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ABSTRACT
Low-resource individuals are at increased risk of obesity and cardiovascular disease (CVD), partially 
attributable to poor dietary patterns and dysfunctional microbiota. Dietary patterns in childhood 
play critical roles in physiological development and are shaped by caregivers, making caregiver- 
child dyads attractive targets for dietary interventions to reduce metabolic disease risk. Herein, we 
targeted low-resource caregiver-child dyads for a 10-week, randomized, controlled, multifaceted 
lifestyle intervention including: nutrition and physical activity education, produce harvesting, 
cooking demonstrations, nutrition counseling, and kinetic activites; to evaluate its effects on dietary 
patterns, CVD risk factors, and microbiome composition. Subjects in the lifestyle intervention group 
improved total diet quality, increased whole grain intake, decreased energy intake, and enhanced 
fecal elimination of the microbe-derived metabolite lithocholic acid (LCA) in contrast to control 
subjects. Microbiomes were highly personalized, similar within dyads, and altered by lifestyle 
intervention. Differential modeling of microbiome composition identified taxa associated with 
total diet quality, whole grain intake, and LCA elimination including recognized fiber-degrading 
bacteria such as Subdoligranulum, and bile acid metabolizing organisms like Bifidobacterium. 
Inclusion of taxa identified in diet and metabolite modeling within blood pressure models 
improved prediction accuracy of microbiome-blood pressure associations. Importantly, microbiota- 
blood pressure relationships were shared between dyads, implying shared host-microbiota 
responses to lifestyle intervention. Overall, these outcomes provide insight into mechanisms by 
which dietary interventions impact the gut-cardiovascular axis to reduce future CVD risk. Registered 
at clinicaltrials.gov: NCT05367674
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Introduction

Shared individual and ecological factors, including 
the built environment, socioeconomic barriers, and 
behavioral patterns related to diet and physical 
activity influence the development of obesity and 
related chronic conditions including cardiovascular 
disease (CVD).1,2 Minorities and those residing in 
low-resource communities are therefore at 
increased risk for CVD, in part due to lack of access 
to healthy foods and food environments promoting 

obesity.3–6 As onset of CVD starts in childhood, 
children with obesity are at significantly increased 
risk, and 70% of obese children display at least one 
CVD risk factor.7,8 This highlights the need for 
early-life nutrition and lifestyle interventions to 
reduce the risk of future CVD.

Dietary interventions that increase consumption 
of fiber-rich plant foods mitigate development of 
CVD in several ways, including modulation of 
enteric microbial metabolism and sterol absorption. 

CONTACT Brett R. Loman bloman2@illinois.edu Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W Gregory Drive, 
Urbana, IL 61801, USA

Supplemental data for this article can be accessed online at https://doi.org/10.1080/19490976.2022.2150502

GUT MICROBES                                              
2022, VOL. 14, NO. 1, e2150502 (20 pages) 
https://doi.org/10.1080/19490976.2022.2150502

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0001-8830-7506
https://doi.org/10.1080/19490976.2022.2150502
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19490976.2022.2150502&domain=pdf&date_stamp=2022-12-02


Indeed, diet and other environmental factors impact 
the composition and function of the gut micro-
biome, accounting for greater inter-individual 
microbiome variability than genetics.9,10 

Additionally, high-quality dietary patterns rich in 
fiber-containing food sources are associated with 
more diverse and metabolically flexible enteric 
microbial populations, which are associated with 
reduced risk of obesity and enhanced cardiovascular 
function.11–14 In this context, the intestinal micro-
biota modulate host cardiovascular health through 
the production of vasoactive metabolites including 
short-chain fatty acids (SCFA), biogenic amines, and 
sterols.15–18 Modulation of microbial sterol metabo-
lites, particularly bile acids (BA), represents 
a promising target to improve cardiovascular health. 
Through diverse yet understudied mechanisms, 
enteric microbiota modify host-derived (primary) 
BA to microbial (secondary) BA that are less soluble 
and thus resistant to intestinal reabsorption.19 

Synergistically, higher consumption of dietary fibers, 
such as those found in fruits, vegetables, and whole 
grains, also reduces absorption of BA and other 
sterols through physical interactions with the fiber 
matrix.20,21 Ultimately, reduced absorption of these 
compounds enhances hepatic removal of circulating 
cholesterol, improving circulating lipid profiles and 
reducing CVD risk.22 Improvement of dietary pat-
terns through targeted interventions may therefore 
improve indicators of cardiovascular health and 
structure and function of the microbiome, recipro-
cally reducing CVD risk.23

Several interventions providing nutrition educa-
tion and promoting lifestyle behavior change to 
children have been developed to mitigate weight 
gain during childhood. School-based gardening 
and cooking interventions result in significant 
improvements in dietary behaviors, including 
increased vegetable and total fiber intake, as well as 
clinical indicators of health such as reduced weight 
gain.24–26 However, children are particularly vulner-
able to suboptimal dietary and physical activity pat-
terns during the summer months, when access to 
nutritious foods and opportunities to partake in 
organized physical activity are limited.27–29 Further, 
many existing interventions do not involve family 
members who directly regulate food purchasing and 

preparation (i.e., nutrition gatekeepers) within the 
home. Inclusion of these nutrition gatekeepers, who 
are often parents and adult caregivers, is vital, as 
these individuals control the household nutrition 
environment.30–33 Finally, caregivers highly influ-
ence eating behaviors formed in childhood, indicat-
ing early efforts have lifelong impacts.34,35 

Consequently, interventions targeting caregiver- 
child dyads offered during the summer months 
may be an effective strategy to improve health out-
comes in low-resource child-caregiver dyads.36,37

Therefore, the goal of the present study is to 
assess the impact of a 10-week, summertime, high- 
fiber dietary intervention targeting low-resource 
caregiver-child dyads. Specific research questions 
include: 1) does an intervention that provides fiber- 
rich foods paired with evidence-based nutrition 
education to caregiver-child dyads improve care-
giver diet quality and blood pressure; 2) are differ-
ences in blood pressure potentially mediated by 
diet-induced changes in microbiota structure and 
function; and 3) are responses of the microbiome 
and their relationship to blood pressure shared 
between caregiver-child dyads? We hypothesized 
that the intervention would improve diet quality 
and blood pressure compared to control, these 
changes would be mediated by microbiota structure 
and function (particularly through enhanced SCFA 
and sterol metabolism), and microbiome responses 
between members of caregiver-child dyads would 
be shared.

