2Av at each chromosome,

separated by euchromatic and heterochromatic regions. H2Av

densities were similar at all chromosomes regardless of chromatin

type (Figure 4A), with the apparent exception of heterochromatin

located on the X chromosome, which had four times the density of

H2Av. The high levels of H2Av in the heterochromatic portion of

the X chromosome were largely at one end (Figure 4B). rDNA

repeats are not enriched in this region, and thus the increased level

of H2Av cannot be accounted for by unannotated copies of rDNA.

We compared the density of H2Av around features located in

heterochromatic vs euchromatic regions of the genome

(Figure 4C). While much of the Drosophila genome including

mRNA genes contained similar average densities of H2Av in

heterochromatin vs euchromatin, H2Av was enriched nearly three

fold in heterochromatic non-mRNA genes, which includes

transposable elements. The functional significance of this enrich-

ment is not clear, but might be related to a recently described

phenomenon whereby H2Av tends to accumulate in under-

transcribed regions [29].

We mapped the distribution of H2Av nucleosomal sequences

around transcription start sites (TSSs) of genes residing in

heterochromatin, and compared it with existing maps in

euchromatic genes (Figure 4D, left panel). Genes located in

heterochromatic regions had very low levels of H2Av at their 21

nucleosome, as seen previously for euchromatic genes [42]. The

+1 nucleosome was located at +135 bp relative to the TSS, as also

seen at euchromatic genes. This would place the nucleosome

border downstream of the TSS, and in position to potentially

impede transcription elongation by RNA polymerase II but not

initiation. The inter-nucleosomal spacing between +1 and +2

nucleosomes was exactly the same as that in euchromatin

(,175 bp). Thus the mechanism that establishes the canonical

H2Av nucleosome positioning and spacing at euchromatic genes

could apply to heterochromatic genes as well. Interestingly,

downstream of the +2 nucleosome position, H2Av levels dropped

precipitously on mRNA genes located in heterochromatic regions,

rather than the gradual tapering seen for euchromatic genes. This

was not due to heterochromatic genes being shorter. This

differential suggests that the nucleosome composition around

genes located in heterochromatic regions differ from those located

in euchromatic regions.

When the 39 ends of genes were examined (Figure 4D, right

panel), a pattern similar to but flipped in comparison to the 59 end

was observed, in that an H2Av nucleosome peak was evident on

the genic side of a 39 NFR residing at the end of the genes. This

enrichment of H2Av at the 39 end of heterochromatic genes may

reflect a special function of the terminal nucleosome.

Figure 5. H2Av nucleosome organization at TIRE transposable elements. A composite distribution of H2Av nucleosomal sequence tags is
shown around the start (left panel) and end (right panel) of DNA TIR elements. Euchromatic elements are shown in the gray-filled plot and
heterochromatic elements are indicated by the black trace. The relative location of TIR ends is shown as a black filled plot. The structure of the TIREs,
drawn to approximate scale is shown above the plot. Multiple sequence alignments of TIREs is shown above the schematic, illustrating the proposed
location of an H2Av nucleosome. Many TIREs are degenerate, lacking the internal homology regions to the transposon, and lacking a matching
downstream inverted repeat.
doi:10.1371/journal.pone.0020511.g005
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H2Av nucleosomes mark both ends of DNA-TIRE
elements

We examined the distribution of H2Av around DNA-TIR

elements, of which the majority are composed of the ‘‘1360’’

element (Figure 5). These transposons replicate through DNA

intermediates. We observed a similar pattern in both euchromatic

and heterochromatic TIREs, with a single major positioned H2Av

nucleosome centered 100 bp downstream of the element start.

This would place the start of the TIR on the outside edge of the

nucleosome, in a place readily accessible by the transposase.

Interestingly, the distance of the H2Av nucleosome from the TIR

start is roughly similar to that of the TSS at the 59 end of genes.

Because TIREs exist in many locations with presumably distinct

chromatin environments, these results suggest that the DNA

sequences within the terminal inverted repeats of TIREs define the

position of the resident nucleosome. The presence of well

positioned H2Av on the ‘‘1360’’ TIRs fits well with observations

that such elements produce small RNAs involved in RNAi-

directed heterochromatic silencing [66], in that H2Av is linked to

sites of transcription.