Herein, we establish for the first time in low- 
resource caregiver-child dyads that a multifaceted 
lifestyle intervention focusing on a high-fiber diet-
ary pattern improves overall diet quality and fecal 
sterol elimination compared to control. These dif-
ferences are underpinned by key alterations in 
microbiome structure and function, including bile 
acid metabolizing organisms, with some involved 
taxa shared between dyads with 100% matched 
sequence identity. In sum, we provide evidence of 
both the importance of dietary modulation on the 
structure and function of the enteric microbiome to 
reduce factors associated with CVD risk, and the 
ability of integrated dietary, microbiome, and 
metabolomic data to accurately identify microbes 
associated with blood pressure.
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Results

Participant characteristics

In total, n = 28 caregivers (n = 13 intervention, 
n = 15 control) and n = 18 children (n = 10 inter-
vention, n = 8 control) provided complete data and 
fecal samples for analyses (Table 1). The mean age 
for caregivers was 37.8 ± 4.8 years, most of which 
were female (85.7% of total). Approximately half of 
all caregivers identified as an under-represented 
minority group, though a greater proportion iden-
tified as White/Caucasian in the control group 

(60.0%) than those in the intervention (30.8%). 
Nearly three-quarters of those in the control 
group reported obtaining a college degree com-
pared to 53.8% in the intervention. All caregivers 
reported status as the nutrition gatekeeper for the 
household. Mean age for children included in this 
study was 8.8 ± 0.5 years, with a nearly equal split 
between sexes in both groups. Similar to caregivers, 
approximately 50% of children in this study were 
Black/African American, South African, or 
Multiracial, with the remainder identifying as 
White/Caucasian.

Table 1. Sociodemographic Characteristics of Caregivers and Children Participating in a Randomized Controlled High-Fiber Dietary 
Intervention.

Participant Characteristics
SHA 

n (%) or Mean (SD)
MSP 

n (%) or Mean (SD)

Caregivers n = 13 n = 15
Number of Children in Household, 18 & Under, Mean (SD) 2.4 (1.0) 2.3 (1.0)
Participating Adult Relationship to Child Mother 12 (92.3) 11 (73.3)

Father 1 (7.7) 3 (20.0)
Other 0 (0.0) 1 (6.7)a

Is Participating Adult Nutrition Gatekeeper? Yes 13 (100.0) 15 (100.0)
No 0 (0.0) 0 (0.0)

Sex Female 12 (92.3) 12 (80.0)
Male 1 (7.7) 3 (20.0)

Age, Mean (SD) 37.1 (4.8) 38.4 (4.9)
Hispanic/Latino Yes 1 (7.7) 0 (0.0)

No 11 (84.6) 15 (100.0)
Prefer Not to Answer 1 (7.7) 0 (0.0)

Race White or Caucasian Only 4 (30.8) 9 (60.0)
Black or African American Only 6 (46.1) 3 (20.0)

South African 0 (0.0) 1 (6.7)
White or Caucasian and Asian 0 (0.0) 1 (6.7)

Black or African American, Pacific Islander, and Dutch 1 (7.7) 0 (0.0)
Black or African American and Mixed 1 (7.7) 0 (0.0)

Prefer Not to Answer 1 (7.7) 1 (6.7)
Marital Status Married 6 (46.1) 10 (66.7)

Never Married 3 (23.1) 4 (26.7)
Divorced 2 (15.4) 0 (0.0)

Member of an Unmarried Couple 2 (15.4) 1 (6.7)
Education College Graduate 7 (53.8) 11 (73.3)

Some College/Technical School 6 (46.1) 3 (20.0)
High School Graduate/GED 0 (0.0) 1 (6.7)

Employment Employed 11 (84.6) 10 (66.7)
Unemployed 0 (0.0) 3 (20.0)

Self Employed 2 (15.4) 0 (0.0)
Student 0 (0.0) 1 (6.7)

Other 0 (0.0) 1 (6.7)b

Household Income > $50,000 6 (46.1) 9 (60.0)
$10,000-$49,999 5 (38.5) 4 (26.7)

< $10,000 0 (0.0) 1 (6.7)
Unknown 1 (7.7) 1 (6.7)

Prefer Not to Answer 1 (7.7) 0 (0.0)
Children n = 10 n = 8
Age, Mean (SD) 8.9 (0.3) 8.8 (0.7)
Sex Female 6 (60.0) 4 (50.0)

Male 4 (40.0) 4 (50.0)
Hispanic/Latino Yes 0 (0.0) 0 (0.0)

No 10 (100.0) 8 (100.0)
Race White or Caucasian Only 5 (50.0) 4 (50.0)

Black or African American Only 4 (40.0) 2 (25.0)
South African 0 (0.0) 1 (12.5)

White or Caucasian and Black or African American 0 (0.0) 1 (12.5)
Black or African American, Pacific Islander, and Dutch 1 (10.0) 0 (0.0)

SHA, Summer Harvest Adventure; MSP, My Summer Plate 
aAunt; bHomemaker
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Dietary intervention improves diet quality and is 
associated with dyad microbiome composition

To assess the effect of the intervention on diet 
quality, CVD risk factors, and microbiome compo-
sition, 30-day food frequency questionnaires 
(FFQs) and blood pressure measurements were 
employed in conjunction with 16S rRNA gene 
amplicon sequencing analyses. The intervention 

improved caregiver total Healthy Eating Index 
(HEI), indicating improved compliance with the 
Dietary Guidelines for Americans (Figure 2a). 
Skin carotenoids were likewise improved; the inter-
vention increased caregiver skin carotenoids, which 
were positively correlated with total HEI in the 
intervention group (r = 0.63, p < .001), but not in 
the control group (r = 0.21, p = .26, Figure 2b-c). 
The intervention reduced caregiver energy intake, 

a

b
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Differential for Each Metric 
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Data 
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Figure 1. Study design and sequence data analysis workflow. A) Dyads composed of children aged 8–9 years and their adult caregivers 
were recruited and randomized to either the intervention or control group for a 10-week nutrition and lifestyle intervention. B) Analysis 
of 16S rRNA gene amplicon sequencing data from caregiver-child dyads was conducted to identify fecal microbes associated with 
dietary and clinical parameters with the ultimate goal of identifying microbes highly associated with blood pressure.
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Figure 2. Dietary intervention improves dietary pattern and is associated with caregiver-child dyad microbiome composition. A) 
Caregiver dietary patterns assessed by 30-day food frequency questionnaires is improved by SHA intervention. B-C) Caregiver skin 
carotenoids (an indicator of fruit and vegetable intake) tended to be increased by SHA, and were correlated to HEI in the SHA group. D) 
SHA reduced caregiver energy intake. E-F) SBP and DBP were decreased in both groups during the study period. G) Caregiver 
microbiomes were highly individualized and tended to cluster as an interaction between treatment group and study time point via 
Aitchison beta diversity. Each point represents the entire fecal microbiome of a sample and closer points represent more-similar 
microbiomes. H) Child microbiomes were also highly individualized, clustered by treatment group, and tended to be altered by the 
intervention. I-J) Microbial cohorts related to HEI via differential modeling were increased by SHA in caregivers, and were correlated to 
HEI. K-L) Using caregiver diet as a proxy for child diet, child microbial cohorts related to HEI tended to be increased by SHA, and were 
correlated to HEI.
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and both groups experienced a decrease in systolic 
blood pressure (SBP) and diastolic blood pressure 
(DBP) from baseline to follow-up (Figure 2d-f). 
Child blood pressure was slightly higher in the 
intervention group, but >80% of children at each 
time point were within the normal range. Summary 
biometric and diet data are included in 
Supplementary Tables 1 and 2.

Analyzing caregiver-child dyad microbiomes 
together, microbiome composition was highly 
related within dyads (Aitchison beta diversity, 
ADONIS, family ID variable p < .001), but also 
different between dyad components (Aitchison 
beta diversity, ADONIS dyad component variable 
p < .001) and treatment group (i.e. intervention vs 
control) (Aitchison beta diversity, ADONIS group 
variable p < .001). Granted the recognized differ-
ences between adult and child microbiomes, 
further analyses were completed for children and 
caregivers separately. Caregivers’ microbiomes 
were highly individualized and tended to diverge 
between the two treatment groups over time 
(Figure 2g). Notably, children’s microbiomes were 
different by treatment group (main effect p = .001) 
and tended to be different by visit (main effect 
p = .06) (intervention vs control at baseline 
p = .17, intervention vs control at follow-up 
p = .08), while still highly individualized (subject 
main effect p = .001) (Figure 2h). There were no 
significant differences detected by alpha diversity 
metrics (data not shown).

Differential multivariate modeling can be uti-
lized to identify relationships between dietary 
patterns and microbiome composition while 
accounting for the compositional nature of 
sequencing data. Leveraging this technique, 
cohorts of microbiota that shift relative to diet 
(positively and negatively) are detected and 
represented as a logRatio of the relative abun-
dances of the amplicon sequence variants 
(ASVs) involved. Microbial cohorts differential 
for adult total HEI score (Supplementary 
Table 3) were increased by the intervention 
and correlated to total HEI (Figure 2i-j). Using 
caregiver (i.e., nutrition gatekeeper) diet as 
a proxy for their child counterparts (see 
“Assessment of dietary intake” Methods), child 
microbiomes were also analyzed for their rela-
tionship to total HEI. While the microbial 

cohorts identified as differential for total HEI 
in children did not significantly change during 
the study period, they were more strongly corre-
lated to total HEI than their caregiver counter-
parts (Figure 2k-l).

Importantly, some ASVs (exact sequence 
matches) responsive to diet were shared by both 
caregivers and children, implying shared microbial 
responses to diet (Supplementary Table 3). One 
ASV from each of the genera Bifidobacterium and 
Subdoligranulum were positively associated with 
total HEI in both dyad components, while one 
ASV from the genus Agathobacter was inversely 
associated with total HEI by dyad components 
(positively in caregivers, but negatively in children).

Dyad microbiome composition is related to whole 
grain intake and systolic blood pressure

To understand what food groups and microbes 
were related to differences in blood pressure, 
individual HEI component scores were evaluated 
from baseline to follow-up, and microbiota dif-
ferential for food groups of interest and blood 
pressure were modeled. Caregiver whole grain 
(WG) HEI component scores were the only sub- 
category altered by intervention and were 
improved in the intervention group 
(Supplementary Table 2, Figure 3a). Similar to 
total HEI, microbial cohorts differential for WG 
score were increased by the intervention and 
correlated to WG score (Figure 3b-c). Unlike 
total HEI score, cohorts differential for WG 
score in children were both enhanced by the 
intervention and correlated to WG score 
(Figure 3d-e). Consistent with total HEI, some 
ASVs related to WG score were shared between 
dyads (Supplementary Table 4). Two ASVs from 
each of the genera Clostridium senu stricto 1, 
and Coprococcus were positively associated with 
WG score, reinforcing the idea that microbial 
responses to diet are shared by dyads.

In contrast to dietary parameters, direct model-
ing of microbes differential for blood pressure 
yielded modest results. While cohorts of microbes 
differential for blood pressure were reduced in both 
adult groups during the study period, they were 
mildly correlated to SBP (figure 3f-g). Taxa differ-
ential for SBP were not altered by intervention in 
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children but were correlated to SBP (Figure 3h-i). 
No significant relationships were identified 
between microbial composition and DBP in either 
caregivers or children. Once again, some ASVs 
related to SBP were shared between dyad compo-
nents (Supplementary Table 5). While two ASVs 
from the genus Blautia were negatively associated 
with SBP in both dyad components, two ASVs from 
the genus Dorea were inversely associated with SBP 
by dyad component (positively in caregivers, but 
negatively in children.)