Figure 6. H2Av nucleosome organization flanking LTR and nonLTR retrotransposons. A, Composite H2Av nucleosome occupancy
distribution around the start (top left panel) or end (top right panel) of LTR elements. Euchromatic regions are plotted as gray fill, and
heterochromatic regions as a black trace. N indicates the number of elements represented. The lower set of nine plots show the distribution of H2Av
around the start of specific classes of LTRs. Numbers on the graph indicate the number of cases found, and are positioned closest to the trace it
reflects. B, Composite H2Av nucleosome occupancy distribution around the start (left) or end (right) of non-LTR elements.
doi:10.1371/journal.pone.0020511.g006
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Lack of a consensus H2Av organization around
retrotransposons

Figure 6A, B shows the H2Av nucleosome landscapes surround-

ing LTR and non-LTR retrotransposons, respectively. A robust

consensus organization was not evident for bulk LTRs, indicating that

each may either lack positioned nucleosomes or lack a consensus on

positioning relative to the element start site. Some H2Av enrichment

was observed just downstream of the LTR start. When broken out by

various LTR classes in Fig. 6A, distinct patterns were observed. For

some classes, euchromatic and heterochromatic patterns were

essentially the same, but for others the patterns looked specific

towards one type of chromatin. Because the number of elements was

small in each case, we cannot rule statistical fluctuation. The lack of

robust patterning suggests that the surrounding environment in which

retrotransposons are located within may influence the chromatin

structure and thus the expression of the retrotransposon.

Conclusions
H2Av nucleosomes are distributed throughout euchromatic and

heterochromatic regions, as established in a number of studies.

Our findings indicate that the basic organization of the H2Av

nucleosome is indistinguishable in these two regions. Moreover,

H2Av nucleosomes generally adopt essentially the same positions

relative to specific classes of genomic features (e.g., genes and

transposons) in both types of environments, indicating that such

features may dictate the positioning of resident nucleosomes.

Retrotransposons appear to be more of an exception where

positions relative to their start or end points are not intrinsic to the

elements. Perhaps the local chromatin environment may influence

the position of nucleosomes on these elements. Strikingly, whether

it be genes, transposons, or replication origins, H2Av (and H2A.Z)

nucleosomes seem to mark their boundaries, perhaps facilitating

access of the relevant regulatory machinery.

Methods

Data source
Raw data was a by-product of the genome-wide MNase ChIP-

seq study described in reference [42]. Bulk downloads or specific

queries of nucleosomes positions can be accessed from http://

drosophila.atlas.bx.psu.edu.

H2Av nucleosomal reads weight calculation
Individual nucleosomal DNA reads were mapped to Drosophila

heterochromatin and euchromatin genomes (r5.14) respectively

via BLAST. Only reads with .90% alignments and .90%

identity were retained and hit numbers for all reads were recorded.

Each uniquely aligned read was weighted as one. The weight of

multiple aligned reads were calculated as one divided by total hit

number. Thus, if a reads was mapped to five different locations, it

was weighted as 0.2 (1/5).

Feature coordinates
Transcriptional start sites (TSSs) and termination sites (TTS) for

mRNAs were downloaded from FlyBase (r5.14). Transposon

sequences were also downloaded from FlyBase. For DNA terminal

inverted repeat elements (DNA TIREs) and long terminal repeat

retrotransposons (LTR retrotransposons), each sequence was

divided into two halves. Then these two halves were aligned to

eliminate repeats at both ends, if any. Only sequences longer than

200 bp after removal of the end repeat were used for further

analysis. To determine the start and end position of each element,

transposons were aligned to Drosophila melanogaster genome

(euchromatin and heterochromatin respectively), and resultant

start and end sites were used for further analysis. For DNA-TIRE

element, overlapping alignment regions for identical element were

merged together. For LTR and non-LTR retrotransposons, only

alignments that are longer than 800 bp were retained for further

analysis.

Summary of additional data files
The following additional data are available with the online

version of this paper. Additional data file 1 (Data S1) reports the

heterochromatin coordinates of each nucleosome called by Gene

Track. Additional data file 2 (Data S2) reports the euchromatic

genomic features used in this study. Additional data file 3 (Data

S3) reports the heterochromatic genomic features used in this

study.

Supporting Information

Data S1 Reports the heterochromatin coordinates of each

nucleosome called by Gene Track.

(TXT)

Data S2 Reports the euchromatic genomic features used in this

study.

(TXT)

Data S3 Reports the heterochromatic genomic features used in

this study.

(TXT)
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