Dietary intervention enhances elimination of 
microbial sterol metabolites related to 
cardiovascular disease

To better understand how diet–microbiota interac-
tions may be influencing blood pressure, we imple-
mented targeted fecal metabolomics of microbial 
metabolites recognized to influence cardiovascular 
function. SCFA are implicated in the regulation of 
blood pressure through modulation of vasodilation, 
inflammation, and sympathetic neuronal activities.38 
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Figure 3. Caregiver-child dyad microbiome composition is related to whole grain intake and systolic blood pressure. A) Caregiver WG 
component score of HEI was increased by SHA. B-C) Microbial cohorts related to the WG score via differential modeling were increased 
by SHA in caregivers, and were correlated to WG score. D-E) Using caregiver diet as a proxy for child diet, child microbial cohorts related 
to WG score were increased by SHA, and were correlated to WG score. F-G) Microbial cohorts related to SBP were decreased in both 
caregiver groups, and were correlated to SBP. H-I) Although microbial cohort related to SBP in children was not altered by treatment, 
the cohort was related to SBP.
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However, fecal SCFA were not impacted by inter-
vention in this study; no differences were detected in 
caregivers, and only caproic acid was increased in 
children in the control group from baseline to fol-
low-up (Supplementary Table 6).

Sterols, namely cholesterol and BA metabolites, 
are recognized modulators of CVD risk, including 
blood pressure.16,39–42 Of all BA surveyed, only 
caregiver excretion of total lithocholic acids (sum 
of both conjugated and unconjugated) (LCA) was 
enhanced by the intervention (Figure 4a, 
Supplementary Table 7). Additionally, caregiver 
excretion of cholesterol was enhanced by the inter-
vention despite no changes in dietary cholesterol 
intake (Figure 4b-c). Unlike blood pressure, micro-
bial cohorts differential for fecal LCA in caregivers 
were highly enhanced by the intervention and cor-
related to fecal LCA (Figure 4d-e) (Supplementary 
Table 8). Changes in BA excretion were more pro-
nounced in children. At the end of the study period, 
children in the control group reduced fecal excre-
tion of the conjugated BA taurohyodeoxycholic 
acid, glycohyodeoxycholic acid, taurodeoxycholic 
acid, and glycodeoxycholic acid, and the unconju-
gated BA ω-muricholic acid/α-muricholic acid 
(Supplementary Table 7). Conversely, children in 
the intervention group had enhanced excretion of 
total conjugated BA, specifically glycohyocholic 
acid, glycoursodeoxycholic acid, and glycocholic 
acid (Supplementary Table 7). Although LCA 
excretion was not altered in children, microbial 
cohorts differential for LCA excretion were identi-
fied and correlated to fecal LCA, but these cohorts 
were unchanged during the study period (figure 4f- 
g) (Supplementary Table 8). Microbial cohorts dif-
ferential for cholesterol excretion were not altered 
in caregivers nor children but were correlated to 
fecal cholesterol (Figure 4h-k) (Supplementary 
Table 9).

Multiple ASVs differential for LCA and some 
ASVs differential for cholesterol were shared 
between dyads (Supplementary Tables 8 and 9). 
Nine ASVs from the genus Bifidobacterium and 
one ASV from Terrisporobacter were positively 
associated with LCA excretion, while one ASV 
from the genus Turicibacter was negatively asso-
ciated with LCA excretion in both dyad compo-
nents. One ASV from the Ruminococcus torques 
group was positively associated with cholesterol 

excretion, while two ASVs from Clostridium sensu 
stricto 1 were negatively associated with cholesterol 
excretion in both dyad components. One unidenti-
fied bacterial ASV and two ASVs from the 
Ruminococcus gauvreauii group were conversely 
associated with cholesterol excretion in children 
vs caregivers.

Incorporation of microbes related to diet and 
microbial metabolites improves modeling of 
microbes related to blood pressure and reveals 
shared microbial responses in caregiver-child 
dyads.

With relationships established between micro-
bial composition and both dietary patterns and 
microbial metabolites associated with CVD risk, 
we hypothesized that incorporating information 
from these models could enhance our ability to 
identify microbial populations more robustly asso-
ciated with differences in blood pressure. By com-
bining taxa represented across the diet and 
metabolite models (described in Methods), com-
bined microbial differentials were generated for 
caregivers and children (Figure 5a-b, 
Supplementary Table 10). While more genera 
were identified in the caregiver combined differen-
tial microbial cohort overall, taxa were again shared 
between dyads including Bifidobacterium, 
Subdoligranulum, and Ruminococcus Torques 
group being negatively associated with blood pres-
sure, and Turicibacter being positively associated 
with blood pressure in both caregivers and chil-
dren. Caregivers in the intervention group 
increased representation of this bacterial cohort 
from baseline to follow-up compared to those in 
the control group (Figure 5c). As hypothesized, the 
incorporation of microbial taxa associated with 
dietary patterns and microbial metabolic responses 
did generate cohorts of microbiota more robustly 
associated with SBP and DBP values compared to 
initial blood pressure modeling (Figure 5d-e). 
Similarly, in children, the intervention enhanced 
the combined differential cohort compared to con-
trol, which was correlated to SBP but failed to reach 
significance when correlated to DBP (figure 5f-h). 
Given the high overlap of ASVs included in the 
final blood pressure-related child and caregiver 
microbial cohorts, we wanted to understand the 
extent to which these shared associations were spe-
cific to each dyad pairing vs effects within treatment 
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Figure 4. Dietary intervention enhances elimination of microbial sterol metabolites related to cardiovascular disease in caregivers. A) 
Caregiver fecal elimination of the microbial BA metabolite, LCA, is increased by SHA. B-C) SHA enhances caregiver fecal elimination of 
cholesterol despite no changes in dietary cholesterol intake. D-E) Microbial cohorts related to fecal LCA via differential modeling were 
increased by SHA in caregivers, and were correlated to fecal LCAs. F-G) Although microbial cohorts related to fecal LCAs in children was 
not altered by treatment, the cohort was correlated to fecal LCAs. H-I) Although microbial cohort related to fecal cholesterol in 
caregivers was not altered by intervention, the cohort was correlated to fecal cholesterol. J-K) Although microbial cohort related to 
fecal cholesterol in children was not altered by intervention, the cohort was correlated to fecal cholesterol.

GUT MICROBES e2150502-9



c d e

f g h

80 100 120 140 160 180
-2.5

-1.5

-0.5

0.5

1.5

2.5

Systolic Blood Pressure

C
o

m
bi

ne
d 

m
ic

ro
be

s 
(lo

gR
at

io
)

r = -0.59
p < 0.0001

50 70 90 110
-2.5

-1.5

-0.5

0.5

1.5

2.5

Diastolic Blood Pressure

C
om

bi
ne

d 
m

ic
ro

be
s 

(lo
gR

at
io

)

r = -0.60
p < 0.0001

r = -0.21
p = 0.25

40 50 60 70 80
-2

-1

0

1

2

3

4

Diastolic Blood Pressure

C
om

b
in

ed
 m

ic
ro

be
s 

(lo
gR

at
io

)

r = -0.50
p < 0.01

80 90 100 110 120
-2

0

2

4

Systolic Blood Pressure

C
om

bi
ne

d 
m

ic
ro

b
es

 (l
og

R
at

io
)

-1.0

-0.5

0.0

0.5

1.0

∆C
om

bi
ne

d 
m

ic
ro

be
s 

(lo
gR

at
io

)

0.04

MSP SHA

-2

-1

0

1

2

∆C
om

bi
ne

d 
m

ic
ro

b
es

 (l
o

gR
at

io
)

<0.01

MSP SHA

ba

0.04 0.31

)rotaremuN(13.013.0)rotanimoneD(

0.04 0.64

)rotaremuN(46.046.0)rotanimoneD(

Figure 5. Incorporation of microbes related to diet and microbial metabolites improves modeling of microbes related to blood pressure 
and reveals shared microbial responses in caregiver-child dyads. A) Microbes shared by caregiver differential models for HEI, WG, SBP, 
LCA, and cholesterol create a combined differential microbial cohort. Heat trees display phylogenetic trees of taxa included in the 
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group. Changes in their respective combined 
microbial cohorts were correlated within dyad 
pairs (r = 0.52, p = .037), but the probability that 
a correlation of the same or higher intensity would 
occur randomly within this population (via boot-
strapping) was estimated at 54%. Taken together, 
this indicates that there is some shared intensity 
and directionality of the responsing microbiota 
within dyads, but that these differences are also 
a shared group response to treatment.

Discussion

Interactions between dietary patterns and the 
intestinal microbiota play central roles in disease 
development, particularly in the context of health 
disparities.43–45 In this randomized, controlled 
trial, we establish for the first time that provision 
of fiber-rich food plus intensive nutrition educa-
tion improved microbial composition related to 
CVD risk factors in low-resource caregiver-child 
dyads. Importantly, some alterations in these 
microbial cohorts were shared between dyad com-
ponents, implying that both children and care-
givers have some shared responses to the 
changed nutrition environment and potentially 
reduced future CVD risk.

Multiple dietary patterns have been associated 
with lower risk of cardiovascular and metabolic 
disease, such as the Dietary Approaches to Stop 
Hypertension (DASH) and Mediterranean 
diets.46,47 As also recommended by the Dietary 
Guidelines for Americans, a major component of 
these dietary patterns is regular consumption of 
high-fiber foods including fruits, vegetables, and 
whole grains. High-fiber dietary patterns alter 
structure and function of the intestinal microbiota 
through provision of fermentable and structural 
nutrients, and other recent studies connect con-
sumption of healthy dietary patterns to altered 
microbiome structure and function.48 Although 
the chemical composition, concentration, and 
duration of fiber consumption can have variable 
effects on the taxa enhanced or suppressed, relative 
abundance of Bifidobacterium spp. is dependably 
elevated by fiber consumption in humans.49,50 

Consistently, we found Bifidobacterium spp. to be 
associated with total HEI and WG HEI component 
score in both children and adults in this population. 

Other microbial taxa associated with improved diet 
quality in this study include recognized fiber- 
degrading bacteria like Subdoligranulum and var-
ious Ruminococcus spp.,51,52 and the archaea 
Methanobrevibacter smithii which plays a critical 
role in efficient microbial fermentation of fiber 
through hydrogen metabolism.53 While these 
microbes are generally associated with health, 
these associations are likely due to production of 
diverse microbiota-specific metabolites rather than 
metabolites of a single class. Thus, future studies 
should investigate the mechanisms by which these 
taxa may influence community-level metabolism of 
various fiber-derived substrates.

Microbiota-mediated elimination of several 
sterol metabolites is linked to improved cardiovas-
cular health.39,41,42 LCA excretion in particular has 
been linked to reduced risk of atherosclerosis and 
coronary artery disease.39,54 In the present study, 
improved diet quality in the intervention group was 
concurrent with enhanced LCA excretion, and 
microbial taxa associated with higher diet quality 
were also associated with higher fecal LCA. 
Bifidobacterium spp. were highly associated with 
LCA excretion (nine positively associated ASVs) 
and were notably shared between dyads. While 
many members of the intestinal microbiota have 
been studied for the ability to modify host-derived 
BA (and many of the enzymes involved remain 
uncharacterized),55,56 Bifidobacterium spp. are well- 
studied for their ability to deconjugate primary 
BA,57,58 a critical first step in secondary BA 
formation.59 Furthermore, these processes are sen-
sitive to dietary modulation. Through fiber fermen-
tation, generation of organic acids reduces pH of 
the intestinal lumen.60 This shift to acidic pH drives 
accumulation of deconjugated BA and cholesterol 
in Bifidobacterium spp., encouraging sterol elimina-
tion as they pass out of the gastrointestinal tract, 
while also reducing luminal BA solubility and 
reabsorption.61,62 Studies in adults habitually con-
suming low amounts of fiber have demonstrated 
increased fecal primary BA excretion in response to 
a high-fiber intervention, particularly those asso-
ciated with whole grains.63,64 Notably, no such data 
exists for children. While caregivers in the inter-
vention group of this study did not enhance pri-
mary BA excretion in tandem with increased whole 
grain intake, children participating in the 
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intervention exhibited higher excretion of the con-
jugated primary BA glycocholic acid at follow-up. 
Dietary intake in children is notoriously difficult to 
assess accurately,65 but future studies could directly 
administer whole grains to children to validate 
these findings.

Recent investigations reveal intestinal micro-
biome composition as a key determinant of perso-
nalized physiological responses to diet and 
indicators of cardiovascular health, including 
blood lipid profiles.66–68 This was reflected in our 
improved ability to identify features of the micro-
biome associated with blood pressure upon inclu-
sion of dietary and microbial metabolite data. 
Furthermore, this dietary intervention enhanced 
representation of those microbiota in low- 
resource caregiver-child dyads in a short 10-week 
period. Although both caregiver groups experi-
enced reductions in blood pressure over the study 
period, this is typical during the transition from 
winter to summer seasons.69–71 Importantly, while 
dyads in the intervention group increased repre-
sentation of microbiota associated with lower blood 
pressure during the study period, representation of 
the same microbiota declined in the control group. 
In this way, providing access to foods encouraged 
within healthy dietary patterns and related nutri-
tion education may represent a feasible means to 
reduce CVD risk in low-resource populations as 
mediated through the intestinal microbiome. 
However, long-term studies to determine persis-
tence of microbial modulation and longitudinal 
disease risk are necessary to test this hypothesis.

Several strengths and weaknesses of this trial 
should be noted. This study covers a diverse, low- 
resource, and underrepresented population that is 
rarely studied in nutrition research. Furthermore, it 
employs the unique setting of caregiver-child 
dyads, allowing for a family-based understanding 
of intervention principles and efficacy. These ana-
lyses also integrate multi-omics associated with 
dietary intake, microbiome composition, and quan-
titative metabolomics to gain a better understand-
ing of how these components interact to influence 
CVD risk factors. However, this study was limited 
in several aspects. Although implemented as 
a randomized, controlled trial, the donation of 
fecal samples was optional, thus impacting true 
randomization and potentially biasing toward 

those subjects with higher socioeconomic status 
(although still within the target, low-resource 
population) or an unequal balance between groups 
on other demographic factors such as race. Also 
due to the optional nature of sample donation, the 
resulting small sample size of this cohort limits the 
generalizability of the results. Finally, there is 
potential for self-report bias as participants may 
report healthier behaviors (e.g. healthier dietary 
patterns) compared to reality; however, the docu-
mented improvement over time as well as conco-
mitant improvement in biological values (i.e. skin 
carotenoids, microbial metabolites, etc.) challenges 
this phenomenon.

In summary, we demonstrate that consumption 
of a high-quality diet rich in fiber-containing foods 
facilitates structural and functional changes in the 
intestinal microbiome, thus supporting cardiovas-
cular health in low-resource dyads. This is the first 
study investigating the gut-cardiovascular axis 
within a clinical trial for low-resource dyads, pro-
viding important insights into potential mechan-
isms by which early dietary intervention may 
impact the gut microbiome to reduce future disease 
risk. Additional studies should be conducted to 
characterize microbial metabolic responses to spe-
cific dietary components and determine whether 
these shifts in the microbiome impact longitudinal 
cardiovascular disease risk.

Methods

Participants

Caregiver-child dyads residing in low-resource 
communities from a large Midwestern U.S. city 
were recruited through local public schools meeting 
federal eligibility guidelines for free and reduced- 
priced breakfast and lunch. Eligible participants 
were: (a) caregiver-child dyads consisting of one 
child in the summer, aged 8–11 years, and one 
caregiver residing in the same home; (b) English- 
speaking; (c) residents of a low-resource commu-
nity; and (d) with ability to consume fruits and 
vegetables who consented to participation. 
Individuals were ineligible if they were diagnosed 
with mental or physical disabilities that would 
impair full participation in all components of the 
intervention; displayed communication difficulties 
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(e.g., non-English speaking, severe developmental 
delays); lacked transportation to weekly classes or 
harvesting activities; reported consumption of her-
bals, botanicals, or nutritional supplements; were 
diagnosed with active metabolic or digestive illness 
that may result in nutrient malabsorption (e.g., 
Crohn’s disease, food allergies); refused to sign 
informed consent/assent. All participants provided 
written, informed consent. Participants were 
enrolled and completed baseline assessments 
between May and June 2019, and post-intervention 
assessments were completed in August 2019. All 
procedures followed were in accordance with the 
Helsinki Declaration of 1975 as revised in 1983, 
and the present study was registered with clinical-
trials.gov as NCT05367674 and approved by The 
Ohio State University Institutional Review Board.

Study design

Participants in this study include a sample of indivi-
duals enrolled in a two-arm, parallel-design, rando-
mized controlled trial intended to determine the 
efficacy of a 10-week multifaceted obesity prevention 
and lifestyle (nutrition and physical activity) inter-
vention in low-resource caregiver-child dyads called 
“Summer Harvest Adventure” (Figure 1a).36,37 The 
randomization scheme was developed by the study 
statistician using a pseudorandom number generator 
employing permuted block randomization of vary-
ing block size of four or six, chosen randomly within 
a sequence with equal probability. Given the nature 
of the study, intervention allocation could not be 
concealed from participants or research staff. All 
participants were assigned a unique alphanumeric 
study ID to anonymize them for data analyses.

All participants completed data collection upon 
enrollment, where demographic and health ques-
tionnaires and caregiver dietary intake assessments 
were completed and clinical indicators measured. As 
part of a nested feasibility pilot within the parent 
intervention, optional collection of fecal samples was 
also completed. Participants assigned to the inter-
vention group, Summer Harvest Adventure (SHA), 
underwent a 10-week intervention. Dietary interven-
tion components included weekly: (a) in-person 
group nutrition education based on the Dietary 
Guidelines for Americans; (b) harvesting of fresh 
fruits, vegetables, and herbs at the study garden; (c) 

cooking demonstrations with taste-testing; and (d) 
remote nutrition counseling informed by motiva-
tional interviewing from trained registered dietitians 
for caregivers. Within each weekly session, 15 min-
utes were allocated to basic education on evidence- 
based physical activity recommendations and oppor-
tunities for kinetic activity (e.g., outdoor games). 
Those enrolled in the control group, My Summer 
Plate (MSP), received written nutrition education 
materials at the enrollment data collection visit but 
were not provided any other intervention compo-
nents. After 10 weeks, both intervention and control 
groups returned for post-intervention data collec-
tion, where assessments were repeated. Of those 
who attended both enrollment and post- 
intervention visits, only subjects who provided the 
following samples at both time points were included 
in these analyses: caregivers who provided bio-
metrics, fecal samples, and dietary intake data; and 
children who provided biometrics and fecal samples.

Sociodemographic and health questionnaires

Each member of the caregiver-child dyad completed 
sociodemographic and health questionnaires at 
enrollment and post-intervention data collection vis-
its using a secure online data collection tool, Research 
Electronic Data Capture (REDCap). Modified 
Behavioral Risk Factor Surveillance System (BRFSS) 
and Supplemental Nutrition Assistance Program 
Education (SNAP-Ed) questionnaires were employed 
to assess demographic characteristics and health- 
related behaviors, respectively.72,73

Assessment of clinical indicators

Caregiver and child clinical and anthropometric data 
were measured by trained study personnel at data 
collection visits and recorded using REDCap data 
collection tools. Participants were asked to hydrate 
before visits and to wear light clothing free of metal 
and remove shoes prior to assessment of height and 
weight. Height was measured to the nearest 1 mm 
using standard protocols via a stadiometer with 
a movable headboard (Seca 213, Seca North 
America, Chino, CA, USA). Weight and body fat 
percentage were measured using a digital body com-
position monitor equipped with bioelectric impe-
dance analysis (BIA) technology and appropriate 
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for body fat analysis for adults and children aged 5 to 
17 years (Tanita SC-331S Total Body Composition 
Analyzer, Tanita Corporation, Tokyo, Japan). 
Weight was recorded to the nearest 0.1 kg. Systolic 
blood pressure (SBP) and diastolic blood pressure 
(DBP) were obtained by standard clinical methods 
on the right side of the body using an automated 
blood pressure cuff (Omron Autocuff, Omron 
Healthcare Co. Ltd., Lake Forest, IL, USA). All par-
ticipants were asked to rest in a seated position for 5 
min prior to blood pressure assessment.

Assessment of dietary intake

Caregiver dietary intake was assessed at enrollment 
and post-intervention using an online-delivered 
food frequency questionnaire (FFQ) with a recall 
period of 30 days (Diet History Questionnaire III, 
DHQ III, National Institutes of Health, National 
Cancer Institute, Epidemiology and Genomics 
Research Program, Bethesda, MD, USA). Total 
and component Healthy Eating Index (HEI) scores 
from output files were used to determine diet 
quality.74 As nutrition gatekeepers control the 
family eating environment and parental dietary 
intakes have shown to be predictive of child dietary 
intakes for overall diet quality as well as specific 
food groups such as fruits and vegetables, caregiver 
dietary intakes were used as a proxy for child diet-
ary intakes.75–78

Assessment of skin carotenoids

Caregiver and child skin carotenoids were assessed 
on the palm of the hand using a Pharmanex NuSkin 
Biophotonic Scanner S3 (NuSkin Enterprises, Provo, 
Utah). This scanner employs resonance Raman spec-
troscopy to assess dermal carotenoid content and has 
been shown to be an indirect biomarker of total 
plasma/serum carotenoid levels and a reliable and 
reproducible objective indicator of changes in fruit 
and vegetable consumption among adults and 
children.79–81 All measures were taken in triplicate 
and averaged for analyses.

Fecal collection and processing

At data collection visits, participants were provided 
a pre-labeled specimen container with collection 

tool, gloves, a plastic toilet hat, and a cooler with 
ice pack for at-home fecal sample collection. They 
were instructed to record the date and time of 
collection and to place fecal samples immediately 
in a home freezer after collection. Participants 
returned samples to study personnel in the pro-
vided cooler with ice pack.

Fecal samples were frozen upon receipt at −20°C. 
Samples were subsequently transported on dry ice 
to the Abigail Wexner Research Institute at 
Nationwide Children’s Hospital, Columbus, OH 
for storage at −80°C. Samples were thawed at 4°C 
for 24 hours prior to processing. During proces-
sing, samples were maintained on ice and approxi-
mately 1.5 mL of each sample was aliquoted into 
2-mL cryovials in a class II biological safety cabinet. 
After aliquoting, all samples were immediately fro-
zen at −80°C until analyzed.

Fecal sterol metabolite quantification

Approximately 50 mg feces were weighted from 
each sample and added a to a 2 mL conical tube 
containing 30 mm glass beads. The sample was 
homogenized with 180 μL methanol and 20 μL 
25 μM d4-cholic acid as an internal standard for 
10 seconds, repeated three times, using a BioSpec 
MiniBeadBeater-16. When finished, the samples 
were immediately transferred to an ice water bath 
to sonicate for 15 min. After 10 min centrifuge at 
14000 rpm and 4°C, the supernatant was then 
transferred into 2 mL glass vials for ultra-high 
performance liquid chromatography – high- 
resolution mass spectrometry (UPLC-HRMS) ana-
lysis. A Thermo Vanquish UPLC system coupled 
with Q-Exactive Orbitrap mass spectrometer 
equipped with a heated electrospray ionization 
(HESI) probe (Thermo Fisher, CA, USA) was 
used for bile acids analysis. The fecal sterol quanti-
fication method was modified based on a previous 
study.82 Chromatographic separations were per-
formed on a reverse phase column (Kinetix C18, 
2.6 µm, 150 mm × 4.6 mm ID; Phenomenex, 
Torrance, CA). Mobile phase A was 1 mM ammo-
nium acetate and 0.1% acetic acid in methanol: 
acetonitrile: water (1:1:3; v/v/v) and mobile phase 
B was 0.1% acetic acid in methanol: acetonitrile: 
2-propanol (4.5:4.5:1; v/v/v). Samples were injected 
(5 µl) into a column equilibrated in 100% A. The 
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separation gradient and flow rate were conducted 
as follows: 0–2 min 0% B with 0.3 mL/min; 2– 
20 min 0–100% B with 0.3 mL/min; 20– 
28 min 100% B with 0.5 mL/min. To eliminate 
carry over, an extensive washing step was included 
at the end of each run as follows: 100% A from 28 to 
35 min with 0.5 mL/min, then flow rate decreased 
to 0.3 mL/min from 35 min to 40 min. The mass 
spectra were recorded in negative ion mode. The 
PRM mode was used for qualitative determination 
of bile acids, while t-SIM mode was used for quan-
titative analysis. The QE mass parameters were as 
follows: sheath gas flow rate 50 mL/min, spray 
voltage 2.75 kV, capillary temperature 350°C, Aux 
gas heater temperature 425°C. For t-SIM mode, it 
was set as resolution 70,000 FWHM, automatic 
gain control target 3e6, maximum IT 100 ms, and 
isolation window 1.0 m/z. For PRM mode, the 
instrument was set at resolution 17500 FWHM, 
automatic gain control target 2e5, fragmentation 
NCE 35, 50, and 80, maximum IT 10 ms, and 
isolation window 1.0 m/z were performed. Fecal 
metabolites were normalized based on dry matter 
of each sample. Dry matter was determined by 
drying a fecal aliquot overnight in a convection 
oven at 70°C.

Microbiome composition and modeling

Approximately 100 mg of each fecal sample was used 
for DNA extraction using a QIAmp Fast DNA Mini 
Kit (Qiagen, Hilden, Germany) using the manufac-
turer’s instructions with the following modifications. 
Contents were incubated for 45 min at 37°C in 
lysozyme-mutanolysin buffer (22 mg/ml lysozyme, 
0.1 U/ml mutanolysin, 20 mM TrisHCl, 2 mM 
EDTA, 1.2% Triton-x, pH 8.0), before homogeniza-
tion for 150 s with 0.1 mm zirconia beads. Samples 
were then incubated at 95°C for 5 min with 
InhibitEX Buffer and incubated at 70°C for 10 min 
with proteinase K and buffer AL. Following this step, 
the QIAmp Fast DNA Stool Mini Kit isolation pro-
tocol was followed, beginning with the ethanol step. 
DNA was quantified with the Qubit 2.0 fluorimeter 
(Life Technologies, Carlsbad, CA) using the dsDNA 
Broad Range Assay Kit, and sent to the Genomic 
Services Core at the Institute for Genomic Medicine 
at Nationwide Children’s Hospital, Columbus, OH, 
for DNA extraction, library preparation, and high- 

throughput sequencing. Paired-end (250 nt forward 
and reverse) sequences of the V4 hypervariable 
region of the 16S rRNA gene (515 F-806 R) were 
generated on the Illumina MiSeq. Quantitative 
Insights into Microbial Ecology (QIIME) 2.0 was 
utilized for amplicon processing, quality control 
with DADA2, downstream taxonomic assignment 
using the SILVAv132 database, and diversity 
analyses.83,84 Beta diversity was conducted three 
separate times for: 1) the entire study population, 2) 
all caregivers, and 3) all children; using the Aitchison 
metric and ADONIS test. The regression model 
included the following factors: dyad component 
(caregiver or child, entire population only), group 
(treatment group), visit (baseline or follow-up), 
family ID (separate ID for each dyad pair), and all 
potential factor interactions. Sequencing of samples 
initially resulted in 8,898,805 paired-end sequences 
(median = 95,888). After quality control, 924,899 
high-quality sequences remained (median = 9,991). 
No rarefaction was performed for the reported 
microbiome analyses.

Differential modeling of microbial taxa asso-
ciated with metadata was performed using 
Songbird v1.0.3 and Qurro (Figure 1b).85,86 In 
brief, Songbird produces differentials that describe 
log-fold changes in relative abundances of micro-
bial taxa (in this case amplicon sequence variants 
(ASV)) in relation to target metadata values and 
the effects of the input multinomial regression 
model. These differentials are calculated to take 
into account the compositional nature of sequen-
cing data by comparing how all taxa change rela-
tive to one-another between samples, since their 
absolute abundance is unknown. Each differential 
is ranked based on its relative association with 
a given covariate or model, which can be utilized 
when selecting differentials of interest (conducted 
in Qurro and described for this study in more 
detail below). For this study, differentials were 
created separately for dyad counterparts (care-
givers vs children) in Songbird using sequencing 
data from both time points, and an individual 
model for each metadata parameter containing 
the metadata in question and the unique subject 
identifier for each individual (i.e., controlling for 
individual). For example, the model for caregiver 
total HEI utilized all adult sequencing data with 
the model argument “Total_HEI+Subject_ID.” All 
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models were required to have lower error and loss 
compared to a null model for inclusion. 
Differentials created in Songbird were processed 
in Qurro; the top 10% of positively and negatively 
differential taxa at the ASV level (differential rank-
ings) were selected to create logRatios of microbial 
taxa relative abundances (calculated by taking the 
log of the quotient of the sum of positively differ-
ential taxa relative abundances by the sum of 
negatively differential taxa relative abundances, 
referred to as “microbial cohorts” for the purposes 
of this manuscript), which were then compared 
back to the metadata value in question via 
Spearman correlation to assess strength of the 
association, and compared by two-way ANOVA 
(treatment group and time point) with post-hoc 
paired t-test to compare within-treatment time 
points. The final, combined differentials for SBP 
and DBP were created by comparing all ASVs 
across models (Total HEI, whole grain HEI com-
ponent score, SBP, DBP, fecal LCA, and fecal 
cholesterol) within dyad counterpart. If an ASV 
was present in ≥2 logRatios, the representing 
genus was considered in the final, combined 
model. Since lower SBP was a desirable outcome 
in this study, numerator and denominator taxa 
were switched (numerator to denominator, and 
denominator to numerator) for consideration in 
the final, combined model. For taxa that existed in 
both numerator and denominator across models, 
each taxa was included in the term in which it was 
more-highly represented. Each taxa was tested for 
final inclusion in the combined multivariate 
model using leave-one-out cross-validation. For 
the final differential microbial cohorts, the rela-
tionship between changes in these cohorts from 
baseline to follow-up was evaluated within dyad 
pairings (caregiver and child of the same family) 
via spearman correlation, and the probability of 
the same or greater correlation occurring within 
this population was determined via bootstrapping 
for 1000 random combinations with replacement.

Statistical analysis

Descriptive statistics (mean and standard deviation 
for continuous variables and proportion for categori-
cal variables) were generated for all outcomes. Clinical 

parameters, dietary intake data, and were compared 
by two-way ANOVA (treatment group and time 
point) with post-hoc paired t-tests to compare within- 
treatment time points in JMP Pro v16.0.0.
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